導航:首頁 > 創造發明 > 李群發明者

李群發明者

發布時間:2021-07-10 18:56:40

① 馮·諾依曼在什麼情況下發明了電腦

現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接幾天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.

1944年,諾伊曼參加原子彈的研製工作,該工作涉及到極為困難的計算。在對原子核反應過程的研究中,要對一個反應的傳播做出「是」或「否」的回答。解決這一問題通常需要通過幾十億次的數學運算和邏輯指令,盡管最終的數據並不要求十分精確,但所有的中間運算過程均不可缺少,且要盡可能保持准確。他所在的洛·斯阿拉莫斯實驗室為此聘用了一百多名女計算員,利用台式計算機從早到晚計算,還是遠遠不能滿足需要。無窮無盡的數字和邏輯指令如同沙漠一樣把人的智慧和精力吸盡。

被計算機所困擾的諾伊曼在一次極為偶然的機會中知道了ENIAC計算機的研製計劃,從此他投身到計算機研製這一宏偉的事業中,建立了一生中最大的豐功偉績。

1944年夏的一天,正在火車站候車的諾伊曼巧遇戈爾斯坦,並同他進行了短暫的交談。當時,戈爾斯坦是美國彈道實驗室的軍方負責人,他正參與ENIAC計算機的研製工作。在交談在,戈爾斯坦告訴了諾伊曼有關ENIAC的研製情況。具有遠見卓識的諾伊曼為這一研製計劃所吸引,他意識到了這項工作的深遠意義。

馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力。諾伊曼以「關於EDVAC的報告草案」為題,起草了長達101頁的總結報告。報告廣泛而具體地介紹了製造電子計算機和程序設計的新思想。這份報告是計算機發展史上一個劃時代的文獻,它向世界宣告:電子計算機的時代開始了。

EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.報告中,諾伊曼對EDVAC中的兩大設計思想作了進一步的論證,為計算機的設計樹立了一座里程碑。

設計思想之一是二進制,他根據電子元件雙穩工作的特點,建議在電子計算機中採用二進制。報告提到了二進制的優點,並預言,二進制的採用將大簡化機器的邏輯線路。
現在使用的計算機,其基本工作原理是存儲程序和程序控制,它是由世界著名數學家馮·諾依曼提出的。美籍匈牙利數學家馮·諾依曼被稱為「計算機之父」。

② 馮·諾依曼的生平和貢獻

約翰·馮·諾依曼
20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".而在經濟學方面,他也有突破性成就,被譽為「博弈論之父」。在物理領域,馮·諾依曼在30年代撰寫的《量子力學的數學基礎》已經被證明對原子物理學的發展有極其重要的價值。在化學方面也有相當的造詣,曾獲蘇黎世高等技術學院化學系大學學位。與同為猶太人的哈耶克一樣,他無愧是上世紀最偉大的全才之一。

約翰·馮·諾依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年他成為美國普林斯頓大學的第一批終身教授,那時,他還不到30歲。1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生. 馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土. 1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席.

1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲.

馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題.

1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的. 他對運算元代數進行了開創性工作,並奠定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣. 馮·諾依曼還創立了博奕論這一現代數學的又一重要分支. 1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作.

馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術、數值分析和經濟學中的博弈論的開拓性工作.

現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接幾天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.

1944年,諾伊曼參加原子彈的研製工作,該工作涉及到極為困難的計算。在對原子核反應過程的研究中,要對一個反應的傳播做出「是」或「否」的回答。解決這一問題通常需要通過幾十億次的數學運算和邏輯指令,盡管最終的數據並不要求十分精確,但所有的中間運算過程均不可缺少,且要盡可能保持准確。他所在的洛·斯阿拉莫斯實驗室為此聘用了一百多名女計算員,利用台式計算機從早到晚計算,還是遠遠不能滿足需要。無窮無盡的數字和邏輯指令如同沙漠一樣把人的智慧和精力吸盡。

