A. 有理數是由哪個學派最先發現
「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。
中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這里的詞根是英語中的,希臘語意義與之相同)。
所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。
古埃及人約於公元前17世紀已使用分數,中國《九童算術》中也載有分數的各種運算。分數的使用是由於除法運算的需要。除法運算可以看作求解方程px=q(p≠0),如果p,q是整數,則方程不一定有整數解。為了使它恆有解,就必須把整數系擴大成為有理系。
(1)發明有理數擴展閱讀:
有理數系的嚴格理論
在Z×(Z -{0})即整數有序對(但第二元不等於零)的集上定義的如下等價關系:設 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。則稱(p1,q2)~(p2,q1)。Z×(Z -{0})關於這個等價關系的等價類,稱為有理數。(p,q)所在的有理數,記為 。
一切有理數所成之集記為Q。令整數p對應一於 ,即(p,1)所在的等價類,就把整數集嵌入到有理數的集中。因此,有理數系可說是由整數系擴大後的數系。
B. 數學家發明了一個魔術盒,當任意有理數對(a,b)進入其中時,會得到一個新的有理數:a²+b+1。列如把
分析:此題應先把有理數對(-2,3)放入a2+b+1中得到有理數m,求出m後,再把得到的(m,1)再放入版a2+b+1中即可得到所求的有理權數.
解答:解:把有理數對(-2,3)代入a2+b+1可得:m=(-2)2+3+1=8;再把有理數對(8,1)代入a2+b+1可得:82+1+1=66.
答:最後得到的有理數是66.
點評:此題是定義新運算題型.直接把對應的數字代入所給的式子可求出所要的結果.
C. 有理說是古希臘誰發明的
你打錯字了吧!問題應該是「有理數是誰發明的」,是古希臘的畢達哥達斯
最早把數的概念提到突出地位的是畢達哥拉斯學派。他們很重視數學,企圖用數來解釋一切。宣稱數是宇宙萬物的本原,研究數學的目的並不在於使用而是為了探索自然的奧秘。他們從五個蘋果、五個手指等事物中抽象出了五這個數。這在今天看來很平常的事,但在當時的哲學和實用數學界,這算是一個巨大的進步。在實用數學方面,它使得算術成為可能。在哲學方面,這個發現促使人們相信數是構成實物世界的基礎。
他同時任意地把非物質的、抽象的數誇大為宇宙的本原,認為「萬物皆數」,「數是萬物的本質」,是「存在由之構成的原則」,而整個宇宙是數及其關系的和諧的體系。畢達哥拉斯將數神秘化,說數是眾神之母,是普遍的始原,是自然界中對立性和否定性的原則。
D. 有理數是誰創造的
古埃及人約於公元前17世紀已使用分數,中國《九童算術》中也載有分數的各種運算。分數的使用是由於除法運算的需要。除法運算可以看作求解方程px=q(p≠0),如果p,q是整數,則方程不一定有整數解。為了使它恆有解,就必須把整數系擴大成為有理系。
關於有理數系的嚴格理論,可用如下方法建立。在Z×(Z -{0})即整數有序對(但第二元不等於零)的集上定義的如下等價關系:設 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。則稱(p1,q2)~(p2,q1)。Z×(Z -{0})關於這個等價關系的等價類,稱為有理數。(p,q)所在的有理數,記為 。一切有理數所成之集記為Q。令整數p對應一於 ,即(p,1)所在的等價類,就把整數集嵌入到有理數的集中。因此,有理數系可說是由整數系擴大後的數系。
有理數包括負有理數,0和正有理數
E. 什麼叫做有理數
1,有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。
數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限循環的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。
2,有理數集可以用大寫黑正體符號Q代表。但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
一,整數
整數,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的數的統稱,包括負整數、零(0)與正整數。和自然數一樣,整數也是一個可數的無限集合。這個集合在數學上通常表示為粗體Z或,源於德語單詞Zahlen(意為「數」)的首字母。
在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。
二,有理數命名由來:
「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。
但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這里的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。
F. 有理數的歷史
值得一提的是有理數的名稱。「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這里的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。
數的概念最初不論在哪個地區都是1、2、3、4……這樣的自然數開始的,但是記數的符號卻大小相同。
古羅馬的數字相當進步,現在許多老式掛鍾上還常常使用。
實際上,羅馬數字的符號一共只有7個:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。這7個符號位置上不論怎樣變化,它所代表的數字都是不變的。它們按照下列規律組合起來,就能表示任何數:
1.重復次數:一個羅馬數字元號重復幾次,就表示這個數的幾倍。如:"III"表示"3";"XXX"表示"30"。
