導航:首頁 > 創造發明 > 電阻器發明

電阻器發明

發布時間:2021-06-25 20:11:20

❶ 熱電阻是什麼時候發明

歐姆定律——I=U/R,電阻一定時,電壓與電流成正比,是由德國物理學家歐姆提出的。另外,定理可以提出並論證,但不能稱之為發明。在同一電路中,導體中的電流跟導體兩端的電壓成正比,跟導體的電阻成反比,這就是歐姆定律。
歐姆第一階段的實驗是探討電流產生的電磁力的衰減與導線長度的關系,其結果於1825年5月在他的第一篇科學論文中發表。在這個實驗中,他碰到了測量電流強度的困難。在德國科學家施威格發明的檢流計啟發下,他把斯特關於電流磁效應的發現和庫化扭秤方法巧妙地結合起來,設計了一個電流扭力秤,用它測量電流強度。歐姆從初步的實驗中發出,電流的電磁力與導體的長度有關。其關系式與今天的歐姆定律表示式之間看不出有什麼直接聯系。歐姆在當時也沒有把電勢差(或電動勢)、電流強度和電阻三個量聯系起來。
在歐姆之前,雖然還沒有電阻的概念,但是已經有人對金屬的電導率(傳導率)進行研究。歐姆很努力,1825年7月,歐姆也用上述初步實驗中所用的裝置,研究了金屬的相對電導率。他把各種金屬製成直徑相同的導線進行測量,確定了金、銀、鋅、黃銅、鐵等金屬的相對電導率。雖然這個實驗較為粗糙,而且有不少錯誤,但歐姆想到,在整條導線中電流不變的事實表明電流強度可以作為電路的一個重要基本量,他決定在下一次實驗中把它當作一個主要觀測量來研究。
在以前的實驗中,歐姆使用的電池組是伏打電堆,這種電堆的電動勢不穩定,使他大為頭痛。後來經人建議,改用鉍銅溫差電偶作電源,從而保證了電源電動勢的穩定。
1826年,歐姆用上面圖中的實驗裝置導出了他的定律。在木質座架上裝有電流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盤,s是觀察用的放大鏡,m和m'為水銀杯,abb'a'為鉍框架,鉍、銅框架的一條腿相互接觸,這樣就組成了溫差電偶。A、B是兩個用來產生溫差的錫容器。實驗時把待研究的導體插在m和m'兩個盛水銀的杯子中,m和m'成了溫差電池的兩個極。
歐姆准備了截面相同但長度不同的導體,依次將各個導體接入電路進行實驗,觀測扭力拖拉磁針偏轉角的大小,然後改變條件反復操作,根據實驗數據歸納成下關系:
x=q/(b+l)式中x表示流過導線的電流的大小,它與電流強度成正比,A和B為電路的兩個參數,L表示實驗導線的長度。
1826年4月歐姆發表論文,把歐姆定律改寫為:x=ksa/ls為導線的橫截面積,K表示電導率,A為導線兩端的電勢差,L為導線的長度,X表示通過L的電流強度。如果用電阻l'=l/ks代入上式,就得到X=a/I'這就是歐姆定律的定量表達式,即電路中的電流強度和電勢差成正比而與電阻成反比。為了紀念歐姆對電磁學的貢獻,物理學界將電阻的單位命名為歐姆,以符號Ω表示。
電阻的單位歐姆簡稱歐。1歐定義為:當導體兩端電勢差為1伏特,通過的電流是1安培時,它的電阻為1歐。
一個導體的電阻R不僅取決於導體的性質,它還與工作點的溫度有關。對於有些金屬、合金和化合物,當溫度降到某一臨界溫度T°C時,電阻率會突然減小到無法測量,這就是超導電現象。
導體的電阻與溫度有關。一般來說,金屬導體的電阻會隨溫度升高而增大,如電燈泡中鎢絲的電阻。半導體的電阻與溫度的關系很大,溫度稍有增加電阻值即會減小很多。通過實驗可以找出電阻與溫度變化之間的關系,利用電阻的這一特性,可以製造電阻溫度計(通常稱為「熱敏電阻溫度計」)。
