導航:首頁 > 創造發明 > 正弦發明

正弦發明

發布時間:2021-06-13 11:22:18

Ⅰ 三角函數誰發明

歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用. (一) 馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽. 自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源. (二) 早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義. 1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx. 當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」. 18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延. (三) 函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究. 後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」 在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規律;他們以任何方式一個挨一個.」在該書中,他用一個三角級數和的形式表達了一個由不連續的「線」所給出的函數.更確切地說就是,任意一個以2π為周期函數,在〔-π,π〕區間內,可以由 表示出,其中 富里埃的研究,從根本上動搖了舊的關於函數概念的傳統思想,在當時的數學界引起了很大的震動.原來,在解析式和曲線之間並不存在不可逾越的鴻溝,級數把解析式和曲線溝通了,那種視函數為解析式的觀點終於成為揭示函數關系的巨大障礙. 通過一場爭論,產生了羅巴切夫斯基和狄里克萊的函數定義. 1834年,俄國數學家羅巴切夫斯基提出函數的定義:「x的函數是這樣的一個數,它對於每個x都有確定的值,並且隨著x一起變化.函數值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函數的這種依賴關系可以存在,但仍然是未知的.」這個定義建立了變數與函數之間的對應關系,是對函數概念的一個重大發展,因為「對應」是函數概念的一種本質屬性與核心部分. 1837年,德國數學家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關系無關緊要,所以他的定義是:「如果對於x的每一值,y總有完全確定的值與之對應,則y是x的函數.」 根據這個定義,即使像如下表述的,它仍然被說成是函數(狄里克萊函數): f(x)= 1 (x為有理數), 0 (x為無理數). 在這個函數中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數. 狄里克萊的函數定義,出色地避免了以往函數定義中所有的關於依賴關系的描述,以完全清晰的方式為所有數學家無條件地接受.至此,我們已可以說,函數概念、函數的本質定義已經形成,這就是人們常說的經典函數定義. (四) 生產實踐和科學實驗的進一步發展,又引起函數概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現象.1930年量子力學問世了,在量子力學中需要用到一種新的函數——δ-函數, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函數的出現,引起了人們的激烈爭論.按照函數原來的定義,只允許數與數之間建立對應關系,而沒有把「∞」作為數.另外,對於自變數只有一個點不為零的函數,其積分值卻不等於零,這也是不可想像的.然而,δ-函數確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是 P(0)=壓力/接觸面=1/0=∞. 其餘點x≠0處,因無壓力,故無壓強,即 P(x)=0.另外,我們知道壓強函數的積分等於壓力,即 函數概念就在這樣的歷史條件下能動地向前發展,產生了新的現代函數定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x).元素x稱為自變元,元素y稱為因變元. 函數的現代定義與經典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發展,是數學發展道路上的重大轉折,近代的泛函分析可以作為這種轉折的標志,它研究的是一般集合上的函數關系. 函數概念的定義經過二百多年來的錘煉、變革,形成了函數的現代定義,應該說已經相當完善了.不過數學的發展是無止境的,函數現代定義的形式並不意味著函數概念發展的歷史終結,近二十年來,數學家們又把函數歸結為一種更廣泛的概念—「關系」. 設集合X、Y,我們定義X與Y的積集X×Y為 X×Y={(x,y)|x∈X,y∈Y}. 積集X×Y中的一子集R稱為X與Y的一個關系,若(x,y)∈R,則稱x與y有關系R,記為xRy.若(x,y)R,則稱x與y無關系. 現設f是X與Y的關系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那麼稱f為X到Y的函數.在此定義中,已在形式上迴避了「對應」的術語,全部使用集合論的語言了. 從以上函數概念發展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發掘、拓廣數學概念的內涵是何等重要.

Ⅱ 誰發明正弦定理

在公元前1100多年,抄我國最早的一部襲數學著作———《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:
周公問:「天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能知道天有多高地有多寬呢?」
商高回答說:「數的產生來源於對方和圓這些形狀的認識。其中有一條原理:當直角三角形的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的。」 這就是「勾廣三,股修四,弦隅五」的說法。所以應該是大禹發明的。不過後來又經過不斷的完善,最早應該歸功華夏祖先。

