① 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼
一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時專提出的,因屬當時沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。
公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
(1)數學里的元次根是誰發明的擴展閱讀:
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。
如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。
② 誰發明的「元」「次」「根」
是 康熙。康熙拜比抄利時的傳教士襲為師,學習數學。但聽他講課很不輕松,而且講方程是句子冗長,,所以康熙就建議 ,吧未知數翻譯成「元」最高次翻譯成「次」方程的解翻譯成「根」 康熙創造的幾個學術用語一直沿用至今!
③ 發明整體數學公式的人是誰
沒有整體數學公式這個公式。
宇宙規律公式的發明的完整過程是這樣的:發明版人利用自己的智慧聰權明和觀察能力發現了一個宇宙物質規律,他為了證明這個規律的存在,就必須用公式把它描述出來,所以要通過大量繁瑣的數學計算。可是在計算過程中發現原有的數學模式計算不好用,所以他首先要超越原有的數學模式,發明出新的數學計算模式,然後在用新的計算模式證明他開始發現的那個宇宙規律。
④ 歷史上二次根式是怎麼來的,由誰提出的
根號的由來
英語:radical sign 現在,我們都習以為常地使用根號(如√ 等),並感到它使用起來既簡明又方便。 那麼,根號是怎樣產生和演變成現在這種樣子的呢? 古時候,埃及人用記號「┌」表示平方根。印度人在開平方時,在被開方數的前面寫上ka。阿拉伯人用 表示 。1840年前後,德國人用一個點「.」來表示平方根,兩點「..」表示4次方根,三個點「...」表示立方根,比如,.3、..3、...3就分別表示3的平方根、4次方根、立方根。到十六世紀初,可能是書寫快的緣故,小點上帶了一條細長的尾巴,變成「 」。1525年,路多爾夫在他的代數著作中,首先採用了根號,比如他寫 4是2, 9是3,並用 8, 8表示 , 。但是這種寫法未得到普遍的認可與採納。 與此同時,有人採用「根」字的拉丁文radix中第一個字母的大寫R來表示開方運算,並且後面跟著拉丁文「平方」一字的第一個字母q,或「立方」的第一個字母c,來表示開的是多少次方。例如,現在的 ,當時有人寫成R.q.4352。現在的 ,用數學家邦別利(1526—1572年)的符號可以寫成R.c.?7p.R.q.14╜,其中「?╜」相當於今天用的括弧,P(plus)相當於今天用的加號(那時候,連加減號「+」「-」還沒有通用)。 直到十七世紀,法國數學家笛卡爾(1596—1650年)第一個使用了現今用的根號「√」。在一本書中,笛卡爾寫道:「如果想求n的平方根,就寫作√n,如果想求n的立方根,則寫作3√n。」 這是出於什麼考慮呢?有時候被開方數的項數較多,為了避免混淆,笛卡爾就用一條橫線把這幾項連起來,前面放上根號√(不過,它比路多爾夫的根號多了一個小鉤)就為現在的根號形式。 現在的立方根符號出現得很晚,一直到十八世紀,才在一書中看到符號3√;√的使用,比如25的立方根用3√25表示。以後,諸如√等等形式的根號漸漸使用開來。 由此可見,一種符號的普遍採用是多麼地艱難,它是人們在悠久的歲月中,經過不斷改良、選擇和淘汰的結果,它是數家們集體智慧的結晶,而不是某一個人憑空臆造出來的,不是從天上掉下來的。 電腦中的根號是√的形式。
⑤ 一元三次方程求根公式是誰發明的
1500年的某天,義大利北部的布里西亞,一戶人家生了一個男孩,取名叫豐坦那。不久,義大利與法國發生戰爭,法軍攻陷了布里西亞地區,大肆屠殺義大利人。豐坦那的父親死於戰禍,小豐坦那的頭部和下顎也受了重傷。好在他的母親是一位聰明而勇敢的婦女,她見兒子受傷,又沒有醫生看病治療,她就想到了狗用舌頭舔愈傷口的情景。於是,她也學著這個方法,用自己的舌頭治好了兒子的傷口。誰知痊癒後的小豐坦那卻得了一個口吃的毛病,說話不連貫,人們就給他取個外號叫塔爾塔利亞(意譯為口吃者)。久而久之,塔爾塔利亞就成了他的名字,豐坦那的名字也被人忘記了。