部分電路歐姆定律公式:I=U/R
其中:I、U、R——三個量是屬於同一部分電路中同一時刻的電流強度、電壓和電阻。
由歐姆定律所推公式:
串聯電路:
I總=I1=I2(串聯電路中,各處電流相等)
U總=U1+U2(串聯電路中,總電壓等於各處電壓的總和)
R總=R1+R2+......+Rn
U1:U2=R1:R2
並聯電路:
I總=I1+I2(並聯電路中,幹路電流等於各支路電流的和)
U總=U1=U2 (並聯電路中,各處電壓相等)
1/R總=1/R1+1/R2
I1:I2=R2:R1
R總=R1·R2\(R1+R2)
R總=R1·R2·R3:R1·R2+R2·R3+R1·R3
即1/R總=1/R1+1/R2+……+1/Rn
I=Q/T電流=電荷量/時間 (單位均為國際單位制)
也就是說:電流=電壓/ 電阻
或者 電壓=電阻×電流『只能用於計算電壓、電阻,並不代表電阻和電壓或電流有變化關系』
歐姆定律通常只適用於線性電阻,如金屬、電解液(酸、鹼、鹽的水溶液)。
I=E/(R+r)
其中E為電動勢,r為電源內阻,內電壓U內=Ir,E=U內+U外
適用范圍:純電阻電路
閉合電路中的能量轉化:
E=U+Ir
EI=UI+I^2R
P釋放=EI
P輸出=UI
純電阻電路中
P輸出=I^2R
=E^2R/(R+r)^2
=E^2/(R^2+2r+r^2/R)
當 r=R時 P輸出最大,P輸出=E^2/4r (均值不等式)
功率與電阻的關系
歐姆定律例題
1.由歐姆定律導出的電阻計算式R=U/I,
以下結論中,正確的為
A、加在導體兩端的電壓越大,
則導體的電阻越大
B、 通過導體的電流越大,則導體的電阻
越小
C、 導體的電阻跟它兩端的電壓成正比,
跟電流成反比
D、導體的電阻值等於導體兩端的電壓與
通過導體的電流的比值
2、一個導體兩端加有電壓為6V時,通過
它的電流大小為0.2A,那麼該導體的電阻
為 Ω,若兩端的電壓為9V時,通過導
體的電流為 A。若電路斷開,那麼通過
導體的電流為 A。此導體的電阻為 Ω。
3、 一個導體兩端的電壓為15V時,通過
導體的電流為3A,若導體兩端的電壓
增加3V,那麼此時通過導體的電流和
它的電阻分別為
A 0.6A 5Ω B 3.6A 5Ω
C 3.6A 1Ω D 4A 6Ω
4、一隻電阻當其兩端電壓從2V增加到2.8V
時,通過該電阻的電流增加了0.1A,那麼
該電阻的阻值為
A 8Ω B 20Ω
C 28Ω D 18Ω
5、一個定值電阻阻值為20Ω,接在電壓為
2V的電源兩端。那麼通過該電阻的電流
是 A。若通過該電阻的電流大小
為0、15A,則需要在電阻兩端加上 V
的電壓。
6、有甲、乙兩個導體,甲導體的電阻是
10Ω,兩端電壓為3V;乙導體電阻是
5Ω,兩端電壓為6V。那麼通過兩導
體的電流
A I甲=6V/10Ω=0.6A I乙=3V/10Ω=0.3A
B I甲=3V/10Ω=0.6A I乙=6V/5Ω=0.3A
C I甲=6V/5Ω=1.2A I乙=6V/10Ω=0.6A
D I甲=3V/10Ω=0.3A I乙=3V/5Ω=0.6A
在通電導線中取一圓柱形小體積元,其長度ΔL,截面積為ΔS,柱體軸線沿著電流密度J的方向,則流過ΔS的電流ΔI為:
ΔI=JΔS
由歐姆定律:ΔI=JΔS=-ΔU/R 由電阻R=ρΔL/ΔS,得:
JΔS=-ΔUΔS/(ρΔL)
又由電場強度和電勢的關系,-ΔU/ΔL=E,則:
J=1/ρ*E=σE
(E為電場強度,σ為電導率)

