A. 方程中的元和次代表什麼
元代表著方程中有幾個未知數,次是代表方程中最高次數,比若說 一個方程 X+Y^2=1,則是二元一次方程。
方程表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。
通過方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多種形式,如一元一次方程、二元一次方程、一元二次方程等等,還可組成方程組求解多個未知數。
微分方程
微分方程將一些函數與其導數相關聯的數學方程。在應用中,函數通常表示物理量,衍生物表示其變化率,方程定義了兩者之間的關系。因為這種關系是非常常見的,微分方程在包括工程,物理,經濟學和生物學在內的許多學科中起著突出的作用。
在純數學中,微分方程從幾個不同的角度進行研究,主要涉及到它們的解 - 滿足方程的函數集。只有最簡單的微分方程可以通過顯式公式求解;然而,可以確定給定微分方程的解的一些性質而不找到其確切形式。
如果解決方案的自包含公式不可用,則可以使用計算機數值近似解決方案。動力系統理論強調了微分方程描述的系統的定性分析,而已經開發了許多數值方法來確定具有給定精確度的解決方案。
B. 數學里幾元幾次是如何定義的
幾元就是幾個未知數!比如,含有x叫一元,XY叫二元,xyz,叫3元等等
幾次,是指未知數化簡後可得到的次方數吧!准確的說是未知數的冪最大值!
比如:含有X平方就是2次方程,根號X也是二次方程。
C. 方程是誰發明的
方程的發明者是法國數學家韋達。
韋達1540年生於法國的普瓦圖(Poitou),今旺代省的豐特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒於巴黎。年輕時學習法律並當過律師。後從事政治活動,當過議會的議員。
在對西班牙的戰爭中,曾為政府破譯敵軍的密碼。韋達還致力於數學研究,第一個有意識地和系統地使用字母來表示已知數、未知數及其乘冪,帶來了代數學理論研究的重大進步。韋達討論了方程根的各種有理變換,發現了方程根與系數之間的關系(所以人們把敘述一元二次方程根與系數關系的結論稱為「韋達定理」)。
韋達從事數學研究只是出於愛好,然而他卻完成了代數和三角學方面的巨著。他的《應用於三角形的數學定律》(1579年)是韋達最早的數學專著之一,可能是西歐第一部論述6種三角形函數解平面和球面三角形方法的系統著作。他被稱為現代代數符號之父。
韋達還專門寫了一篇論文"截角術",初步討論了正弦,餘弦,正切弦的一般公式,首次把代數變換應用到三角學中。他考慮含有倍角的方程,具體給出了將COS(nx)表示成COS(x)的函數並給出當n≤11等於任意正整數的倍角表達式了。
(3)方程中的元和次是由誰創造的數學擴展閱讀:
早在3600年前,古埃及人寫在草紙上的數學問題中,就涉及了方程中含有未知數的等式。
公元825年左右,中亞細亞的數學家阿爾·花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。
方程中文一詞出自古代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。
卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?
(現今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。問1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)
白話翻譯:卷第八(一)為:現在有上禾三點,中禾二點,下禾一點,實際上三十九斗;上禾二點,中禾三點,下禾一點,實際上三十四斗;上禾一點,中禾二點,下禾三點,實際上兩個十六斗。向上、中、下禾是一點各是多少?
(現在有上等黍三捆、中等黍二捆、下等黍子捆,打出來的飯共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出來的飯共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出來的飯共有二十六斗。問1捆上等人黍、一捆中等黍、1把下等人黍各能打響多少斗黃米?)
