1. 有什麼數學著作是介紹托勒密定理、圓冪定理、餘弦定理等與中學知識密切相關的么(有介紹歷史由來的)
你找一下《數學概論》,其實你在網上輸入"數學史"就會有
2. 牛頓、瓦特、張 衡他們的發明或發現分別是什麼
牛頓:
發明地動儀、渾天儀、瑞輪莢、指南車、計里鼓車、獨飛木雕、地形圖。
張衡在天文學方面著有《靈憲》、《渾儀圖注》等,數學著作有《算罔論》,文學作品以《二京賦》、《歸田賦》等為代表。《隋書·經籍志》有《張衡集》14卷,久佚。明人張溥編有《張河間集》,收入《漢魏六朝百三家集》。
拓展資料:
瓦特發明蒸汽機的創造點:
1764年,英國的儀器修理工詹姆斯·瓦特為格拉斯哥大學修理紐可門蒸汽機模型時,注意到了這一缺點,並於1765年發明了設有與汽缸壁分開的凝汽器的蒸汽機,並於1769年取得了英國的專利。
初期的瓦特蒸汽機仍用平衡杠桿和拉桿機構來驅動提水泵,為了從凝汽器中抽除凝結水和空氣,瓦特裝設了抽氣泵。他還在汽缸外壁加裝夾層,用蒸汽加熱汽缸壁,以減少冷凝損失。
瓦特的創造性工作使蒸汽機迅速地發展,他使原來只能提水的機械,成為了可以普遍應用的蒸汽機,並使蒸汽機的熱效率成倍提高,煤耗大大下降。
3. 歐拉定理是什麼東西
歐拉定理 1、初等數論中的歐拉定理:對於互質的整數a和n,有a^φ(n) ≡ 1 (mod n)
證明:
首先證明下面這個命題:
對於集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大於n且與n互素的數,即n的一個化簡剩餘系,或稱簡系,或稱縮系),考慮集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)}
則S = Zn
1) 由於a,n互質,xi也與n互質,則a*xi也一定於p互質,因此
任意xi,a*xi(mod n) 必然是Zn的一個元素
2) 對於Zn中兩個元素xi和xj,如果xi ≠ xj
則a*xi(mod n) ≠ a*xi(mod n),這個由a、p互質和消去律可以得出。
所以,很明顯,S=Zn
既然這樣,那麼
(a*x1 × a*x2×...×a*xφ(n))(mod n)
= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)
= (x1 × x2 × ... × xφ(n))(mod n)
考慮上面等式左邊和右邊
左邊等於(a*(x1 × x2 × ... × xφ(n))) (mod n)
右邊等於x1 × x2 × ... × xφ(n))(mod n)
而x1 × x2 × ... × xφ(n)(mod n)和n互質
根據消去律,可以從等式兩邊約去,就得到:
a^φ(n) ≡ 1 (mod n)
推論:對於互質的數a、n,滿足a^(φ(n)+1) ≡ a (mod n)
費馬定理:
a是不能被質數p整除的正整數,則有a^(p-1) ≡ 1 (mod p)
證明這個定理非常簡單,由於φ(p) = p-1,代入歐拉定理即可證明。
同樣有推論:對於不能被質數p整除的正整數a,有a^p ≡ a (mod p) 2、平面幾何里的歐拉定理:(1) (Euler定理)設三角形的外接圓半徑為R,內切圓半徑為r,外心與內心的距離為d,則d2=R2-2Rr.
證明:如右下圖,O、I分別為⊿ABC的外心與內心.
連AI並延長交⊙O於點D,由AI平分ÐBAC,故D為弧BC的中點.
連DO並延長交⊙O於E,則DE為與BC垂直的⊙O的直徑.
由圓冪定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直線OI與⊙O交於兩點,即可用證明)
但DB=DI(可連BI,證明ÐDBI=ÐDIB得),
故只需證2Rr=IA·DB,即2R∶DB=IA∶r 即可.
而這個比例式可由⊿AFI∽⊿EBD證得.故得R2-d2=2Rr,即證.
(2)四邊形ABCD的兩條對角線AC、BD的中點分別為M、N,則:AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4MN^2.