因為父親死於戰亂,塔爾塔利亞的家境十分貧寒,母親無力送他上學讀書。但是,塔爾塔利亞從小求知慾極強,母親就在他父親墳墓的石板上教他認字、算題。由於他天資聰明,意志堅強,竟獨自學會了拉丁文和希臘文,對數學的鑽研成績更為突出。經過長期自學,成人後,他終於取得了成功,先後在他的家鄉布里西亞和威尼斯等地從事教學工作。塔爾塔利亞專門喜歡解各種數學難題,在這方面不少數學愛好者敗在他的手下。
1530年的一天,有一位叫科拉的數學教師向塔爾塔利亞提出兩道數學難題進行挑戰:
1.一個數的立方加上它的平方的3倍等於5,求這個數。實際上是一個一元三次方程,即:x3+3x2=5
2.三個數,第二個數比第一個數多2,第三個數比第二個數多2,三個數的乘積是1000,求這三個數各是多少。實際上這也是一個一元三次方程,即:x(x+2)(x+2+2)=1000,展開後是x3+6x2+8x=1000
當時,人類還沒有找到三次方程的解法。塔爾塔利亞於是全身心地投入進去,廢寢忘食地解這兩道題。不久,居然讓他解開了,並因此找到了解開一元三次方程的辦法。於是,塔爾塔利亞向外公開宣稱,他已經知道了一元三次方程的解法,但不能公開自己的步驟,他要保密。此時,有一位叫菲俄的人也宣稱,他也找到了解開一元三次方程的辦法,並宣稱,他的方法是得到了當時著名數學家波倫那大學教授費羅的真傳。
他們二人誰真誰假?誰優誰劣?於是,1535年2月22日,在義大利有名的米蘭大教堂里,舉行了一次僅有塔爾塔利亞和菲俄參加的數學競賽。競賽內容專門限於一元三次方程。他們各自給對方出30道題,誰解得對解得快誰就得勝。兩個小時之後,塔爾塔利亞解完了全部30道題,而菲俄卻一道題也解不出來。競賽結果,塔爾塔利亞大獲全勝。
原來,一元三次方程的問題是1404年被人引起來的。當時義大利著名數學家巴巧利說:「x3+mx=n,x3+n=mx之不可解,正像化圓為方問題一樣。」誰知此問題提出不久,就被費羅解出了。1510年,他將方法透露給了他的學生菲俄。於是,當塔爾塔利亞宣稱他找到一元三次方程解法時,便出現了要舉行競賽的事情。
初時,塔爾塔利亞面對出名的學者未免心虛,因為他的方法還不完善。據說在競賽之前的10天,即2月12日深夜,塔爾塔利亞一夜未睡,直至黎明。他頭腦昏昏,走出室外,伸伸懶腰,吸吸新鮮空氣。頓時,他的思路豁然開朗,多日的深思熟慮,終於取得了結果。因此,才在競賽中大獲全勝。
為了使自己的成果更完善,塔爾塔利亞又艱苦努力了6年,才在1541年真正找到一元三次方程的解法。很多人請求他把這種方法公布出來,但卻遭到他的拒絕。原來,塔爾塔利亞准備在譯完歐幾里得和阿基米德的著作之後,再把自己的發明發現寫成一本專著,以便流傳後世。
在這之前60幾年,米蘭有一位學者卡當,對一元三次方程的問題十分感興趣,苦苦央求塔爾塔利亞把解法告訴他,並起誓發願,決不泄密。1539年,塔爾塔利亞被卡當的至誠之心所動,就把此法傳授給他。
卡當是義大利的數學家,後來又開業行醫,也常常為人占卜,曾受雇於教皇當過占星術士。沒過多久,卡當背信棄義,寫成了一部叫《大術》的書。此書1545年在紐倫堡出版發行。在書中,卡當公布了一元三次方程的解法,聲稱這是他的發明。當時人們信以為真,便把三次方程的求根公式稱為「卡當公式」。
在《大術》一書中,卡當說:「大約在30年前,波倫那的費羅教授發現了這一法則,並傳授給了威尼斯的菲俄,菲俄曾與塔爾塔利亞進行過公開競賽。塔爾塔利亞也發現了這一方法,他在我的懇求下,把三次方程的解法告訴了我,但是沒有給出證明。藉助塔爾塔利亞的幫助,我找到了幾種證明方法,它是非常困難的。」
卡當的背信棄義激怒了塔爾塔利亞,他向卡當宣戰,要求進行公開競賽。雙方各擬31道試題,限期15天完成。卡當臨陣怯場,只派了他的一個高徒應戰。結果,塔爾塔利亞在7天之內就解出了大部分試題,而卡當的高徒僅做對一題,其餘全是錯的。接著,二人又進行了一場激烈的爭鳴和辯論。就這樣,人們才明白事情的真相,塔爾塔利亞才被人們知道,他才是一元三次方程求根公式的真正發明人。
塔爾塔利亞經過這場風波之後,准備心平氣和地把自己的成果寫成一部數學專著,可是他已經心力憔悴,1557年,他沒有實現自己的願望就與世長辭了。
⑥ 數學里的方程是誰發明的
大約2.71828
這里的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是搜索枯腸,大部分人能想到的重要數字,除了眾人皆知的0及1外,大概就只有和圓有關的π了,了不起再加上虛數單位的i=√-1。這個e究竟是何方神聖呢?