答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。
白話翻譯:他回答說:上禾一點,九斗、四分一的一,中禾一點,四斗、四分一的一,下禾一點,二斗、四分之三斗。
方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。
求中禾,以法乘中行下實,而除下禾之實。余如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。余如上禾秉數而一,即上禾之實。實皆如法,各得一斗。
白話翻譯:方程方法是:設置上禾三點,中禾二點,下禾一點,實際上三十九斗,在右邊。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不盡的遍乘左行而以直任。左下方禾不盡的,上為法,以下是真實。實立即下禾的事實。
求中禾,因法乘中走下實,而除下禾的事實。我像中禾持數而一,就是中禾的事實。求上禾也因法乘右邊走下實,而除下禾、中禾的事實。我像上禾持數而一,登上禾的事實。實際上都像法,各得一斗。
以上是出自《九章算術》中的三元一次方程組,並展示了用「遍乘直除」來消元以解此方程組。
魏晉時期的大數學家劉徽在公元263年前後為《九章算術》作了大量注釋,介紹了方程組:二物者再程,三物者三程,皆如物數程之。並列為行,故謂之方程。他還創立了比「遍乘直除」更簡便的「互乘相消」法來解方程組。
D. 一元三次方程求根公式是誰發明的
1500年的某天,義大利北部的布里西亞,一戶人家生了一個男孩,取名叫豐坦那。不久,義大利與法國發生戰爭,法軍攻陷了布里西亞地區,大肆屠殺義大利人。豐坦那的父親死於戰禍,小豐坦那的頭部和下顎也受了重傷。好在他的母親是一位聰明而勇敢的婦女,她見兒子受傷,又沒有醫生看病治療,她就想到了狗用舌頭舔愈傷口的情景。於是,她也學著這個方法,用自己的舌頭治好了兒子的傷口。誰知痊癒後的小豐坦那卻得了一個口吃的毛病,說話不連貫,人們就給他取個外號叫塔爾塔利亞(意譯為口吃者)。久而久之,塔爾塔利亞就成了他的名字,豐坦那的名字也被人忘記了。
因為父親死於戰亂,塔爾塔利亞的家境十分貧寒,母親無力送他上學讀書。但是,塔爾塔利亞從小求知慾極強,母親就在他父親墳墓的石板上教他認字、算題。由於他天資聰明,意志堅強,竟獨自學會了拉丁文和希臘文,對數學的鑽研成績更為突出。經過長期自學,成人後,他終於取得了成功,先後在他的家鄉布里西亞和威尼斯等地從事教學工作。塔爾塔利亞專門喜歡解各種數學難題,在這方面不少數學愛好者敗在他的手下。
1530年的一天,有一位叫科拉的數學教師向塔爾塔利亞提出兩道數學難題進行挑戰:
1.一個數的立方加上它的平方的3倍等於5,求這個數。實際上是一個一元三次方程,即:x3+3x2=5
2.三個數,第二個數比第一個數多2,第三個數比第二個數多2,三個數的乘積是1000,求這三個數各是多少。實際上這也是一個一元三次方程,即:x(x+2)(x+2+2)=1000,展開後是x3+6x2+8x=1000
當時,人類還沒有找到三次方程的解法。塔爾塔利亞於是全身心地投入進去,廢寢忘食地解這兩道題。不久,居然讓他解開了,並因此找到了解開一元三次方程的辦法。於是,塔爾塔利亞向外公開宣稱,他已經知道了一元三次方程的解法,但不能公開自己的步驟,他要保密。此時,有一位叫菲俄的人也宣稱,他也找到了解開一元三次方程的辦法,並宣稱,他的方法是得到了當時著名數學家波倫那大學教授費羅的真傳。
他們二人誰真誰假?誰優誰劣?於是,1535年2月22日,在義大利有名的米蘭大教堂里,舉行了一次僅有塔爾塔利亞和菲俄參加的數學競賽。競賽內容專門限於一元三次方程。他們各自給對方出30道題,誰解得對解得快誰就得勝。兩個小時之後,塔爾塔利亞解完了全部30道題,而菲俄卻一道題也解不出來。競賽結果,塔爾塔利亞大獲全勝。
原來,一元三次方程的問題是1404年被人引起來的。當時義大利著名數學家巴巧利說:「x3+mx=n,x3+n=mx之不可解,正像化圓為方問題一樣。」誰知此問題提出不久,就被費羅解出了。1510年,他將方法透露給了他的學生菲俄。於是,當塔爾塔利亞宣稱他找到一元三次方程解法時,便出現了要舉行競賽的事情。
初時,塔爾塔利亞面對出名的學者未免心虛,因為他的方法還不完善。據說在競賽之前的10天,即2月12日深夜,塔爾塔利亞一夜未睡,直至黎明。他頭腦昏昏,走出室外,伸伸懶腰,吸吸新鮮空氣。頓時,他的思路豁然開朗,多日的深思熟慮,終於取得了結果。因此,才在競賽中大獲全勝。
為了使自己的成果更完善,塔爾塔利亞又艱苦努力了6年,才在1541年真正找到一元三次方程的解法。很多人請求他把這種方法公布出來,但卻遭到他的拒絕。原來,塔爾塔利亞准備在譯完歐幾里得和阿基米德的著作之後,再把自己的發明發現寫成一本專著,以便流傳後世。
