1. 求有關數學的書的讀後感 600字以上
《數學史選講》讀後感
數學的發展史也就是科學發展的歷史。最初牙牙學語地創造豐富多彩的記數制度,然後在花季雨季之中為數學建立越來越多、越來越詳盡的分支,到如今,展現它花樣年華之時耀眼奪目的數學成果。每一步都包含艱辛,滲透著無限的思考,在這期間,有多少人將自己的一生都奉獻給了數學,給了這一門散發著無窮魅力的學科。
《數學史選講》一書首先講述了各種各樣的記數方法,有象形文字中繁瑣的數字記法,有楔形文字中造型獨特的記數法,由中國古代簡易的算籌記數,有瑪雅以神的頭像作為數字的奇異的記數法,還有沿用至今的印度—阿拉伯數碼。從早期的記數制度演變中不難看出,就連數字的創造都是艱辛的,在那個時候,如何發明一種便於使用、耐於使用的記數法,是建立數學學科的至關重要的基礎。可以說,若然沒有了人類對數字以及記數制度這種最初的研究探索,力求創造出一種最為簡易方便的記數法,往後數學的研究便加倍了曲折、加倍了困難。
而在漫長的數學發展史中,最重要的莫過於無數為此奮斗一生的數學家,因為有了他們的辛酸血淚,有了他們的嚴謹態度和鍥而不舍的探索精神,才為數學打下了堅實的基礎,從而給平面解析幾何、微積分、無窮集合論等等的數學分支創造了誕生的機會。然而數學的發展史曲折的、艱辛的,數學家的研究里程更是如此。他們花盡一生的心思換來的創新思維和超時代理論,大多數在他們的有生之年都得不到世人的認同。希帕蘇斯向畢達哥拉斯學派的其他成員發表他對不可公度性的發現時,驚恐不已的成員將他拋進了大海;伽羅瓦提出的強有力的群論多次提交給科學院,最終得到的卻是「完全無法理解」的評論;創造驚人的無窮集合論的康托爾最後帶著諸多遺憾和無限的苦悶離開了人世;最懷才不遇的便是中學數學家阿貝爾,他經過無數努力最終證明了千古謎題——五次或以上的代數方程沒有一般的求根公式,卻遭到了一系列的冷遇,就連「數學王子」高斯看到論文的題目只說了一句「太可怕了,竟然寫出這種東西來!」便連其正文都沒看就把論文扔到了書堆里,盡管當時柏林大學已經認識到他的才華並任命他為數學教授,但阿貝爾早已在病魔侵襲的凄涼中與世長辭了。
盡管如今他們的理論得到世人的稱贊,但在當初他們卻受盡嘲笑與唾罵,他們不像當時就聞名於世的數學家那樣,一有新的理論產生便受到全世界的重視,然後在欽佩與榮耀的光芒下繼續他們的研究。雖然如此,他們仍舊堅定不移地相信自己,為自己的數學事業獨立奮斗,深入探索,進一步發展和完善自己的理論。就如康托爾那番充滿信心的話語:「我的理論堅如磐石,任何想要動搖它的人都將搬起石頭砸自己的腳。」這種自信與堅定無不讓人敬佩。
而許多的數學家都有一個共同點,就是他們的知識層面除了數學以外,還有其他的多個領域。譬如,泰勒斯是古希臘最早的數學家、哲學家,他幾乎涉獵了當時人類的全部思想和活動領域;費馬有豐富的法律知識,精通多門語言;萊布尼茨學習了拉丁文、希臘文、修辭學、算術、邏輯、音樂,還廣泛閱讀並研究了大量哲學和科學著作;在歐拉的工作中,數學緊密地和其他科學的應用、各種技術應用以及公眾的生活聯系在一起,它常常為解決力學、天文學、物理學、航海學、地理學、大地測量學、流體力學、彈道學、保險業和人口統計學等問題提供數學方法。由此可見,想要獲得在一個學科的研究的成功,不僅需要精通該學科的知識,還需要學習其他學科、領域的知識,綜合運用,才能更好地讓這些知識為自己的研究服務。
自信、堅定、還有多領域的知識固然重要,但老師對他們的幫助也不可多得。牛頓在巴羅教授的課程中得到研究流數的靈感,歐拉繼承微積分權威約翰·伯努利的衣缽成為「分析的化身」,阿貝爾在老師霍爾姆伯的鼓勵與指導下,破解了五次或以上代數方程公式求解的未解之謎,伽羅瓦被裡查德教授發現為千里馬,成為了群論的開山祖師,康托爾師從庫默爾、魏爾斯特拉斯和克羅內克等著名數學家,創立了無窮集合論,而華羅庚更是當年被熊慶來發掘,如今他又發掘了陳景潤。一位偉大的數學家背後往往有一位勞苦功高的老師,也許他們的老師如今已不為人所知,但他們所做出的努力與教導並不亞於這些數學家,正因有了他們耐心的教導,給予的莫大支持、鼓勵,才給了他們展露鋒芒的機會,而這些數學家虛心從師的精神也值得我們學習、效仿。
除此之外,從數學家的努力探索之中,我們可以發現數學研究所必需的過程。首先,要從細微的事情中發掘數學的道理、發現問題的存在,又或是對某一問題產生莫大的興趣與研究精神。這一步許多人都能做到,就像牛頓對一個掉下來的蘋果做出思考,從而創造萬有引力定律一樣,在我們的日常生活中,我們都能對一些平常事物提出問題,在遇到一些難題的時候有種想攻破它的沖動。然後,必須鍥而不舍地做出深入的探究。這一步往往只有少數人能夠做到,但這偏偏就是最重要的一步,缺乏了它,前面的一切苦勞都只是白費。在遇到困難面前,依然能夠懷有當初的沖動與勇氣想要征服它的,往往就是偉大的開始、成功的關鍵。但只有這份沖動與勇氣是不夠的,一位偉大的數學家,還必須擁有創新的精神,有對人們根深蒂固思想做出懷疑的精神,勇於打破個人崇拜與教條主義,創造出自己的新思想,就像笛卡兒對坐標系的建立,牛頓和萊布尼茨對微積分的創立,高斯對非歐幾何的確立,伽羅瓦對群論這一新概念的創造,康托爾對無窮集合論的堅信等等,他們之所以能夠成為受萬人矚目的數學家,是與他們的創新思維分不開的。
總的來說,這些數學家成功的經驗教會了我們學生在現階段應如何做好准備,迎接未來的挑戰。在思想上,我們應該培養創新思維、自信心、對自我堅定的信念、以及面對困難毫不畏懼的精神。在行動上,要虛心從師,不恥下問,積極學習多方面的知識,做到對知識的融會貫通,運用到日常生活的事情中。
「劉徽的割圓術比古希臘的窮竭法要晚幾百年」、「笛卡兒和費馬不約而同、殊途同歸地建立解析幾何」、「牛頓和萊布尼茨兩位奠基人不約而同的努力,使得微積分作為一門獨立學科建立起來」……在數學史的發展歷程中,不少相同的研究成果都重復地被人類發掘,這種數學研究的時間差無疑耽誤了數學的發展,重復地為同一個問題而努力,卻不知道事實上他人早已解決,如果世界能夠更早地融合為一體,便能更好地互相交流數學文化,共同研究、共同進步,那麼就不需要花上幾百年甚至更長的時間重復地走同一條彎路,而能更快地推動數學的發展,也許世界數學的發展速度就不只現在的步伐了。
