導航:首頁 > 創造發明 > 列項改變創造法

列項改變創造法

發布時間:2021-07-20 04:18:08

A. 分數拆分法巧算

分數計算是小學計算部分的重要部分,也是小升初競賽的常考內容。對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度,解答較難的問題。因此,關於詳細的方法與技巧如下:

分數運算的技巧主要表現在兩方面:一是,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法;二是,分數簡算中獨有的方法,包括分數裂項、整體約分法等。

湊整法

與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。

改順序

通過改變分數式中的先後順序,使運算算簡便。常見有以下幾種方法:

01加括弧性質

在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:

a+b-c=a+(b-c)

a-b+c=a-(b-c)

a-b-c=a-(b+c)

02去括弧性質

在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:

a+(b-c)=a+b-c

a-(b+c)=a-b-c

a-(b-c)=a-b+c

03分數搬家

在連減或加減混合運算中,如果算式中沒有括弧,那麼計算時,可以帶著符號「搬家」,用「字母」表示:

a-b-c=a-c-b

a-b+c=a+c-b

提取公因式

當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。

01簡單提取法

02創造條件法

對於復雜的分數算式,要根據算式特點,進行一定的轉化,創造條件後再運用提取公因數的方法來簡算。

拆數

一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。

代數法

在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。

易錯點糾正

異分母分數相加減:要先通分,化成相同的分母,再加減,計算結果能約分的要約分。

在計算過程中要注意統一分數單位。

在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。

溫馨提示:

計算類的題目一定要多練習才能提高計算速度和准確率

B. 什麼是裂項法

就是把一個式子變成多個,以便於計算的方法。
小學階段常見的就是用裂項加消元計算分式的和。


1+1/1*2+1/2*3+1/3*4+...+1/99*100
=1+(1-1/2)+(1/2-1/3)+...+(1/99-1/100) (裂項)
=1+1-1/2+1/2-1/3+...-1/99+1/99-1/100 (消元)

=2-1/100
=199/100
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
26. 在等差數列 中:
(1)若項數為 ,則
(2)若數為 則, ,
27. 在等比數列 中:
(1) 若項數為 ,則
(2)若數為 則,
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性 如an=
33、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。

C. 裂項法是什麼

一、基本概念:
1、
數列的定義及表示方法:
2、
數列的項與項數:
3、
有窮數列與無窮數列:
4、
遞增(減)、擺動、循環數列:
5、
數列{an}的通項公式an:
6、
數列的前n項和公式Sn:
7、
等差數列、公差d、等差數列的結構:
8、
等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d
an=ak+(n-k)d
(其中a1為首項、ak為已知的第k項)
當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn=
Sn=
Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
12、等比數列的通項公式:
an=
a1
qn-1
an=
ak
qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n
a1
(是關於n的正比例式);
當q≠1時,Sn=
Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an
bn}、

仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
(為什麼?)
24、{an}為等差數列,則
(c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn}
(c>0且c
1)
是等差數列。
26.
在等差數列
中:
(1)若項數為
,則
(2)若數為
則,

27.
在等比數列
中:
(1)
若項數為
,則
(2)若數為
則,
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數列{an}的最大、最小項的方法:

an+1-an=……
如an=
-2n2+29n-3

(an>0)
如an=

an=f(n)
研究函數f(n)的增減性
如an=
33、在等差數列
中,有關Sn
的最值問題——常用鄰項變號法求解:
(1)當
>0,d<0時,滿足
的項數m使得
取最大值.
(2)當
<0,d>0時,滿足
的項數m使得
取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。

D. 裂項法的原理是什麼

一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
26. 在等差數列 中:
(1)若項數為 ,則
(2)若數為 則, ,
27. 在等比數列 中:
(1) 若項數為 ,則
(2)若數為 則,
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性 如an=
33、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。

E. 裂項相消法的幾種變換技巧

摘要:裂項相消法是解決有限項數列求和的一種重要方法.「裂項」的方法很多,但要選擇一種通過「裂項」而達到「相消」直至解決問題的方法卻是較難的.本文就此問題談幾種技巧。

F. 什麼是裂項法

你一定是在學多項式的加減吧。
裂項法就是把一個單項式化成等同兩個(或者多個)單項式。
例如:3x+2y=x+2x+2y

G. 什麼是裂項法

裂項法俗稱「拆項法」,就是把1相拆分成2項或者更多項。例如我們可以把1/6分裂成兩項
1/6=1/2-1/3
1/12=1/3-1/4
……
特別 在有限數列求和中的具體應用. 裂項法的實質是將數列中的每項(通項)分解,然後重新組合,使之能消去一些項,化繁為簡,最終達到求和的目的最為常用.