❷ 電子元器件是誰發明的

美國物理學家肖克利、巴丁和布拉頓三人共同發明的。

電子元器件是電子元件和電小型的機器、儀器的組成部分,其本身常由若干零件構成,可以在同類產品中通用;常指電器、無線電、儀表等工業的某些零件,如電容、晶體管、游絲、發條等子器件的總稱。常見的有二極體等。
電子元器件包括:電阻、電容器、電位器、電子管、散熱器、機電元件、連接器、半導體分立器件、電聲器件、激光器件、電子顯示器件、光電器件、感測器、電源、開關、微特電機、電子變壓器、繼電器、印製電路板、集成電路、各類電路、壓電、晶體、石英、陶瓷磁性材料、印刷電路用基材基板、電子功能工藝專用材料、電子膠(帶)製品、電子化學材料及部品等。
電子元器件在質量方面國際上面有中國的CQC認證,美國的UL和CUL認證,德國的VDE和TUV以及歐盟的CE等國內外認證,來保證元器件的合格。

❸ 電阻器的發展

1885年英國C.布雷德利發明模壓碳質實芯電阻器。1897年英國T.甘布里爾和A.哈里斯用含碳墨汁製成碳膜電阻器。1913~1919年英國W.斯旺和德國F.克魯格先後發明金屬膜電阻器。1925年德國西門子-哈爾斯克公司發明熱分解碳膜電阻器,打破了碳質實芯電阻器壟斷市場的局面。晶體管問世後,對電阻器的小型化、阻值穩定性等指標要求更嚴,促進了各類新型電阻器的發展。美國貝爾實驗室1959年研製成 TaN電阻器。60年代以來,採用滾筒磁控濺射、激光阻值微調等新工藝,部分產品向平面化、集成化、微型化及片狀化方面發展。

❹ 電阻器件發展史

電子元器件發展史其實就是一部濃縮的電子發展史:

電子技術是十九世紀末、二十世紀初開始發展起來的新興技術,二十世紀發展最迅速,應用最廣泛,成為近代科學技術發展的一個重要標志。

第一代電子產品以電子管為核心。四十年代末世界上誕生了第一隻半導體三極體,它以小巧、輕便、省電、壽命長等特點,很快地被各國應用起來,在很大范圍內取代了電子管。五十年代末期,世界上出現了第一塊集成電路,它把許多晶體管等電子元件集成在一塊硅晶元上,使電子產品向更小型化發展。集成電路從小規模集成電路迅速發展到大規模集成電路和超大規模集成電路,從而使電子產品向著高效能低消耗、高精度、高穩定、智能化的方向發展。

由於,電子計算機發展經歷的四個階段恰好能夠充分說明電子技術發展的四個階段的特性,所以下面就從電子計算機發展的四個時代來說明電子技術發展的四個階段的特點。

世界上第一台電子計算機於1946年在美國研製成功,取名ENIAC(Electronic Numerical Integrator and Calculator)。這台計算機使用了18800個電子管,佔地170平方米,重達30噸,耗電140千瓦,價格40多萬美元,是一個昂貴耗電的"龐然大物"。由於它採用了電子線路來執行算術運算、邏輯運算和存儲信息,從而就大大提高了運算速度。ENIAC每秒可進行5000次加法和減法運算,把計算一條彈道的時間短為30秒。它最初被專門用於彈道運算,後來經過多次改進而成為能進行各種科學計算的通用電子計算機。從1946年2月交付使用,到1955年10月最後切斷電源,ENIAC服役長達9年。

盡管ENIAC還有許多弱點,但是在人類計算工具發展史上,它仍然是一座不朽的里程碑。它的成功,開辟了提高運算速度的極其廣闊的可能性。它的問世,表明電子計算機時代的到來。從此,電子計算機在解放人類智力的道路上,突飛猛進的發展。電子計算機在人類社會所起的作用,與第一次工業革命中蒸汽機相比,是有過之而無不及的。

ENIAC問世以來的短短的四十多年中,電子計算機的發展異常迅速。迄今為止,它的發展大致已經了下列四代:

第一代(1946~1957年)是電子計算機,它的基本電子元件是電子管,內存儲器採用水銀延遲線,外存儲器主要採用磁鼓、紙帶、卡片、磁帶等。由於當時電子技術的限制,運算速度只是每秒幾千次~幾萬次基本運算,內存容量僅幾千個字。程序語言處於最低階段,主要使用二進製表示的機器語言編程,後階段採用匯編語言進行程序設計。因此,第一代計算機體積大,耗電多,速度低,造價高,使用不便;主要局限於一些軍事和科研部門進行科學計算。

第二代(1958~1970年)是晶體管計算機。1948年,美國貝爾實驗室發明了晶體管,10年後晶體管取代了計算機中的電子管,誕生了晶體管計算機。晶體管計算機的基本電子元件是晶體管,內存儲器大量使用磁性材料製成的磁芯存儲器。與第一代電子管計算機相比,晶體管計算機體積小,耗電少,成本低,邏輯功能強,使用方便,可靠性高。

第三代(1963~1970年)是集成電路計算機。隨著半導體技術的發展,1958年夏,美國德克薩斯公司製成了第一個半導體集成電路。集成電路是在幾平方毫米的基片,集中了幾十個或上百個電子元件組成的邏輯電路。第三代集成電路計算機的基本電子元件是小規模集成電路和中規模集成電路,磁芯存儲器進一步發展,並開始採用性能更好的半導體存儲器,運算速度提高到每秒幾十萬次基本運算。由於採用了集成電路,第三代計算機各方面性能都有了極大提高:體積縮小,價格降低,功能增強,可靠性大大提高。

第四代(1971年~日前)是大規模集成電路計算機。隨著集成了上千甚至上萬個電子元件的大規模集成電路和超大規模集成電路的出現,電子計算機發展進入了第四代。第四代計算機的基本元件是大規模集成電路,甚至超大規模集成電路,集成度很高的半導體存儲器替代了磁芯存儲器,運算速度可達每秒幾百萬次,甚至上億次基本運算。

❺ 電阻是誰發現的

電阻一詞人們很熟悉.德國物理學家歐姆1826年發現.
為了紀念他,人們把電阻的單位命名為歐姆。其定義是:在電路中兩點間,當通過1安培穩恆電流時,如果這兩點間的電壓為1伏特,那麼這兩點間導體的電阻便定義為1歐姆。

❻ 箔電阻器發明人是誰

是Felix Zandman博士,1956年在Tatnall Measuring Systems公司工作。在此期間,他發明了Bulk Metal®箔電阻並獲取專利。
Felix Zandman博士於1962年開發生產Bulk Metal箔電阻和箔應變計產品。

❼ 電阻誕生於哪一年

1885年英國C.布雷德利發明模壓碳質實芯電阻器,

❽ 電阻是誰發明的名詞 幫幫忙,越詳細越好

歐姆!

❾ 電阻是誰發明的名詞

電阻一詞人們很熟悉.德國物理學家歐姆1826年發現.
為了紀念他,人們把電阻的單位命名為歐姆。其定義是:在電路中兩點間,當通過1安培穩恆電流時,如果這兩點間的電壓為1伏特,那麼這兩點間導體的電阻便定義為1歐姆。

閱讀全文

與電阻器發明相關的資料

熱點內容
馬鞍山陶世宏 瀏覽:16
馬鞍山茂 瀏覽:5
通遼工商局咨詢電話 瀏覽:304
誰發明的糍粑 瀏覽:430
國家公共文化服務示範區 瀏覽:646
pdf設置有效期 瀏覽:634
廣告詞版權登記 瀏覽:796
基本公共衛生服務考核方案 瀏覽:660
公共服務平台建設領導小組 瀏覽:165
人類創造了那些機器人 瀏覽:933
公共文化服務保障法何時實施 瀏覽:169
遼寧育嬰師證書領取 瀏覽:735
劃撥土地使用權轉讓能轉讓嗎 瀏覽:97
2019年公需科目知識產權考試答案 瀏覽:256
關於知識產權管理辦法 瀏覽:331
公共衛生服務培訓筆記 瀏覽:532
基層公共衛生服務技術題庫 瀏覽:497
中國城市老年體育公共服務體系的反思與重構 瀏覽:932
網路著作權的法定許可 瀏覽:640
工商局黨風廉政建設工作總結 瀏覽:325