被計算機所困擾的諾伊曼在一次極為偶然的機會中知道了ENIAC計算機的研製計劃,從此他投身到計算機研製這一宏偉的事業中,建立了一生中最大的豐功偉績。

1944年夏的一天,正在火車站候車的諾伊曼巧遇戈爾斯坦,並同他進行了短暫的交談。當時,戈爾斯坦是美國彈道實驗室的軍方負責人,他正參與ENIAC計算機的研製工作。在交談在,戈爾斯坦告訴了諾伊曼有關ENIAC的研製情況。具有遠見卓識的諾伊曼為這一研製計劃所吸引,他意識到了這項工作的深遠意義。

馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力。諾伊曼以「關於EDVAC的報告草案」為題,起草了長達101頁的總結報告。報告廣泛而具體地介紹了製造電子計算機和程序設計的新思想。這份報告是計算機發展史上一個劃時代的文獻,它向世界宣告:電子計算機的時代開始了。

EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.報告中,諾伊曼對EDVAC中的兩大設計思想作了進一步的論證,為計算機的設計樹立了一座里程碑。

設計思想之一是二進制,他根據電子元件雙穩工作的特點,建議在電子計算機中採用二進制。報告提到了二進制的優點,並預言,二進制的採用將大簡化機器的邏輯線路。
現在使用的計算機,其基本工作原理是存儲程序和程序控制,它是由世界著名數學家馮·諾依曼提出的。美籍匈牙利數學家馮·諾依曼被稱為「計算機之父」。

實踐證明了諾伊曼預言的正確性。如今,邏輯代數的應用已成為設計電子計算機的重要手段,在EDVAC中採用的主要邏輯線路也一直沿用著,只是對實現邏輯線路的工程方法和邏輯電路的分析方法作了改進。

程序內存是諾伊曼的另一傑作。通過對ENIAC的考察,諾伊曼敏銳地抓住了它的最大弱點--沒有真正的存儲器。ENIAC只在20個暫存器,它的程序是外插型的,指令存儲在計算機的其他電路中。這樣,解題之前,必需先相好所需的全部指令,通過手工把相應的電路聯通。這種准備工作要花幾小時甚至幾天時間,而計算本身只需幾分鍾。計算的高速與程序的手工存在著很大的矛盾。

針對這個問題,諾伊曼提出了程序內存的思想:把運算程序存在機器的存儲器中,程序設計員只需要在存儲器中尋找運算指令,機器就會自行計算,這樣,就不必每個問題都重新編程,從而大大加快了運算進程。這一思想標志著自動運算的實現,標志著電子計算機的成熟,已成為電子計算機設計的基本原則。

1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想.

馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻. 馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎.

馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版.

另外,馮·諾依曼40年代出版的著作《博弈論和經濟行為》,使他在經濟學和決策科學領域豎起了一塊豐碑。他被經濟學家公認為博弈論之父。當時年輕的約翰·納什在普林斯頓求學期間開始研究發展這一領域,並在1994年憑借對博弈論的突出貢獻獲得了諾貝爾經濟學獎。

③ 計算機是誰發明的

電腦是誰發明的,嚴格說起來很難界定。 計算機(computer)的原來意義是「計算器」,也就是說,人類會發明計算機,最初的目的是幫助處理復雜的數字運算。而這種人工計算器的概念,最早可以追溯到十七世紀的法國大思想家帕斯卡。帕斯卡的父親擔任稅務局長,當時的幣制不是十進制,在計算上非常麻煩。帕斯卡為了協助父親,利用齒輪原理,發明了第一台可以執行加減運算計算器 。後來,德國數學家萊布尼茲加以改良,發明了可以做乘除運算的計算器。之後雖然在計算器的功能上多所改良與精進,但是,真正的電動計算器,卻必須等到公元1944年才製造出來。 而第一部真正可以稱得上計算機的機器,則誕生於1946年的美國,毛琪利與愛克特發明的,名字叫做ENIAC。這部計算機使用真空管來處理訊號,所以體積龐大(占滿一個房間)、耗電量高(使用時全鎮的人都知道,因為家家戶戶的電燈都變暗了!),而且記憶容量又非常低(只有100多個字),但是,卻已經是人類科技的一大進展。而我們通常把這種使用真空管的計算機稱為第一代計算機。 第一代的電腦有2間教室大,跟現在我們一般用的個人電腦體積差很多吧。 當時的電腦零件是真空管(現在已經找不到了) 而存檔的東西是一種打孔卡片,若沒有前人的設計概念,也沒有計算機的發明,所以還有點難界定。