H. 什麼是「裂項法」

這是分解與組合思想在數列求和中的具體應用. 裂項法的實質是將數列中的每項(通項)分解,然後重新組合,使之能消去一些項,最終達到求和的目的. 通項分解(裂項)
(1)1/[n(n 1)]=1/n-1/(n 1)
(2)1/[(2n-1)(2n 1)]=1/2[1/(2n-1)-1/(2n 1)]
(3)1/[n(n 1)(n 2)]=1/2{1/[n(n 1)]-1/[(n 1)(n 2)]}
(4)1/(√a √b)=[1/(a-b)](√a-√b)
(5) n·n!=(n 1)!-n!
(6)1/[n(n k)]=1/k[1/n-1/(n k)]【例1】【分數裂項基本型】求數列an=1/n(n 1) 的前n項和.
解:an=1/n(n 1)=1/n-1/(n 1) (裂項)
則 Sn=1-1/2 1/2-1/3 1/3-1/4… 1/n-1/(n 1)(裂項求和)
= 1-1/(n 1)
= n/(n 1)
【例2】【整數裂項基本型】求數列an=n(n 1) 的前n項和.
解:an=n(n 1)=[n(n 1)(n 2)-(n-1)n(n 1)]/3(裂項)
則 Sn=[1×2×3-0×1×2 2×3×4-1×2×3 …… n(n 1)(n 2)-(n-1)n(n 1)]/3(裂項求和)
= [n(n 1)(n 2)]/3
【例3】1/(1×4) 1/(4×7) 1/(7×10) …… 1/(91×94)使用裂項公式將每個分式展開成兩個分數。
原式=1/3 *[(1-1/4) (1/4-1/7) (1/7-1/10) …… (1/91-1/94)]=1/3*(1-1/94)=31/94

希望能幫到你

I. 裂項法是怎麼運用的

1/[n*(n+k)]=(1/k)*[(1/n)-(1/n+1)],如1/(5*9)=(1/4)*(1/5-1/9)
這樣就實現了把一項變成兩項的目的。
碰到1/2+1/6+1/12+......+1/[n*(n+1)]也就是1/(1*2)+1/(2*3)+1/(3*4)+......+1/[n*(n+1)],可以變成1-1/2 + 1/2-1/3 + 1/3-1/4 +...... + 1/n-1/(n+1)=1-1/(n+1) 實現了化簡的目的。

閱讀全文

與列項改變創造法相關的資料

熱點內容
投訴華爾街英語 瀏覽:202
榆次區公共衛生服務中心 瀏覽:990
申發明5G 瀏覽:815
矛盾糾紛排查調處工作協調會議記錄 瀏覽:94
版權貿易十一講 瀏覽:370
綜治辦矛盾糾紛排查調處工作總結 瀏覽:903
知識產權局專業面試 瀏覽:75
馬鞍山市是哪個省的 瀏覽:447
馬鞍山市保安 瀏覽:253
股權轉讓樣本 瀏覽:716
工程管理保證書 瀏覽:198
社區矛盾糾紛排查匯報 瀏覽:352
新疆公共就業服務網登陸 瀏覽:316
侵權著作權案件審理指南上海 瀏覽:145
馬鞍山陸建雙 瀏覽:853
北京東靈通知識產權服務有限公司西安分公司 瀏覽:6
海南證券從業資格證書領取 瀏覽:846
成果有男票嗎 瀏覽:828
知識產權法04任務0001答案 瀏覽:691
馬鞍山519日停電通知 瀏覽:977