證明:如右上圖,連接BD、BM,由中線公式有AB^2+BC^2=2(BM^2+AM^2).DA^2+CD^2=2(DM^2+AM^2,又BM^2+DM^2=2(BN^2+MN^2),4AM^2=AC^2, 4BN^2=BD^2,故AB^2+BC^2+CD^2+DA^2=2(BM^2+DM^2)+4AM^2=4BN^2+4MN^2+4AM^2=AC^2+BD^2+4MN^2
註:當A、B、C、D為空間四點時,結論依然成立,且有AB^2+BC^2+CD^2+DA^2≥ AC^2+BD^2,此結論為第四屆美國數學奧林匹克試題
[編輯本段]歐拉公式簡單多面體的頂點數V、面數F及棱數E間有關系
V+F-E=2
這個公式叫歐拉公式。公式描述了簡單多面體頂點數、面數、棱數特有的規律。
4. 冪等定理是什麼
冪等定理是說一個四邊形,對角線相連的話可以分為四個三角形,譬如說四邊形ABCD對角線相交於點O,那麼S△AOD*S△BOC=S△AOB*S△COD。
在某二元運算下,冪等元素是指被自己重復運算(或對於函數是為復合)的結果等於它自己的元素。例如,乘法下唯一兩個冪等實數為0和1。
某一元運算為冪等的時,其作用在任一元素兩次後會和其作用一次的結果相同。例如,高斯符號便是冪等的。
(4)冪定理發明者擴展閱讀:
冪等運算也可以在布林代數內找到。邏輯和與邏輯或便都是冪等運算。
在線性代數里,投射是冪等的。亦即,每一將向量投射至一子空間V(不需正交)上的線性運算元,都是冪等的。
一冪等半環為其加法(非乘法)為冪等的半環。
5. 方程是誰發明的
方程的發明者是法國數學家韋達。
韋達1540年生於法國的普瓦圖(Poitou),今旺代省的豐特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒於巴黎。年輕時學習法律並當過律師。後從事政治活動,當過議會的議員。
在對西班牙的戰爭中,曾為政府破譯敵軍的密碼。韋達還致力於數學研究,第一個有意識地和系統地使用字母來表示已知數、未知數及其乘冪,帶來了代數學理論研究的重大進步。韋達討論了方程根的各種有理變換,發現了方程根與系數之間的關系(所以人們把敘述一元二次方程根與系數關系的結論稱為「韋達定理」)。
韋達從事數學研究只是出於愛好,然而他卻完成了代數和三角學方面的巨著。他的《應用於三角形的數學定律》(1579年)是韋達最早的數學專著之一,可能是西歐第一部論述6種三角形函數解平面和球面三角形方法的系統著作。他被稱為現代代數符號之父。
韋達還專門寫了一篇論文"截角術",初步討論了正弦,餘弦,正切弦的一般公式,首次把代數變換應用到三角學中。他考慮含有倍角的方程,具體給出了將COS(nx)表示成COS(x)的函數並給出當n≤11等於任意正整數的倍角表達式了。
(5)冪定理發明者擴展閱讀:
早在3600年前,古埃及人寫在草紙上的數學問題中,就涉及了方程中含有未知數的等式。
公元825年左右,中亞細亞的數學家阿爾·花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。
方程中文一詞出自古代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。
卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?
(現今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。問1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)
白話翻譯:卷第八(一)為:現在有上禾三點,中禾二點,下禾一點,實際上三十九斗;上禾二點,中禾三點,下禾一點,實際上三十四斗;上禾一點,中禾二點,下禾三點,實際上兩個十六斗。向上、中、下禾是一點各是多少?
(現在有上等黍三捆、中等黍二捆、下等黍子捆,打出來的飯共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出來的飯共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出來的飯共有二十六斗。問1捆上等人黍、一捆中等黍、1把下等人黍各能打響多少斗黃米?)