而此書也提到了數學創立的一個條件:「在實用的技術發明之後,那些並不直接為生活的需要或滿足的科學才會產生出來。它首先出現在人們有閑暇的地方,數學科學最早在埃及興起,就是因為那裡的祭司階層享有足夠的閑暇。」這說明了「閑暇」對於科學興起的重要性。的確,當溫飽問題沒有解決,腦力勞動與體力勞動尚未分開時,人們無暇去發明科學,只有當享有閑暇時,人們才有足夠的時間與精力花費在科學的創造中,才會從最初的玩弄數字起,逐漸深入探究,從生活瑣事中發現數學的問題,從而創造謎題,再去解決,這樣一步步地走來,才會有如今的數學學科。要是沒有了閑暇,很可能就沒有了後面的一切。同樣,作為學生的我們也需要空出閑暇來認真研究數學,如果連每天的作業都難以按時完成,那麼還哪說得上去破解數學的難題呢?
數學的發展還很長久,還有許多路要走,我們就像牛頓說的那般,只不過是在海邊玩耍的小孩,在我們面前仍有一片未知的真理的海洋,數學的無窮魅力就埋在這裡面,等著我們去發掘,等著我們去探索。
2. 數學學習的書籍
、《幾何原本》(Elements of Euclid)
歐幾里德(Euclid,前300-前275?)古希臘數學家。
本書的印刷量僅次於《聖經》,是數學史上第一本成系統的著作,也是第一本譯成中文的西文名著。原名《歐幾里德幾何學》,明朝徐光啟譯時改為《幾何原本》。全書13卷,從5條公設和5條公理出發,構造了幾何的一種演繹體系,這種不假於實體世界,僅由一組公理實施邏輯推理而證明出定理的方法,是人類思想的一大進步。此書從寫作的時代一直流傳至今,對人類活動起著持續的重大影響,直到19世紀非歐幾里德幾何出現以前,一直是幾何推理、定理和方法的主要來源。
2、《算術研究》(Disquisitiones Arithmetical,1798)
高斯(C.F.Gauss,1774-1855),德國數學家。
「數學之王」的稱號可以說是對高斯極其恰當的贊辭。他與阿基米德、牛頓並列為歷史上最偉大的數學家。他的名言「數學,科學的皇後;算術,數學的皇後」,貼切地表達了他對於數學在科學中的關鍵作用的觀點。他24歲時發表了這本書,這是數學史上最出色的成果之一,系統而廣泛地闡述了數論里有影響的概念和方法。由此推倒了18世界數學的理論和方法,以革新的數論開辟了通往19世紀中葉分析學的嚴格化道路。高斯立論極端謹慎,有3個原則:「少些;但要成熟 」:「不留下進一步要做的事情」。
3、《幾何基礎》(The Fuadations of Geometry,1854)
黎曼(B.Riemann,1826-1866),德國數學家。
黎曼是19世紀最有創造力的數學家之一。雖然他沒有活到40歲,著作也不多,但幾乎每篇文章都開創了一個新的領域。本篇是黎曼在格丁根大學任大學講師時的就職演講,是數學史上最著名的演講之一,題為「關於構成幾何基礎的假設」。在演講中黎曼獨立提出了非歐幾里德幾何,即「黎曼幾何」,又稱橢圓幾何。他的這一關於空間幾何的獨具膽識的思想,對近代理論物理學發生深遠的影響,成為愛因斯坦相對論的幾何基礎。
4、《集合一般理論的基礎》(Foundations of a General Theory of Aggregates,1883)
康托爾(G.Cantor,1845-1918),德國數學家。
康托爾創立的集合論,是19世紀最偉大的成就之一。本書是康托爾研究集合論的專著。他通過建立處理數學中無限的基本技巧而極大地推動了分析和邏輯的發展,憑借古代與中世紀哲學著作中關於無限的思想而導出了關於數的本質的新的思想模式。
5、《幾何基礎》(The Fuadations of Geometry,1899)
希耳伯特(D.Hilbert,1862-1943),德國數學家。
希耳伯特是整個一代國際數學界的巨人。由高高斯、狄利克雷和黎曼於19世紀開創的生氣勃勃的數學傳統在20世紀的頭30年中主要由於希耳伯特而更為顯赫著名。在本書中,希耳伯特用幾何學的例子來闡述公理體系的集合理論的處理方法,它標志著幾何學公理化處理的轉折點。希耳伯特的名言:「我必須知道,我必將知道」,總結了他獻身數學並以畢生業務使之發展到新水平的激情。
6、《測度的一般理論和概率論》(General Theoey of Measure and Probability Theory,1929)
柯爾莫哥洛夫(A.N.Kolmogorov,1903-1993),蘇聯數學家。
柯爾莫哥洛夫是20世紀最有影響的蘇聯數學家。他對許多數學分支貢獻了創造性的一般理論。此篇論文是研究概率的名作,在隨後的50年中被人們作為概率論的完全公理而接受。在1937年又出版《概率論的解析方法》一書,闡述了無後效的隨機過程理論的原理,標志著概論論發展的一個新時期。
7、《論<數學原理>及其相關系統形式不可判定命題》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)
哥德爾(K.Godel,1906-1978),美籍奧地利數學家。
哥德爾在本篇中給出了著名的哥德爾證明,其內容是,要任何一個嚴格的數學系統中,必定有用本系統內的公理無法證明其成立或不成立的命題,因此,不能說算術的基本公理不會出現矛盾。這個證明成了20世紀數學的標志,至今仍有影響和爭論。它結束了近一個世紀來數學家們為建立能為全部數學提供嚴密基礎公理的企圖。
8、《數學原理》(Elements Mathematique I-XXXIX,1939-)
本書的署名是布爾巴基(Bourbiaki),他不是一個人,而是對現代數學影響巨大的數學家集團。在本世紀30年代由法國的一群年輕數學家結合而成他們把人類長期積累的數學知識按照數學結構整理而成為一個井井有條、博大精深的體系,已出版的近40卷的《數學原理》成為一部經典著作,成為許多研究工作的出發點和參考指南,並成為蓬勃發展的數學科學的主流,這套巨著究竟何時算完,誰也說不清。但是這個體系連同布爾巴基學派對數學的其他貢獻,在數學史上是獨一無二的。