④ 急求一個數學家的故事

⑤ 法國與德國的數學家發明了什麼的演算工具

希爾伯特23個數學問題及其解決情況
世界經理人·科技 TECH.ICXO.COM ( 日期:2005-05-19 15:57)

--------------------------------------------------------------------------------

(1)康托的連續統基數問題。

1874年,康托猜測在可數集基數和實數集基數之間沒有別的基數,即著名的連續統假設。1938年,僑居美國的奧地利數理邏輯學家哥德爾證明連續統假設與ZF集合論公理系統的無矛盾性。1963年,美國數學家科思(P.Choen)證明連續統假設與ZF公理彼此獨立。因而,連續統假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。

(2)算術公理系統的無矛盾性。

歐氏幾何的無矛盾性可以歸結為算術公理的無矛盾性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明,哥德爾1931年發表不完備性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限歸納法證明了算術公理系統的無矛盾性。

(3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。

問題的意思是:存在兩個登高等底的四面體,它們不可能分解為有限個小四面體,使這兩組四面體彼此全等德思(M.Dehn)1900年已解決。

(4)兩點間以直線為距離最短線問題。

此問題提的一般。滿足此性質的幾何很多,因而需要加以某些限制條件。1973年,蘇聯數學家波格列洛夫(Pogleov)宣布,在對稱距離情況下,問題獲解決。

(5)拓撲學成為李群的條件(拓撲群)。

這一個問題簡稱連續群的解析性,即是否每一個局部歐氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥馬利(Montgomery)、齊賓(Zippin)共同解決。1953年,日本的山邁英彥已得到完全肯定的結果。

(6)對數學起重要作用的物理學的公理化。

1933年,蘇聯數學家柯爾莫哥洛夫將概率論公理化。後來,在量子力學、量子場論方面取得成功。但對物理學各個分支能否全盤公理化,很多人有懷疑。

(7)某些數的超越性的證明。

需證:如果α是代數數,β是無理數的代數數,那麼αβ一定是超越數或至少是無理數(例如,2√2和eπ)。蘇聯的蓋爾封特(Gelfond)1929年、德國的施奈德(Schneider)及西格爾(Siegel)1935年分別獨立地證明了其正確性。但超越數理論還遠未完成。目前,確定所給的數是否超越數,尚無統一的方法。

(8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。

素數是一個很古老的研究領域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素數問題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素數問題目前也未最終解決,其最佳結果均屬中國數學家陳景潤。

(9)一般互反律在任意數域中的證明。

1921年由日本的高木貞治,1927年由德國的阿廷(E.Artin)各自給以基本解決。而類域理論至今還在發展之中。

(10)能否通過有限步驟來判定不定方程是否存在有理整數解?

求出一個整數系數方程的整數根,稱為丟番圖(約210-290,古希臘數學家)方程可解。1950年前後,美國數學家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關鍵性突破。1970年,巴克爾(Baker)、費羅斯(Philos)對含兩個未知數的方程取得肯定結論。1970年。蘇聯數學家馬蒂塞維奇最終證明:在一般情況答案是否定的。盡管得出了否定的結果,卻產生了一系列很有價值的副產品,其中不少和計算機科學有密切聯系。

(11)一般代數數域內的二次型論。

德國數學家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結果。60年代,法國數學家魏依(A.Weil)取得了新進展。