在這之前60幾年,米蘭有一位學者卡當,對一元三次方程的問題十分感興趣,苦苦央求塔爾塔利亞把解法告訴他,並起誓發願,決不泄密。1539年,塔爾塔利亞被卡當的至誠之心所動,就把此法傳授給他。
卡當是義大利的數學家,後來又開業行醫,也常常為人占卜,曾受雇於教皇當過占星術士。沒過多久,卡當背信棄義,寫成了一部叫《大術》的書。此書1545年在紐倫堡出版發行。在書中,卡當公布了一元三次方程的解法,聲稱這是他的發明。當時人們信以為真,便把三次方程的求根公式稱為「卡當公式」。
在《大術》一書中,卡當說:「大約在30年前,波倫那的費羅教授發現了這一法則,並傳授給了威尼斯的菲俄,菲俄曾與塔爾塔利亞進行過公開競賽。塔爾塔利亞也發現了這一方法,他在我的懇求下,把三次方程的解法告訴了我,但是沒有給出證明。藉助塔爾塔利亞的幫助,我找到了幾種證明方法,它是非常困難的。」
卡當的背信棄義激怒了塔爾塔利亞,他向卡當宣戰,要求進行公開競賽。雙方各擬31道試題,限期15天完成。卡當臨陣怯場,只派了他的一個高徒應戰。結果,塔爾塔利亞在7天之內就解出了大部分試題,而卡當的高徒僅做對一題,其餘全是錯的。接著,二人又進行了一場激烈的爭鳴和辯論。就這樣,人們才明白事情的真相,塔爾塔利亞才被人們知道,他才是一元三次方程求根公式的真正發明人。
塔爾塔利亞經過這場風波之後,准備心平氣和地把自己的成果寫成一部數學專著,可是他已經心力憔悴,1557年,他沒有實現自己的願望就與世長辭了。
E. 數學方程中的元次是誰創造的
康熙皇帝。康熙是我國歷史上數學水平最高的一位帝王,他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學,是康熙首創「元」、「次」、「根」等方程術語的漢譯名。
比利時傳教士南懷仁在給康熙講解方程時,由於他漢語、滿語水平都很有限,有些術語講不清楚,解釋很久還是不得要領,康熙就建議:將未知數翻譯為「元」,最高次數翻譯為「次」,使方程左右兩邊相等的未知數的值翻譯為「根」或「解」。
南懷仁驚疑地盯著康熙,愣了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住,激動地說:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人!」康熙創造的這幾個方程術語,馭繁為簡,准確科學,非常便於理解和記憶。
(5)方程中的元和次是由誰創造的數學擴展閱讀
南懷仁簡介
南懷仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66歲),字敦伯,又字勛卿,西屬尼德蘭皮特姆(今比利時布魯塞爾附近)人,耶穌會傳教士,清代天文學家、科學家,1623年10月9日出生,1641年9月29日入耶穌會,1658年來華,是清初最有影響的來華傳教士之一,為近代西方科學知識在中國的傳播做出了重要貢獻。
他是康熙皇帝的科學啟蒙老師,精通天文歷法、擅長鑄炮,是當時國家天文台(欽天監)業務上的最高負責人,官至工部侍郎,正二品。1688年1月28日南懷仁在北京逝世,享年66歲,卒謚勤敏。著有《康熙永年歷法》、《坤輿圖說》、《西方要記》等。
F. 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼
一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時專提出的,因屬當時沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。
公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
(6)方程中的元和次是由誰創造的數學擴展閱讀:
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。
如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。
G. 數學方程的" 元""次"是誰 發明的
解:數學方程的元次是康熙首先提出的。
H. 什麼叫做方程的元和次
元就是未知數的個數 而次數就是未知數的最高次數
比如3x+1=2就是一元一次方程 x^2+2x+3=0就是一元二次方程 x+y=3就是二元一次方程
I. 數學里的方程是誰發明的
大約2.71828
這里的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是搜索枯腸,大部分人能想到的重要數字,除了眾人皆知的0及1外,大概就只有和圓有關的π了,了不起再加上虛數單位的i=√-1。這個e究竟是何方神聖呢?