2.右加左減:一個代表大數字的符號右邊附一個代表小數字的符號,就表示大數字加小數字,如"VI"表示"6","DC"表示"600"。一個代表大數字的符號左邊附一個代表小數字的符號,就表示大數字減去小數字的數目,如"IV"表示"4","XL"表示"40","VD"表示"495"。
3.上加橫線:在羅馬數字上加一橫線,表示這個數字的一千倍。如:""表示 "15,000",""表示"165,000"。
我國古代也很重視記數符號,最古老的甲骨文和鍾鼎中都有記數的符號,不過難寫難認,後人沒有沿用。到春秋戰國時期,生產迅速發展,適應這一需要,我們的祖先創造了一種十分重要的計算方法--籌算。籌算用的算籌是竹製的小棍,也有骨制的。按規定的橫豎長短順序擺好,就可用來記數和進行運算。隨著籌算的普及,算籌的擺法也就成為記數的符號了。算籌擺法有橫縱兩式,都能表示同樣的數字。
從算籌數碼中沒有"10"這個數可以清楚地看出,籌算從一開始就嚴格遵循十位進制。9位以上的數就要進一位。同一個數字放在百位上就是幾百,放在萬位上就是幾萬。這樣的計演算法在當時是很先進的。因為在世界的其他地方真正使用十進位制時已到了公元6世紀末。但籌算數碼中開始沒有"零",遇到"零"就空位。比如"6708",就可以表示為"┴ ╥ "。數字中沒有"零",是很容易發生錯誤的。所以後來有人把銅錢擺在空位上,以免弄錯,這或許與"零"的出現有關。不過多數人認為,"0"這一數學符號的發明應歸功於公元6世紀的印度人。他們最早用黑點(·)表示零,後來逐漸變成了"0"。
說起"0"的出現,應該指出,我國古代文字中,"零"字出現很早。不過那時它不表示"空無所有",而只表示"零碎"、"不多"的意思。如"零頭"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,還有一個零頭五。隨著阿拉數字的引進。"105"恰恰讀作"一百零五","零"字與"0"恰好對應,"零"也就具有了"0"的含義。
如果你細心觀察的話,會發現羅馬數字中沒有"0"。其實在公元5世紀時,"0"已經傳入羅馬。但羅馬教皇兇殘而且守舊。他不允許任何使用"0"。有一位羅馬學者在筆記中記載了關於使用"0"的一些好處和說明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握筆寫字。
但"0"的出現,誰也阻擋不住。現在,"0"已經成為含義最豐富的數字元號。"0"可以表示沒有,也可以表示有。如:氣溫0℃,並不是說沒有氣溫;"0"是正負數之間唯一的中性數;任何數(0除外)的0次冪等於1;0!=1(零的階乘等於1)。
除了十進制以外,在數學萌芽的早期,還出現過五進制、二進制、三進制、七進制、八進制、十進制、十六進制、二十進制、六十進制等多種數字進製法。在長期實際生活的應用中,十進制最終佔了上風。
現在世界通用的數碼1、2、3、4、5、6、7、8、9、0,人們稱之為阿拉伯數字。實際上它們是古代印度人最早使用的。後來阿拉伯人把古希臘的數學融進了自己的數學中去,又把這一簡便易寫的十進制位值記數法傳遍了歐洲,逐漸演變成今天的阿拉伯數字。
數的概念、數碼的寫法和十進制的形成都是人類長期實踐活動的結果。
隨著生產、生活的需要,人們發現,僅僅能表示自然數是遠遠不行的。如果分配獵獲物時,5個人分4件東西,每個人人該得多少呢?於是分數就產生了。中國對分數的研究比歐洲早1400多年!自然數、分數和零,通稱為算術數。自然數也稱為正整數。
隨著社會的發展,人們又發現很多數量具有相反的意義,比如增加和減少、前進和後退、上升和下降、向東和向西。為了表示這樣的量,又產生了負數。正整數、負整數和零,統稱為整數。如果再加上正分數和負分數,就統稱為有理數。有了這些數字表示法,人們計算起來感到方便多了。
但是,在數字的發展過程中,一件不愉快的事發生了。讓我們回到大經貿部2500年前的希臘,那裡有一個畢達哥拉斯學派,是一個研究數學、科學和哲學的團體。他們認為"數"是萬物的本源,支配整個自然界和人類社會。因此世間一切事物都可歸結為數或數的比例,這是世界所以美好和諧的源泉。他們所說的數是指整數。分數的出現,使"數"不那樣完整了。但分數都可以寫成兩個整數之比,所以他們的信仰沒有動搖。但是學派中一個叫希帕索斯的學生在研究1與2的比例中項時,發現沒有一個能用整數比例寫成的數可以表示它。如果設這個數為X,既然,推導的結果即x2=2。他畫了一個邊長為1的正方形,設對角線為x ,根據勾股定理x2=12+12=2,可見邊長為1的正方形的對角線的長度即是所要找的那個數,這個數肯定是存在的。可它是多少?又該怎樣表示它呢?希帕索斯等人百思不得其解,最後認定這是一個從未見過的新數。這個新數的出現使畢達哥拉斯學派感到震驚,動搖了他們哲學思想的核心。為了保持支撐世界的數學大廈不要坍塌,他們規定對新數的發現要嚴守秘密。而希帕索斯還是忍不住將這個秘密泄露了出去。據說他後來被扔進大海餵了鯊魚。然而真理是藏不住的。人們後來又發現了很多不能用兩整數之比寫出來的數,如圓周率 就是最重要的一個。人們把它們寫成 π、等形式,稱它們為無理數。
有理數和無理數一起統稱為實數。在實數范圍內對各種數的研究使數學理論達到了相當高深和豐富的程度。這時人類的歷史已進入19世紀。許多人認為數學成就已經登峰造極,數字的形式也不會有什麼新的發現了
G. 數學家發明了一個魔術盒,當任意有理數
即m(1-2)=1
所以m=-1
所以得到1*(-1-2)=-3
H. 有理數的產生過程
人們原始社會要打獵,要計算人頭,就發明了自然數12345~~~~~
過了一段兒少了一個人欠了一頭羊怎麼表示就有了負數,-1-2-3-4-5~~~~
然後發展到整數012345~~~0是很不容易才被發明出來的。
過了一段時間要拿錢買東西,發現了分數,分數等於小數。小數不能整除的都能循環啊。這時候這些以上的統稱有理數
然後人們發現了一個很重要的數圓周率pi。人們怎麼除也沒有循環,哪么為了區分這個數跟其他的區別,就把這類沒有循環的無窮小數叫做了無理數。哪么另一部分就叫做有理數了。
根號2,根號3等也是無理數。無理數和有理數統稱實數。夠短了。
I. 有理數誰發明的
畢達哥拉斯
J. 什麼是 有理數
就是自認為很講理的書