3. 求一些關於趣味數學書的書名及內容簡介
1、我的第一本趣味數學書
《我的第一本趣味數學書》是2012年1月1日中國紡織出版社出版的圖書,作者是韓壘。本書通過討論各種豐富多彩的題目來引導讀者了解有趣的數學知識。
《我的第一本趣味數學書》討論了各種看似簡單卻又蘊含著豐富多彩知識的題目,煞費思考的問題,引人入勝的故事,有趣的難題,各種奇談怪論,以及從各種日常生活現象或者科學幻想小說里找到的各種出人意料的知識。
《我的第一本趣味數學書》可以提升小讀者的邏輯思維能力,教會小讀者科學地思考,並且幫助小讀者在腦海中創造無數聯想,把數學知識與經常碰到的各種生活現象聯系起來。
2、什麼是數學
《什麼是數學》是2012年1月由復旦大學出版社出版發行的圖書,作者是[美] R·柯朗 H·羅賓,作品的副標題是《對思想和方法的基本研究》。中國版由左平/張飴慈翻譯。
本書是世界著名的數學科普讀物,它搜集了許多經典的數學珍品,對整個數學領域中的基本概念與方法,做了精深而生動的闡述。無論是數學專業人士,或是願意作數學思考者都可以閱讀此書。特別對中學數學教師、大學生和高中生,都是一本極好的參考書。
3、趣味數學
趣味數學,作者:靈犀編繪。2004年5月1日重慶出版社出版。
本套書是一套綜合性較強的,融知識性,趣味性和參與性於一體的親子共讀讀物,適合學齡前的兒童在家長的輔導下閱讀。本套書分別從語言,數學,游戲,常識,智力,文學,詩歌七個方面著手,對少兒的智力進行全方位,多角度的訓練。
書中「學習指南」欄目首先確定了本單元讓小孩掌握的知識。「名師點拔」欄目則是長期從事教學工作的專家結合自身的教學經歷,對家長提出了恰當的教育方式,值得借鑒。「拓展練習」欄目則讓小孩子參與到圖書的內容中,讓他們一邊思考,一邊獲得智能的提高和訓練。
4、數學動手「做」出來:8歲前,一定要和孩子玩的107個數學游戲
《數學動手「做」出來:8歲前,一定要和孩子玩的107個數學游戲(計算篇)》是一本適合媽媽在家對孩子進行數學輔導的創意教材。它將1~6年級數學中有關計算和測量的58個知識要點、難點,設計成動手操作的游戲。
孩子們通過和媽媽一起動手操作,即能深刻地理解晦澀難懂的數學概念,達到輕松學習數學、愛上數學的效果。《數學動手「做」出來:8歲前,一定要和孩子玩的107個數學游戲(計算篇)》適合即將上小學的5~6歲孩子的家長閱讀,也適合一般小學生的家長閱讀,尤其適合數學學習吃力的小學生的家長閱讀。
同時,《數學動手「做」出來:8歲前,一定要和孩子玩的107個數學游戲(計算篇)》還適合小學數學教育領域的相關人士,包括老師、培訓機構人員等作為參考用書。
5、數學的奇妙
《數學的奇妙》是1999年4月1日由上海科技教育出版社出版的圖書,作者是西奧妮﹒帕帕斯(美)。
作者序言:《數學的奇妙》在這些想法的世界中探究,揭示數學的魅力對我們生活的影響,並幫助你在你最想不到的地方去發現數學。 很多人認為數學是一門嚴格的一成不變的課程。任何事情都不能脫離事實。
人類的大腦不斷地創造著數學思想和獨立於我們世界的迷人的新世界,並且這些思想立刻與我們的世界聯系起來,幾乎就像有人揮動過魔杖一般。
某一維中的對象是如何消失在另一維中的,任何兩點之間怎麼總能找到一個新的點,數是怎樣運算的,方程是怎樣解出的,坐標如何產生圖像,如何用無窮解題,公式如何生成——所有這些似乎都具有一種奇妙的性質。
4. 誰知道有關數學知識的課外書籍,
有一套數學文化理念傳播叢書,共8本數學與教育
數學與文化數學與思維數學與經濟數學與創造數學與哲學數學與社會數學與軍事
另外推薦
"從零到無窮大"
"虛數的秘密"我都看過,很不錯的數學課外書籍.希望你也喜歡
5. 有關學習數學的書籍有哪些
古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作.許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來,這些中國古代數學名著是了解古代數學成就的豐富寶庫。
例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。
開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的.直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現.現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。
從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意.在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。
《算經十書》。
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書.十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》.。
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀).《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作.就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算.當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載.
對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部.它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的.在中國,它在一千幾百年間被直接用作數學教育的教科書.它還影響到國外,朝鮮和日本也都曾拿它當作教科書.
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補.《漢書?藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作.1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,67 推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系.可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了.正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章.
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法.書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題.《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法.還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的.這要比歐洲同類演算法早出一千五百多年.在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則.
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外.在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲.再如「盈不足」 (也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」.現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版.
《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作.這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題.這些測量數學,正是中國古代非常先進的地圖學的數學基礎.此外,劉徽對《九章算術》所作的注釋工作也是很有名的.一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明.劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題.
《算經十書》的其餘幾部書也記載有一些具有世界意義的成就.例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名.而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的.
《綴術》是南北朝時期著名數學家祖沖之的著作.很可惜,這部書在唐宋之際公元十世紀前後失傳了.宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數.祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書?律歷志》中(參見本書第101頁).
《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了.
宋元算書
中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系.在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展.宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁.
特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家.所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:
秦九韶著的《數書九章》(公元1247年);
李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);
楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年);
朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年).
《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁).書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多.《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學.楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法.這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件.朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容.《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁).
宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年.
宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的.
宋元以後,明清時期也有很多算書.例如明代就有著名的算書《演算法統宗》.這是一部風行一時的講珠算盤的書.入清之後,雖然也有不少算書,但是到現在化的時候。這本書已經很少有賣!