(12)類域的構成問題。

即將阿貝爾域上的克羅內克定理推廣到任意的代數有理域上去。此問題僅有一些零星結果,離徹底解決還很遠。

(13)一般七次代數方程以二變數連續函數之組合求解的不可能性。

七次方程x7+ax3+bx2+cx+1=0的根依賴於3個參數a、b、c;x=x(a,b,c)。這一函數能否用兩變數函數表示出來?此問題已接近解決。1957年,蘇聯數學家阿諾爾德(Arnold)證明了任一在〔0,1〕上連續的實函數f(x1,x2,x3)可寫成形式∑hi(ξi(x1,x2),x3)(i=1--9),這里hi和ξi為連續實函數。柯爾莫哥洛夫證明f(x1,x2,x3)可寫成形式∑hi(ξi1(x1)+ξi2(x2)+ξi3(x3))(i=1--7)這里hi和ξi為連續實函數,ξij的選取可與f完全無關。1964年,維土斯金(Vituskin)推廣到連續可微情形,對解析函數情形則未解決。

(14)某些完備函數系的有限的證明。

即域K上的以x1,x2,…,xn為自變數的多項式fi(i=1,…,m),R為K〔X1,…,Xm]上的有理函數F(X1,…,Xm)構成的環,並且F(f1,…,fm)∈K[x1,…,xm]試問R是否可由有限個元素F1,…,FN的多項式生成?這個與代數不變數問題有關的問題,日本數學家永田雅宜於1959年用漂亮的反例給出了否定的解決。

(15)建立代數幾何學的基礎。

荷蘭數學家范德瓦爾登1938年至1940年,魏依1950年已解決。

(15)注一舒伯特(Schubert)計數演算的嚴格基礎。

一個典型的問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀的解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學有密切的關系。但嚴格的基礎至今仍未建立。

(16)代數曲線和曲面的拓撲研究。

此問題前半部涉及代數曲線含有閉的分枝曲線的最大數目。後半部要求討論備dx/dy=Y/X的極限環的最多個數N(n)和相對位置,其中X、Y是x、y的n次多項式。對n=2(即二次系統)的情況,1934年福羅獻爾得到N(2)≥1;1952年鮑廷得到N(2)≥3;1955年蘇聯的波德洛夫斯基宣布N(2)≤3,這個曾震動一時的結果,由於其中的若干引理被否定而成疑問。關於相對位置,中國數學家董金柱、葉彥謙1957年證明了(E2)不超過兩串。1957年,中國數學家秦元勛和蒲富金具體給出了n=2的方程具有至少3個成串極限環的實例。1978年,中國的史松齡在秦元勛、華羅庚的指導下,與王明淑分別舉出至少有4個極限環的具體例子。1983年,秦元勛進一步證明了二次系統最多有4個極限環,並且是(1,3)結構,從而最終地解決了二次微分方程的解的結構問題,並為研究希爾伯特第(16)問題提供了新的途徑。

(17)半正定形式的平方和表示。

實系數有理函數f(x1,…,xn)對任意數組(x1,…,xn)都恆大於或等於0,確定f是否都能寫成有理函數的平方和?1927年阿廷已肯定地解決。

(18)用全等多面體構造空間。

德國數學家比貝爾巴赫(Bieberbach)1910年,萊因哈特(Reinhart)1928年作出部分解決。

(19)正則變分問題的解是否總是解析函數?

德國數學家伯恩斯坦(Bernrtein,1929)和蘇聯數學家彼德羅夫斯基(1939)已解決。

(20)研究一般邊值問題。

此問題進展迅速,己成為一個很大的數學分支。日前還在繼讀發展。

(21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。

此問題屬線性常微分方程的大范圍理論。希爾伯特本人於1905年、勒爾(H.Rohrl)於1957年分別得出重要結果。1970年法國數學家德利涅(Deligne)作出了出色貢獻。