答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。
白話翻譯:他回答說:上禾一點,九斗、四分一的一,中禾一點,四斗、四分一的一,下禾一點,二斗、四分之三斗。
方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。
求中禾,以法乘中行下實,而除下禾之實。余如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。余如上禾秉數而一,即上禾之實。實皆如法,各得一斗。
白話翻譯:方程方法是:設置上禾三點,中禾二點,下禾一點,實際上三十九斗,在右邊。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不盡的遍乘左行而以直任。左下方禾不盡的,上為法,以下是真實。實立即下禾的事實。
求中禾,因法乘中走下實,而除下禾的事實。我像中禾持數而一,就是中禾的事實。求上禾也因法乘右邊走下實,而除下禾、中禾的事實。我像上禾持數而一,登上禾的事實。實際上都像法,各得一斗。
以上是出自《九章算術》中的三元一次方程組,並展示了用「遍乘直除」來消元以解此方程組。
魏晉時期的大數學家劉徽在公元263年前後為《九章算術》作了大量注釋,介紹了方程組:二物者再程,三物者三程,皆如物數程之。並列為行,故謂之方程。他還創立了比「遍乘直除」更簡便的「互乘相消」法來解方程組。
6. 園冪定理
圓冪定理是平面幾何中的一個定理,是相交弦定理、切割線定理及割線定理(切割線定理推論)的統一,例如如果交點為P的兩條相交直線與圓O相交於A、B與C、D,則PA·PB=PC·PD。
7. 斯蒂文斯冪定理 p=k*I^n 的物理刺激=絕對閾限r時,則P=0, 這一客觀現象如何在斯蒂文斯定律中解釋呢謝
斯蒂文斯定律是對量的連續體進行測量,所得到的公式,因為採用數量估計法,所以所得量表是等比量表,即閾限上刺激的變化規律有相等單位和絕對零點。
這個絕對零點是閾限處,但是我們定義的閾限是個起始值(百分之五十的試驗次數能引起感覺的刺激量)他並非等於0。原因是K取之不同,數值不同,但相互關系保持一致。
所以,我們一般所說的零點,是指閾限,但不等於零。冪函數定律還有一個修正公式,裡面的I零相當於閾限 。史蒂文斯的定律不用於計算閾限
8. 2次函數是誰發明的
函數就是在某變化過程中有兩個變數X和Y,變數Y隨著變數X一起變化,而且依賴於X。如果變數X取某個特定的值,Y依確定的關系取相應的值,那麼稱Y是X的函數。這一要領是由法國數學家黎曼在19世紀提出來的,但是最早產生於德國的數學家菜布尼茨。他和牛頓是微積分的發明者。17世紀末,在他的文章中,首先使用了「function一詞。翻譯成漢語的意思就是「函數。不過,它和我們今天使用的函數一詞的內涵並不一樣,它表示」冪」、「坐標」、「切線長」等概念。
直到18世紀,法國數學家達朗貝爾在進行研究中,給函數重新下了一個定義,他認為,所謂變數的函數,就是指由這些變數和常量所組成的解析表達式,即用解析式表達函數關系。後來瑞士的數學家歐拉又把函數的定義作了進一步的規范,他認為函數是能描畫出的一條曲線。我們常見到的一次函數的圖像、二次函數的圖像、正比例函數的圖像、反比例的圖像等都是用圖像法表示函數關系的。如果用達朗貝爾和歐拉的方法來表達函數關系,各自有它們的優點,但是如果作為函數的定義,還有欠缺。因為這兩種方法都還停留在表面現象上,而沒有提示出函數的本質來。
19世紀中期,法國數學家黎緊吸收了萊布尼茨、達朗貝爾和歐拉的成果,第一次准確地提出了函數的定義:如果某一個量依賴於另一個量,使後一個量變化時,前一個量也隨著變化,那麼就把前一個量叫做後一個量的函數。黎曼定義的最大特點在於它突出了就是之間的依賴、變化的關系,反映了函數概念的本質屬性。
9. 我想知道什麼叫做等冪定理 具體的公式是什麼
用幾何畫板打開,任意拖動點P(可在圓內、外)
都有PA·PB=PC·PD
PA·PB=PC·PD就是等冪定理
包括:相交弦定理(點P在圓內),割線定理(點P在圓外)、切線長定理(點P在圓外A、B重合,C、D重合)、切割線定理(點P在圓外A、B重合或C、D重合)
10. 數學家發明了什麼(中國)
法國:1642年法國的布萊斯·帕斯卡鈞發明計算器來幫助收稅員擺脫枯燥乏味的計算工作,但無人問津,被認為太復雜
德國:1671年德國的戈特弗里德·威廉·萊布尼茲發明機械演算機,用於加、減、乘、除 早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。 《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。 南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。 祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。 隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。 公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。 從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。 賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。 秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。 李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。 公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。 公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。 14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。 明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。 由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》﹝2卷﹞、《割圓八線表》﹝6卷﹞和羅雅谷的《測量全義》﹝10卷﹞是介紹西方三角學的著作。