6. 誰知道有關數學知識的課外書籍,
有一套數學文化理念傳播叢書,共8本數學與教育 數學與文化數學與思維數學與經濟數學與創造數學與哲學數學與社會數學與軍事 另外推薦 "從零到無窮大" "虛數的秘密"我都看過,很不錯的數學課外書籍.希望你也喜歡
7. 成為數學家要看哪些書
數學史通論(翻譯版)(海外優秀數學類教材系列叢書)
《數學史通論》(翻譯版)共分四大部分:6世紀前的數學;中世紀的數學(500-1000);早期近代數學(1400-1700);近代數學(1700-2000).《數學史通論》主要特色如下:1.靈活的編排:盡管《數學史通論》主要是按年代順序編排的,但每一時期則是圍繞某一專題展開的.讀者通過查閱詳盡的標題,就能對該時期歷史的全程進行跟蹤.2.不同時期的重要教材:《數學史通論》每一章中都會討論一種或幾種那個時期的重要教材,通過它們,不僅能學習那些偉大數學家的思想,今天的學生還能看到某些論題在過去是怎樣被處理的.3.非西方數學:《數學史通論》相當多的材料是關於中國、印度及伊斯蘭世界的數學的;在插入章中還比較了大約在14世紀初各主要文明的數學.4.人物傳記和評註:《數學史通論》配有100多張紀念歷代數學家及其工作的郵票和圖片,並著重用框圖給出數學家的小傳.
此外,《數學史通論》在習題配置、專題討論、內容的前後呼應等方面都有許多特色.《數學史通論》可供綜合大學、師范院校以及理工科各專業的學生作為數學史課程的教材,也可供廣大數學工作者和一般科學愛好者閱讀參考.相信中學師生也會從《數學史通論》中獲益.
數學的發現
《數學的發現:對解題的理解研究和講授》是著名美國數學家喬治·波利亞的力作.在書中,作者通過對各種類型生動而有趣的典型問題(有些是非數學的)進行細致剖析,提出它們的本質特徵,從而總結出各種數學模型.作者以平易淺顯的語言,應用啟發式的敘述方法,講述了有高度數學概括性的原理,使得各種水平的讀者,都獲益匪淺.這種以簡馭繁,寓華於朴,平易而生動的講授,充分反映了一位教育大師的風格特徵.本書各章末尾的習題與評注,是正文的延續,它們都是經過作者的精心選擇安排,與正文緊密關聯的不可分割的部分.這些練習,為讀者提供了一個進行創造性工作的極好機會,它將激起你的好勝心和主動精神,並使你品嘗到數學工作的樂趣.
數學與藝術
8. 關於數學的書有哪些
數學史通論(翻譯版)(海外優秀數學類教材系列叢書)
《數學史通論》(翻譯版)共分四大部分:世紀前的數學;中世紀的數學(500-1000);早期近代數學(1400-1700);近代數學(1700-2000).《數學史通論》主要特色如下:1.靈活的編排:盡管《數學史通論》主要是按年代順序編排的,但每一時期則是圍繞某一專題展開的.讀者通過查閱詳盡的標題,就能對該時期歷史的全程進行跟蹤.2.不同時期的重要教材:《數學史通論》每一章中都會討論一種或幾種那個時期的重要教材,通過它們,不僅能學習那些偉大數學家的思想,今天的學生還能看到某些論題在過去是怎樣被處理的.3.非西方數學:《數學史通論》相當多的材料是關於中國、印度及伊斯蘭世界的數學的;在插入章中還比較了大約在14世紀初各主要文明的數學.4.人物傳記和評註:《數學史通論》配有100多張紀念歷代數學家及其工作的郵票和圖片,並著重用框圖給出數學家的小傳.
此外,《數學史通論》在習題配置、專題討論、內容的前後呼應等方面都有許多特色.《數學史通論》可供綜合大學、師范院校以及理工科各專業的學生作為數學史課程的教材,也可供廣大數學工作者和一般科學愛好者閱讀參考.相信中學師生也會從《數學史通論》中獲益.
數學的發現
《數學的發現:對解題的理解研究和講授》是著名美國數學家喬治·波利亞的力作.在書中,作者通過對各種類型生動而有趣的典型問題(有些是非數學的)進行細致剖析,提出它們的本質特徵,從而總結出各種數學模型.作者以平易淺顯的語言,應用啟發式的敘述方法,講述了有高度數學概括性的原理,使得各種水平的讀者,都獲益匪淺.這種以簡馭繁,寓華於朴,平易而生動的講授,充分反映了一位教育大師的風格特徵.本書各章末尾的習題與評注,是正文的延續,它們都是經過作者的精心選擇安排,與正文緊密關聯的不可分割的部分.這些練習,為讀者提供了一個進行創造性工作的極好機會,它將激起你的好勝心和主動精神,並使你品嘗到數學工作的樂趣.
數學與藝術
有些人對於數學和藝術有成見,認為數學通過人的右腦工作,藝術通過人的左腦丁作.數學家理性而嚴謹,藝術家感性而浪漫.他們是兩個完全不同類型的人群.本書要推翻這個成見.在本書中讀者將看到一些數學家如何為藝術而孜孜不倦地工作,而一些藝術家如何熱衷於數學的最新發現.事實上.現在已經有這樣一些現代數學家他們不僅是現代數學的開拓者,而且是造詣很深的藝術家,同時也有這樣一些藝術家.他們利用數學原理創作出使人意想不到的優秀作品,在這里數學與藝術完全溝通起來了.