(22)用自守函數將解析函數單值化。

此問題涉及艱深的黎曼曲面理論,1907年克伯(P.Koebe)對一個變數情形已解決而使問題的研究獲重要突破。其它方面尚未解決。

(23)發展變分學方法的研究。

這不是一個明確的數學問題。20世紀變分法有了很大發展。

可見,希爾伯特提出的問題是相當艱深的。正因為艱深,才吸引有志之士去作巨大的努力。

⑥ 誇克模型最早是誰發現的

蓋爾曼(Murry Gell-Mann, 1929-)因對基本粒子的分類及其相互作用方面的卓越貢獻,獲得了1969年度諾貝爾物理學獎。
蓋爾曼於1929年9月15日生於美國紐約,是一個歸化了的東歐移民,蓋爾曼常常對自己的家庭守口如瓶。他對自己的猶太出身諱莫如深,在維也納有許多人叫格爾曼,但是沒有一個人用蓋爾曼這個誇張的名字,彷彿在故意模糊他的猶太祖先。

最初,電子、質子和中子被認為是基本粒子,所有物質都是由它們構成的。後來,在20世紀40-50年代,先在宇宙線事例中,後又在高能加速器中發現了一些新的不穩定粒子。其中,有些粒子(介子)的質量大約為電子質量的1000倍;有些具有10-10秒的長壽命,與所期望的強相互作用的壽命10-23秒相比,顯得很「奇異」。蓋爾曼(左圖)發現幾乎所有的已知粒子都可被分成族或多重態,而這些多重態又顯示出與挪威數學家李研究過的李群表示相對應的幾何圖樣。當把這些幾何規律應用於粒子物理學時,就出現了一種既能解釋多重態中粒子的性質,又能預言新粒子存在的理論,這有點類似於門捷列夫在構造元素周期表時所取得的成功。大約在1961年,蓋爾曼和以色列物理學家尼曼彼此獨立地發展了這種新理論,蓋爾曼將它稱為八重法(依據佛教關於八種正確的生活方式能免遭痛苦的勸說而命名)。按照稱之為SU(3)群的數學結構,蓋爾曼在定義了一個新量子數——奇異量子數S以後,將一些同位旋多重態組合成超多重態。1962年,蓋爾曼據此預言存在質量為1532MeV和1679 MeV的粒子,1964年這兩種粒子(分別稱為S10和W-)均被發現了,這就突出了該理論的重要性。

為了進一步從理論上解釋構成強子的組分粒子,蓋爾曼在坂田模型和八重態方法的基礎上於1964年提出了「誇克模型」的設想。按照這種模型,所有已知的基本粒子都是由三種更為基本的粒子——「誇克」 組成的。「誇克」一詞,取自喬埃斯在《菲內根的覺醒》中所說的:「為馬克王呼叫三聲誇克!」。利用誇克模型,可以很好地解釋重子的八重態、十重態以及介子的八重態。