Ⅲ 誰發明了三角函數

歷史上沒有統計,是人類智慧的結晶。唐朝就有了三角函數表了。

Ⅳ 正弦的由來

幫你查的:
高中時代,數學教師講課時,把正弦符號Sin讀成「撒因」。
古印度數學家阿耶波多Aryabhata最初研究正弦函數時,因該函數圖酷似半張弓弦,命名其為ardha-jya【半弦】。這是一個非常傳神的定義。這個名稱也可寫成「jya-ardha」,有時還簡寫成jya或jiva。。Arayabhata的《Arayabhatiya》是第一本明確提出正弦函數的著作。
阿耶波多(Aryabhata)(476~550)相當於中國南北朝的祖沖之(429-500)那個年代。1976年,為紀念阿耶波多誕生1500周年,印度發射了以阿耶波多命名的第一顆人造衛星。

阿拉伯人繼承和發揚了印度的數學成就 ,他們保留了「jiva」單詞,卻沒有翻譯出它的意思,由於阿拉伯語發音的原因,該詞轉寫為jiba(請不要笑)。並且被讀作jiba或jaib(因我不識阿拉伯語,不知其詳),而恰好「jaib」在阿拉伯語中的意思是「胸部、海灣或曲線」。當歐洲人將阿拉伯人的作品翻譯成拉丁文時,就用拉丁文中表示「胸部、海灣或曲線的單詞「sinus」替代了阿拉伯語的「jaib」,sinus這個詞在歐洲就被廣泛採用,簡寫符號「sin」最初由岡特開始採用,岡特還發明了「tan」符號。

弦的簡寫sin是英國天文學教授岡特Edmund Gunter所率先使用的,他還率先將餘弦寫作cosinus,後者是對拉丁語comlementi sinus【正弦的補】的簡寫 。

Ⅳ 正弦函數誰創造

早期對於三角函數的研究可以追溯到古代,現今使用的三角函數發展於歐洲的中世紀時期。Sin和Cos的使用最早可以追溯到印度笈多王朝的天文學時期,然後經由梵文翻譯成阿拉伯文,再由阿拉伯文翻譯成拉丁文。
隨著認識到相似三角形在它們的邊之間保持相同的比率,就有了在三角形的邊的長度和三角形的角之間應當有某種標準的對應的想法。就是說對於任何相似三角形,(比如)斜邊和剩下的兩個邊的比率都是相同的。如果斜邊變為兩倍長,其他邊也要變為兩倍長。三角函數表達的就是這些比率。
研究三角函數的有伊茲尼克的喜帕恰斯(公元前180-125年)、埃及的托勒密(公元90-180年)、阿里亞哈塔(公元476-550年)、伐羅訶密希羅、婆羅摩笈多、花拉子密、阿布·瓦法、歐瑪爾·海亞姆、婆什迦羅第二、納西爾·艾德丁·圖西、Ghiyath al-Kashi(14世紀)、兀魯伯(14世紀)、約翰·繆勒(1464)、瑞提克斯和瑞提克斯的學生Valentin Otho。
Madhava of Sangamagramma(約1400年)以無窮級數的方式做了三角函數的分析的早期研究。歐拉的《無窮微量解析入門》(Introctio in Analysin Infinitorum)(1748年)對建立三角函數在歐洲的分析處理做了最主要的貢獻,他定義三角函數為無窮級數,並表述了歐拉公式,還有使用接近現代的簡寫 sin.、cos.、tang.、cot.、sec. 和 cosec.。

Ⅵ 請問三角函數里sin cos tan cot 都是誰發明的,為什麼而發明

sine(正弦)一詞始來於阿拉伯人雷基自奧蒙坦。他是十五世紀西歐數學界的領導人物,他於1464年完成的著作《論各種三角形》,1533年開始發行,這是一本純三角學的書,使三角學脫離天文學,獨立成為一門數學分科。 cosine(餘弦)及cotangent(餘切)為英國人根日爾首先使用,最早在1620年倫敦出版的他所著的《炮兵測量學》中出現。 secant(正割)及tangent(正切)為丹麥數學家托馬斯·芬克首創,最早見於他的《圓幾何學》一書中。cosecant(餘割)一詞為銳梯卡斯所創。最早見於他1596年出版的《宮廷樂章》一書。 1626年,阿貝爾特·格洛德最早推出簡寫的三角符號:「sin」、「tan」、「sec」。1675年,英國人奧屈特最早推出餘下的簡寫三角符號:「cos」、「cot」、「csc」。但直到1748年,經過數學家歐拉的引用後,才逐漸通用起來。

Ⅶ 三角函數的發明者是誰

1464,德國人用sine表示正弦.
1620英國人根日耳用cosine表示餘弦.
1640,丹麥人用tangent表示正切,secant表示正割.
1596哥白尼的學生用coscant表示餘切.
1623德國人首先提出用sin簡寫正弦,tan簡寫正切,sec簡寫正割.
1975英國人提出把餘弦,餘切,餘割簡寫為cos,cot,csc.
這一切要歸功於歐拉,在歐拉的推廣下,人們開始使用三角函數.