數學對藝術的影響由來已久,在文藝復興時期藝術家利用透視原理創作出不朽的名作,在20世紀荷蘭藝術家埃舍爾對無限拼圖的探索給人以啟迪,薩爾瓦多·達利利用四維立方體的展開圖畫出了使人震撼的作品.藝術家們從斐波那契數列、最小曲面、麥比烏斯帶中得到啟發,數學家們利用睢塑來宣揚數學的成就.
高觀點下的初等數學
菲利克斯·克萊因是19世紀末20世紀初世界最有影響力的數學學派——哥廷根學派的創始人,他不僅是偉大的數學家,也是現代國際數學教育的奠基人、傑出的數學史家和數學教育家,在數學界享有崇高的聲譽和巨大的影響.
本書是克萊因根據自己在哥廷根大學多年為德國中學數學教師及在校學生開設的講座所撰寫的基礎數學普及讀物.該書反映了他對數學的許多觀點,向人們生動地展示了一流大師的遺風,出版後被譯成多種文字,是一部數學教育的不朽傑作,影響至今不衰.全書共分3卷.第一卷:算術,代數、分析;第二卷:幾何;第三卷:精確數學與近似數學.
克萊因認為函數為數學的」靈魂」.應該成為中學數學的「基石」,應該把算術、代數和幾何方面的內容,通過幾何的形式用以函數為中心的觀念綜合起來;強調要用近代數學的觀點來改造傳統的中學數學內容,主張加強函數和微積分的教學,改革和充實代數的內容,倡導」高觀點下的初等數學」意識.在克萊因看來,一個數學教師的職責是:」應使學生了解數學並不是孤立的各門學問,而是一個有機的整體」;基礎數學的教師應該站在更高的視角(高等數學)來審視.理解初等數學問題,只有觀點高了,事物才能顯得明了而簡單;一個稱職的教師應當掌握或了解數學的各種概念、方法及其發展與完善的過程以及數學教育演化的經過.他認為」有關的每一個分支,原則上應看做是數學整體的代表」,「有許多初等數學的現象只有在非初等的理論結構內才能深刻地理解」.
本書對我國從事數學學習和數學教育的廣大讀者具有較好的啟示作用,用本書譯者之一,我國數學家、數學教育家吳大任先生的話來說,」所有對數學有一定了解的人都可以從中獲得教益和啟發」,此書」至今讀來仍然感到十分親切.這是因為,其內容主要是基礎數學,其觀點蘊含著真理……」.
中學數學的數學史
本書是根據我國「中學數學教育標准」撰寫的.書中介紹了與中學數學教材內容相配套的數學史知識,如球體積公式的歷史、二項式定理的歷史、n倍角正、餘弦公式的歷史、解析幾何的誕生、對數的發明、機會游戲與概率等;還從理論上探討了數學史與數學教育的關系,闡述了數學史在數學教學中的作用及如何將數學史融入數學教育等問題,是師范院校數學系學生、數學史教師和中學數學教師的參考書.
9. 有哪些非常經典的關於大數學家,數學史,數學故事的書
數學家故事.華羅庚
華羅庚(1910~1985),數學家,中國科學院院士。1910年11月12日生於江蘇金壇,1985年6月12日卒於日本東京。
華羅庚原來也是個調皮、貪玩的孩子,但他很有數學才能。有一次,數學老師出了一個中國古代有名的算題——有一樣東西,不知是多少。3個3個地數,還餘2;5個5個地數,還餘3;7個7個的數,還餘2。問這樣東西是多少?——題目出來後,同學們議論開了,誰也說不出得數。老師剛要張口,華羅庚舉手說:「我算出來了,是23。」他不但正確地說出了得數,而且演算法也很特別。這使老師大為驚詫。
可是,這位聰明的孩子,在讀完中學後,因為家裡貧窮,從此失學了。他回到家裡,在自家的小雜貨店做生意,賣點香煙、針線之類的東西,替父親挑起了養活全家的擔子。然而,華羅庚仍然酷愛數學。不能上學,就自己想辦法學。一次,他向一位老師借來了幾本數學書,一看,便著了魔。從此,他一邊做生意、算帳,一邊學數學。有時看書入了神,人家買東西他也忘了招呼。傍晚,店鋪關門以後,他更是一心一意地在數學王國里盡情漫遊。一年到頭,差不多每天都要花十幾個小時,鑽研那些借來的數學書。有時睡到半夜,想起一道數學難題的解法,他准會翻身起床,點亮小油燈,把解法記下來。
正在這時,他卻得了傷寒病,躺在床上半年,總算撿回了一條命,但左腳卻落下了終身殘疾。在貧病交加中,華羅庚仍然把全部心血用在數學研究上,接連發表了好幾篇重要論文,引起清華大學熊慶來教授的注意。
1932年在熊慶來教授的幫助下,華羅庚到了清華大學數學系,當一名管理員。他一人要干幾個人的事,仍繼續自學課程,還自修了英文、德文,能用英文寫論文。
1936年赴英國劍橋大學訪問、學習。1938年回國後任西南聯合大學教授。1946年赴美國,任普林斯頓數學研究所研究員、普林斯頓大學和伊利諾斯大學教授,1950年回國。歷任清華大學教授,中國科學院數學研究所、應用數學研究所所長、名譽所長,中國數學學會理事長、名譽理事長,全國數學競賽委員會主任,美國國家科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士,中國科學院物理學數學化學部副主任、副院長、主席團成員,中國科學技術大學數學系主任、副校長,中國科協副主席,國務院學位委員會委員等職。曾任一至六屆全國議會常務委員,六屆全國政協副主席。曾被授予法國南錫大學、香港中文大學和美國伊利諾斯大學榮譽博士學位。主要從事解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等領域的研究與教授工作並取得突出成就。40年代,解決了高斯完整三角和的估計這一歷史難題,得到了最佳誤差階估計(此結果在數論中有著廣泛的應用);對G.H.哈代與J.E.李特爾伍德關於華林問題及E.賴特關於塔里問題的結果作了重大的改進,至今仍是最佳紀錄。