⑦ 1949年-2009年數學發明有哪些

1.國際著名數學大師,沃爾夫數學獎得主,陳省身
1931年入清華大學研究院,1934軍獲碩士學位.1934年去漢堡大學從Blaschke學習.1937年回國任西南聯合大學教授.1943年到1945年任普林斯頓高等研究所研究員.1949年初赴美,旋任芝加哥大學教授.1960年到加州大學伯克利分校任教授,1979年退休成為名譽教授,仍繼續任教到1984年.1981年到1984年任新建的伯克利數學研究所所長,其後任名譽所長。陳省身的主要工作領域是微分幾何學及其相關分支.還在積分幾何,射影微分幾何,極小子流形,網幾何學,全曲率與各種浸入理論,外微分形式與偏微分方程等諸多領域有開拓性的貢獻.陳省身本有極多榮譽,包括中央研究院院士(1948).美國國家科學院院士(1961)及國家科學獎章(1975),倫敦皇家學會國外會員(1985),法國科學院國外院士』(1989),中國科學院國外院士等。榮獲1983/1984年度Wolf獎,及1983年度美國科學會Steele獎中的終身成就獎.
2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人,華羅庚
華羅庚是一位人生經歷傳奇的數學家,早年輟學,1930年因在《科學》上發表了關於代數方程式解法的文章,受到熊慶來的重視,被邀到清華大學學習和工作,在楊武之指引下,開始了數論的研究。1936年,作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應美國普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年開始,他為伊利諾伊大學教授。1950年回國,先後任清華大學教授,中國科學院數學研究所所長,數理化學部委員和學部副主任,中國科學技術大學數學系主任、副校長,中國科學院應用數學研究所所長,中國科學院副院長、主席團委員等職。還擔任過多屆中國數學會理事長。此外,華羅庚還是第一、二、三、四、五屆全國人民代表大會常務委員會委員和中國人民政治協商會議第六屆全國委員會副主席。華羅庚是在國際上享有盛譽的數學家,他的名字在美國施密斯松尼博物館與芝加哥科技博物館等著名博物館中,與少數經典數學家列在一起。他被選為美國科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。又被授予法國南錫大學、香港中文大學與美國伊利諾伊大學榮譽博士。華羅庚在解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等廣泛數學領域中都作出卓越貢獻。由於華羅庚的重大貢獻,有許多用他他的名字命名的定理、引理、不等式、運算元與方法。他共發表專著與學術論文近三百篇。華羅庚還根據中國實情與國際潮流,倡導應用數學與計算機研製。他身體力行,親自去二十七個省市普及應用數學方法長達二十年之久,為經濟建設作出了重大貢獻。
3.僅次於哥德爾的邏輯數學大師,王浩
1943年於西南聯合大學數學系畢業。1945年於清華大學研究生院哲學部畢業。1948年獲美國哈佛大學哲學博士學位。1950~1951年在瑞士聯邦工學院數學研究所從事研究工作1951~1953年任哈佛大學助理教授。1954~1961年在英國牛津大學作第二套洛克講座講演,又任邏輯及數理哲學高級教職。1961~1967 年任哈佛大學教授。1967年後任美國洛克斐勒大學教授,主持邏輯研究室工作。1985年兼任中國北京大學名譽教授。1986年兼任中國清華大學名譽教授。50年代 初被選為美國國家科學院院士,後又被選為不列顛科學院外國院士,美籍華裔數學家、邏輯學家、計算機科學家、哲學家。
4.著名數學家力學家,美國科學院院士,林家翹
1937年畢業於清華大學物理系。1941年獲加拿大多倫多大學碩士學位。1944年獲美國加州理工學院博士學位。1953 年起先後擔任美國麻省理工學院數學教授、學院教授、榮譽退休教授。 林家翹教授曾獲:美國機械工程師學會Timoshenko獎,美國國家科學院應用數學和數值分析獎,美國物理學會流體力學獎。他是美國國家文理學院院士(1951),美國國家科學院院士(1962),台灣「中央研究院」院士(1960)。從40年代開始,林家翹教授在流體力學的流動穩定性和湍流理論方面的工作帶動了整整一代人在這一領域的研究探索。從60年代開始,他進入天體物理的研究領域,開創了星系螺旋結構的密度波理論,並為國際所公認。1994年6月8日當選為首批中國科學院外籍士。
5.我國泛函分析領域研究先驅者,曾遠榮