在高中數學里,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這麼奇怪的數,會有什麼故事可說呢?
這就要從古早時候說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那麼是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。
我們都知道復利計息是怎麼回事,就是利息也可以並進本金再生利息。但是本利和的多寡,要看計息周期而定,以一年來說,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鍾計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中(當然那時候還沒給這個數取名字叫e)。所以用現在的數學語言來說,e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。
包羅萬象的e
讀者恐怕已經在想,光是計算利息,應該不至於能講一整本書吧?當然不,利息只是極小的一部分。令人驚訝的是,這個與計算復利關系密切的數,居然和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了復利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算復利會有什麼關系,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。
如果整本書光是在講數學,還說成是說故事,就未免太不好意思了。事實上是,作者在探討數學的同時,穿插了許多有趣的相關故事。比如說你知道第一個對數表是誰發明的嗎?是納皮爾(John Napier)。沒有聽說過?這很正常,我也是讀到這本書才認識他的。重要的是要下一個問題。你知道納皮爾花了多少時間來建構整個對數表嗎?請注意這是發生在十六世紀末、十七世紀初的事情,別說電腦和計算機了,根本是什麼計算工具也沒有,所有的計算,只能利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表,簡直是匪夷所思吧!試著想像一下二十年之間,每天都在重復做同類型的繁瑣計算,這種乏味的日子絕不是一般人能忍受的。但納皮爾熬過來了,而他的辛苦也得到了報償——對數受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速採用,連納皮爾也得到了來自世界各地的贊譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家刻卜勒,他利用對數,簡化了行星軌道的繁復計算。
在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hospital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協議的。
說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前後後在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這麼厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可說是「表裡如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。
e的「影響力」其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,鬆鬆垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。這些與計算利率或者雙曲線面積八竿子打不著的問題,居然統統和e有關,豈不奇妙?
數學其實沒那麼難!
我們每個人的成長過程中都讀過不少數學,但是在很多人心目中,數學似乎是門無趣甚至可怕的科目。尤其到了大學的微積分,到處都是定義、定理、公式,令人望之生畏。我們會害怕一個學科的原因之一,是有距離感,那些微積分里的東西,好像不知是從哪兒冒出來的,對它毫無感覺,也覺得和我毫無關系。如果我們知道微積分是怎麼演變、由誰發明的,而發明之時還發生了些什麼事(微積分是誰發明的這件事,爭論了許多年,對數學發展產生重大的影響),發明者又是什麼樣的人等等,這種距離感就應該會減少甚至消失,微積分就不再是「陌生人」了。
J. 數學方程的元和次分別表示什麼
數學方程的元是指:方程中含有不同未知數的個數;次數是指未知數的最高指回數,最高指數是幾,答就是幾次。
如:x的平方+y的3次方+z=28,就是一個三元3次方程。
必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。
(10)方程中的元和次是由誰創造的數學擴展閱讀:
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:直接開平方法;配方法;公式法;分解因式法。
一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項系數化為正數。