在代數方面,證明了歷史長久遺留的一維射影幾何的基本定理;給出了體的正規子體一定包含在它的中心之中這個結果的一個簡單而直接的證明,被稱為嘉當-布饒爾-華定理。其專著《堆壘素數論》系統地總結、發展與改進了哈代與李特爾伍德圓法、維諾格拉多夫三角和估計方法及他本人的方法,發表40餘年來其主要結果仍居世界領先地位,先後被譯為俄、匈、日、德、英文出版,成為20世紀經典數論著作之一。其專著《多個復變典型域上的調和分析》以精密的分析和矩陣技巧,結合群表示論,具體給出了典型域的完整正交系,從而給出了柯西與泊松核的表達式。這項工作在調和分析、復分析、微分方程等研究中有著廣泛深入的影響,曾獲中國自然科學獎一等獎。倡導應用數學與計算機的研製,曾出版《統籌方法平話》、《優選學》等多部著作並在中國推廣應用。與王元教授合作在近代數論方法應用研究方面獲重要成果,被稱為「華-王方法」。在發展數學教育和科學普及方面做出了重要貢獻。發表研究論文200多篇,並有專著和科普性著作數十種。
劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.賈 憲賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xi鄌,意:數導)均已失傳。他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。秦九韶秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。李冶李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。朱世傑朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法).祖沖之祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。祖 暅祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。楊輝楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。趙 爽趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。祖沖之(429~500) 中國南北朝時代南朝數學家、天文學家、物理學家。范陽遒(今河北淶水)人,祖沖之(429-500)的祖父名叫祖昌,在宋朝做了一個管理朝廷建築的長官。祖沖之長在這樣的家庭里,從小就讀了不少書,人家都稱贊他是個博學的青年。他特別愛好研究數學,也喜歡研究天文歷法,經常觀測太陽和星球運行的情況,並且做了詳細記錄。宋孝武帝聽到他的名氣,派他到一個專門研究學術的官署「華林學省」工作。他對做官並沒有興趣,但是在那裡,可以更加專心研究數學、天文了。我國歷代都有研究天文的官,並且根據研究天文的結果來制定歷法。到了宋朝的時候,歷法已經有很大進步,但是祖沖之認為還不夠精確。他根據他長期觀察的結果,創制出一部新的歷法,叫做「大明歷」(「大明」是宋孝武帝的年號)。這種歷法測定的每一回歸年(也就是兩年冬至點之間的時間)的天數,跟現代科學測定的相差只有五十秒;測定月亮環行一周的天數,跟現代科學測定的相差不到一秒,可見它的精確程度了。公元462年,祖沖之請求宋孝武帝頒布新歷,孝武帝召集大臣商議。那時候,有一個皇帝寵幸的大臣戴法興出來反對,認為祖沖之擅自改變古歷,是離經叛道的行為。 祖沖之當場用他研究的數據回駁了戴法興。戴法興依仗皇帝寵幸他,蠻橫地說:「歷法是古人制定的,後代的人不應該改動。」祖沖之一點也不害怕。他嚴肅地說:「你如果有事實根據,就只管拿出來辯論。不要拿空話嚇唬人嘛。」宋孝武帝想幫助戴法興,找了一些懂得歷法的人跟祖沖之辯論,也一個個被祖沖之駁倒了。但是宋孝武帝還是不肯頒布新歷。直到祖沖之死了十年之後,他創制的大明歷才得到推行。盡管當時社會十分動亂不安,但是祖沖之還是孜孜不倦地研究科學。他更大的成就是在數學方面。他曾經對古代數學著作《九章算術》作了注釋又編寫一本《綴術》。他的最傑出貢獻是求得相當精確的圓周率。