1919年入清華學校(清華大學前身)留美預備部,一直讀到1927年7月。由於學習成績優異,先後在美國芝加哥大學,普林斯頓大學及耶魯大學學習並研究數學,1933年取得博士學位。1934年8月至1942年7月一直任教於清華大學(1938年與北京大學、南開大學在昆明組成西南聯合大學)。1950年2月,受國立南京大學數學系系主任孫光遠教授寫信聘請到南京大學任教直至退休,曾在南京大學建立國內最早的計算數學專業。長期從事泛函分析研究,是我國開展這一領域研究的先驅者之一,在廣義逆等研究領域成就卓著。
6.我國最早提倡應用數學與計算數學的學者,趙訪熊
1922年考取北京清華學校。當時清華學校是公費留美預備學校,競爭激烈,在江蘇只招3名學生,他在眾多考生中名列榜首。畢業後即到美國麻省理工學院(MIT)電機系學習。他1930年在電機系畢業,被哈佛大學數學系錄取為研究生,且於1931年獲碩士學位。1933年他受聘回國在清華大學數學系任教,1935年被聘為教授,從此一直在清華大學任教,參與創辦國內第一個計算數學專業。趙訪熊於1962年和1978年先後兩次出任清華大學副校長,1980-1984年兼任新成立的應用數學系主任,並受聘擔任國務院學位委員會學科評議組委員。他擔任過中國數學會理事、名譽理事。1978年至1989年擔任第一、二屆計算數學學會理事長及第三屆名譽理事長和《計算數學學報》主編等一系列職務。數學家,數學教育家。我國最早提倡和從事應用數學與計算數學的教學與研究的學者之一。自編我國第一部工科《高等微積分》教材。在方程求根及應用數學研究方面頗有建樹。
7.著名數學家,數學教育家,吳大任
1930年與陳省身以最優等成績在南開大學畢業,考取清華大學研究生,1933年夏,在姜立夫的鼓勵下,吳大任參加了中英庚款第一屆公費留學考試,被錄取到英國學習。他本想到劍橋大學攻讀,因抵倫敦時間錯過了該校入學的時機,改入倫敦大學的大學學院,注冊為博士研究生。1937年9月初,吳大任到武漢大學任教,之後即隨武漢大學遷到四川樂山。後來長期擔任南開大學領導工作與教學工作,著、譯數學教材及名著多種。對我國高等教育事業作出了積極貢獻。研究領域涉及積分幾何、非歐幾何、微分幾何及其應用(齒輪理論)。1981年他任國家學位委員會第一屆數學組成員,《中國大網路全書數學卷》編委兼幾何拓撲學科的副主編以及全國自然科學名詞審定委員會第一和第二屆委員。
8.著名數學家,北大教授,庄圻泰
1927年考入清華學校,1932年畢業於清華大學數學系,1934年,熊慶來教授接受庄圻泰為自己的研究生,1936年於該校理科研究所畢業。1938年獲法國巴黎大學數學博士學位。曾任雲南大學教授。1952年院系調整後,庄圻泰留任北京大學。此後除繼續擔任復變函數課程的教學任務外,他還陸續講過保角變換,擬保角變換,整函數與亞純函數等專業課。九三學社社員。長期從事函數論研究,在整函數與亞純函數的值分布理論上取得重要成果。著有《亞純函數的奇異方向》,合編《AnalyticFunctionsOfOneCom·plexVariable》(在美國出版)
9.著名數學家,數學教育家,四川大學校長,柯召
1931年,入清華大學算學系。1933年,柯召以優異成績畢業。1935年,他考上了中英庚款的公費留學生,去英國曼徹斯特大學深造,在導師L.J.莫德爾(Mordell)的指導下研究二次型,在表二次型為線性型平方和的問題上,取得優異成績,回國後先後任教於重慶大學,四川大學。1953年,他調回四川大學任教至今。在這40餘年間,他以滿腔的熱情投入教學和科研工作,為國家培養了許多優秀數學人材,在科研上碩果累累。與此同時,他還先後擔任了四川大學教務長、副校長、校長、數學研究所所長等職,作為學術帶頭人和學校負責人,他卓有成效地抓了幾個重要方面的工作:努力提高教學質量,積極開展基礎理論研究,發展應用數學,培養一批高水平的人材。其研究領域涉及數論、組合數學與代數學。在二次型、不定方程領域獲眾多優秀成果。1955年選聘為中國科學院院士(學部委員)。
10.中央研究院院士,首批學部委員,許寶騄
1929年入清華大學數學系,1933年畢業獲理學士學位,1936年許寶騄考取赴英留學,派往倫敦大學學院,在統計系學習數理統計,攻讀博士學位。1940年到昆明,在西南聯合大學任教。1948年他當選為中央研究院院士。回國後不久就發現已患肺結核。他長期帶病工作,教學科研一直未斷,在矩陣論,概率論和數理統計方面發表了10餘篇論文。1955年,他當選為中國科學院學部委員。在中國開創了概率論、數理統計的教學與研究工作。在內曼-皮爾遜理論、參數估計理論、多元分析、極限理論等方面取得卓越成就,是多元統計分析學科的開拓者之一。1955年選聘為中國科學院院士(學部委員)。