在高中數學里,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這麼奇怪的數,會有什麼故事可說呢?
這就要從古早時候說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那麼是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。
我們都知道復利計息是怎麼回事,就是利息也可以並進本金再生利息。但是本利和的多寡,要看計息周期而定,以一年來說,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鍾計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中(當然那時候還沒給這個數取名字叫e)。所以用現在的數學語言來說,e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。
包羅萬象的e
讀者恐怕已經在想,光是計算利息,應該不至於能講一整本書吧?當然不,利息只是極小的一部分。令人驚訝的是,這個與計算復利關系密切的數,居然和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了復利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算復利會有什麼關系,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。
如果整本書光是在講數學,還說成是說故事,就未免太不好意思了。事實上是,作者在探討數學的同時,穿插了許多有趣的相關故事。比如說你知道第一個對數表是誰發明的嗎?是納皮爾(John Napier)。沒有聽說過?這很正常,我也是讀到這本書才認識他的。重要的是要下一個問題。你知道納皮爾花了多少時間來建構整個對數表嗎?請注意這是發生在十六世紀末、十七世紀初的事情,別說電腦和計算機了,根本是什麼計算工具也沒有,所有的計算,只能利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表,簡直是匪夷所思吧!試著想像一下二十年之間,每天都在重復做同類型的繁瑣計算,這種乏味的日子絕不是一般人能忍受的。但納皮爾熬過來了,而他的辛苦也得到了報償——對數受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速採用,連納皮爾也得到了來自世界各地的贊譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家刻卜勒,他利用對數,簡化了行星軌道的繁復計算。
在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hospital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協議的。
說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前後後在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這麼厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可說是「表裡如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。
e的「影響力」其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,鬆鬆垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。這些與計算利率或者雙曲線面積八竿子打不著的問題,居然統統和e有關,豈不奇妙?
數學其實沒那麼難!
我們每個人的成長過程中都讀過不少數學,但是在很多人心目中,數學似乎是門無趣甚至可怕的科目。尤其到了大學的微積分,到處都是定義、定理、公式,令人望之生畏。我們會害怕一個學科的原因之一,是有距離感,那些微積分里的東西,好像不知是從哪兒冒出來的,對它毫無感覺,也覺得和我毫無關系。如果我們知道微積分是怎麼演變、由誰發明的,而發明之時還發生了些什麼事(微積分是誰發明的這件事,爭論了許多年,對數學發展產生重大的影響),發明者又是什麼樣的人等等,這種距離感就應該會減少甚至消失,微積分就不再是「陌生人」了。
⑦ 數學方程的" 元""次"是誰 發明的
解:數學方程的元次是康熙首先提出的。
⑧ 是誰發明了平方根
平方根的概念很早.數學家在研究邊長為單位1的正方形,發現他的對角線長不能用普通的數來表示,於是發明了平方根,即第一個平方根√2.
根號的由來:早在1840年,德國人便開始用一個點來表示平方根.如·3表示3的平方根.
一直到16 世紀的大數學家笛卡爾,才開始採用 (根號√)表示平方根.