Ⅷ 正弦定理和餘弦定理的最早發現者是誰求幫助啊啊啊

17 世紀初對數發明後大大簡化了三角函數的計算,製作三角函數表已不再是很難的事,人們的注意力轉向了三角學的理論研究.不過三角函數表的應用卻一直占據重要地位,在科學研究與生產生活中發揮著不可替代的作用.
三角公式是三角形的邊與角、邊與邊或角與角之間的關系式.三角函數的定義已體現了一定的關系,一些簡單的關系式在古希臘人以及後來的阿拉伯人中已有研究.
文藝復興後期,法國數學家韋達(F.Vieta)成為三角公式的集大成者.他的《應用於三角形的數學定律》( 1579 )是較早系統論述平面和球面三角學的專著之一.其中第一部分列出 6 種三角函數表,有些以分和度為間隔.給出精確到 5 位和 10 位小數的三角函數值,還附有與三角值有關的乘法表、商表等.第二部分給出造表的方法,解釋了三角形中諸三角線量值關系的運算公式.除匯總前人的成果外,還補充了自己發現的新公式.如正切定律、和差化積公式等等.他將這些公式列在一個總表中,使得任意給出某些已知量後,可以從表中得出未知量的值.該書以直角三角形為基礎.對斜三角形,韋達仿效古人的方法化為直角三角形來解決.對球面直角三角形,給出計算的完整公式及其記憶法則,如餘弦定理, 1591 年韋達又得到多倍角關系式, 1593 年又用三角方法推導出餘弦定理.

Ⅸ 正弦定理和餘弦定理的最早發現者是誰

17 世紀初對數發明後大大簡化了三角函數的計算,製作三角函數表已不再是很難的事,人們的注意力轉向了三角學的理論研究.不過三角函數表的應用卻一直占據重要地位,在科學研究與生產生活中發揮著不可替代的作用.
三角公式是三角形的邊與角、邊與邊或角與角之間的關系式.三角函數的定義已體現了一定的關系,一些簡單的關系式在古希臘人以及後來的阿拉伯人中已有研究.
文藝復興後期,法國數學家韋達(F.Vieta)成為三角公式的集大成者.他的《應用於三角形的數學定律》( 1579 )是較早系統論述平面和球面三角學的專著之一.其中第一部分列出 6 種三角函數表,有些以分和度為間隔.給出精確到 5 位和 10 位小數的三角函數值,還附有與三角值有關的乘法表、商表等.第二部分給出造表的方法,解釋了三角形中諸三角線量值關系的運算公式.除匯總前人的成果外,還補充了自己發現的新公式.如正切定律、和差化積公式等等.他將這些公式列在一個總表中,使得任意給出某些已知量後,可以從表中得出未知量的值.該書以直角三角形為基礎.對斜三角形,韋達仿效古人的方法化為直角三角形來解決.對球面直角三角形,給出計算的完整公式及其記憶法則,如餘弦定理, 1591 年韋達又得到多倍角關系式, 1593 年又用三角方法推導出餘弦定理.

韋達(F.Vieta)

如無疑問請採納!!!!!

閱讀全文

與正弦發明相關的資料

熱點內容
衛生院公共衛生服務績效考核總結 瀏覽:490
郴州學府世家糾紛 瀏覽:197
馬鞍山ok論壇怎麼刪除帖子 瀏覽:242
馬鞍山恆生陽光集團 瀏覽:235
麻城工商局領導成員 瀏覽:52
鄉級公共衛生服務績效考核方案 瀏覽:310
樂聚投訴 瀏覽:523
輪子什麼時候發明 瀏覽:151
馬鞍山陶世宏 瀏覽:16
馬鞍山茂 瀏覽:5
通遼工商局咨詢電話 瀏覽:304
誰發明的糍粑 瀏覽:430
國家公共文化服務示範區 瀏覽:646
pdf設置有效期 瀏覽:634
廣告詞版權登記 瀏覽:796
基本公共衛生服務考核方案 瀏覽:660
公共服務平台建設領導小組 瀏覽:165
人類創造了那些機器人 瀏覽:933
公共文化服務保障法何時實施 瀏覽:169
遼寧育嬰師證書領取 瀏覽:735