11.中科院院士,原北大數學系主任,段學復
1932年考入了清華大學數學系(當時稱為「算學系」)。 1936年夏,段學復獲得理學士學位,畢業留校任助教。1941年8月進入美國普林斯頓大學數學系攻讀博士學位。1946年回國任清華大學教授,自1952年院系調整後,任北京大學數學系系主任近40年。長期從事代數學的研究。在有限群的模表示論特別是指標塊及其在有限單群和有限復線性群構造研究中的應用方面取得突出成果。指導學生用表示論和有限單群分類定理徹底解決了著名的Brauer第39問題、第40問題。在代數李群研究方面與國外學者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在數學應用於國防科研和國防建設方面作了大量工作。1955年選聘為中國科學院院士(學部委員)。
12.我國拓撲學的奠基人 江澤涵
畢業於南開大學,1927年參加清華大學留美專科生的考試,考取了那年唯一的學數學的名額,後在美國哈佛大學數學系留學,1930年獲得博士學位。1930在美國普林斯頓大學數學系做研究助教。1931年起,長期擔任任北京大學數學系教授,並任北京大學數學系主任,曾兼任理學院代理院長。數學家,數學教育家。早年長期擔任北京大學數學系主任,為該系樹立了優良的教學風尚。致力於拓撲學,特別是不動點理論的研究,是我國拓撲學研究的開拓者之一。1955年當選為中國科學院數理學部委員。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊(1952年改為《數學學報》),1951年10月《中國數學雜志》復刊(1953年改為《數學通報》)。1951年8月中國數學會召開建國後第一次全國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》(1953)、蘇步青的《射影曲線概論》(1954)、陳建功的《直角函數級數的和》(1954)和李儼的《中算史論叢》(5輯,1954-1955)等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國 1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊(1952年改為《數學學報》),1951年10月《中國數學雜志》復刊(1953年改為《數學通報》)。1951年8月中國數學會召開建國後第一次全國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》(1953)、蘇步青的《射影曲線概論》(1954)、陳建功的《直角函數級數的和》(1954)和李儼的《中算史論叢》(5輯,1954-1955)等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊(1952年改為《數學學報》),1951年10月《中國數學雜志》復刊(1953年改為《數學通報》)。1951年8月中國數學會召開建國後第一次全國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》(1953)、蘇步青的《射影曲線概論》(1954)、陳建功的《直角函數級數的和》(1954)和李儼的《中算史論叢》(5輯,1954-1955)等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國

⑧ 電腦之父是誰

電腦之父馮·諾依曼

閱讀全文

與李群發明者相關的資料

熱點內容
公共服務平台建設領導小組 瀏覽:165
人類創造了那些機器人 瀏覽:933
公共文化服務保障法何時實施 瀏覽:169
遼寧育嬰師證書領取 瀏覽:735
劃撥土地使用權轉讓能轉讓嗎 瀏覽:97
2019年公需科目知識產權考試答案 瀏覽:256
關於知識產權管理辦法 瀏覽:331
公共衛生服務培訓筆記 瀏覽:532
基層公共衛生服務技術題庫 瀏覽:497
中國城市老年體育公共服務體系的反思與重構 瀏覽:932
網路著作權的法定許可 瀏覽:640
工商局黨風廉政建設工作總結 瀏覽:325
公共服務平台建設可行性研究報告 瀏覽:428
投訴華爾街英語 瀏覽:202
榆次區公共衛生服務中心 瀏覽:990
申發明5G 瀏覽:815
矛盾糾紛排查調處工作協調會議記錄 瀏覽:94
版權貿易十一講 瀏覽:370
綜治辦矛盾糾紛排查調處工作總結 瀏覽:903
知識產權局專業面試 瀏覽:75