經過長期的艱苦研究,他計算出圓周率在3.1415926和3.1415927之間,成為世界上最早把圓周率數值推算到七位數字以上的科學家。祖沖之在科學發明上是個多面手,他造過一種指南車,隨便車子怎樣轉彎,車上的銅人總是指著南方;他又造過「千里船」,在新亭江(在今南京市西南)上試航過,一天可以航行一百多里。他還利用水力轉動石磨,舂米碾穀子,叫做「水碓磨」。數學家的故事——蘇步青蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父 文明用語省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍hide 著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」這就是老一輩數學家那顆愛國的赤子之心數學家的故事─劉徽劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.《九章算術》約成書於東漢之初,共有246個問題的解法.在許多方面:如解聯立方程,分數四則運算,正負數運算,幾何圖形的體積面積計算等,都屬於世界先進之列,但因解法比較原始,缺乏必要的證明,而劉徽則對此均作了補充證明.在這些證明中,顯示了他在多方面的創造性的貢獻.他是世界上最早提出十進小數概念的人,並用十進小數來表示無理數的立方根.在代數方面,他正確地提出了正負數的概念及其加減運算的法則;改進了線性方程組的解法.在幾何方面,提出了"割圓術",即將圓周用內接或外切正多邊形窮竭的一種求圓面積和圓周長的方法.他利用割圓術科學地求出了圓周率π=3.14的結果.劉徽在割圓術中提出的"割之彌細,所失彌少,割之又割以至於不可割,則與圓合體而無所失矣",這可視為中國古代極限觀念的佳作.《海島算經》一書中, 劉徽精心選編了九個測量問題,這些題目的創造性、復雜性和富有代表性,都在當時為西方所矚目.劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是我國最早明確主張用邏輯推理的方式來論證數學命題的人.劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富.
10. 哪本書是有史以來最大的數學巨著
《數學原本》是一本博大精深的著作,有7000多頁,是有史以來最大的數學巨著。它涉及現代數學的各個領域,概括某些最新的研究成果,以其嚴謹而別具一格的方式,將數學按結構重新組織,形成了自己的新體系。內容包括集合論、代數、一般拓撲、實變函數輪、線性拓撲空間、黎曼幾何、微分拓撲、調和分析、微分流形、李群等分支。1965年出到31卷,現在共有40卷。
1939年,巴黎的書店裡推出一本新書《數學原本(第一卷)》作者署名為尼古拉·布爾巴基,名不見經傳。由於第二次世界大戰很快爆發,此書並不為人知曉。但是,此書繼續出版,平均每年一卷,慢慢地有了名氣,只是無人知道布爾巴基究竟何許人,後來竟成了數學界的一個「謎」。
布爾巴基充滿創造力,幾乎每一年裡,都要向世界奉獻出一卷新的《數學原本》。布爾巴基的成就,恢復了法國數學歷史上的光榮。但在法國數學界,數學家們卻無緣一睹這位數學新星的風采。1986年,一次題為《布爾巴基的事業》的演講,終於揭開了布爾巴基的身世之謎。原來,布爾巴基果然不是一個人,而是一個富有創造活力的集體。
第一次世界大戰時,法國政府把大學生全部趕上了前線,結果給法國科學事業造成了災難性的破壞。僅巴黎高等師范學校,就有2/3的學生成了這次大戰的犧牲品,法國數學界出現了一代人的空缺。很明顯,法國數學落伍了。1924年,一批18歲的青年來到法國巴黎高等師范學校(法國最高學府)求學,他們立志要把迄今為止的全部數學,用最新的觀點,重新加以整理。這幾個初出茅廬的青年人,准備用3年的時間,寫出一部《數學原本》,建立起自己的體系。結果他們寫了40年,至今還沒有完成,但是布爾巴基學派卻在這一過程中形成了。
布爾巴基有一條不成文的規定,誰要是超過50歲,就必須自動退出前台,讓位給青年人。所以,布爾巴基就在成員的不斷流動中,長久地保持著青年人的朝氣,保持著創造的活力。事實上,布爾巴基並沒有什麼成文的組織章程,青年人只要具備有廣博而扎實的數學素養,善於獨立思考,都可以成為布爾巴基的正式成員。當然,他也必須經得起布爾巴基大會的特殊考驗。布爾巴基大會每年舉行兩三次。在每次大會上,都要討論《數學原本》的寫作計劃。會議大致確定出一卷書分多少章,每章寫哪些專題後,就委派某個自願者在會後去撰寫初稿。初稿完成後,必須在大會上一字不漏的大聲宣讀,接受毫不留情的批評,它常常引起一場針鋒相對的爭論。等到爭論平息下來,經過幾年辛苦寫成的稿子往往已被批得體無完膚,於是,再委派新的自願者去撰寫第二稿。從開始寫作到書印出來,一卷《數學原本》一般都要這樣重復五六次,誰也說不清它的作者究竟是誰。
他們積極地學習,不斷地取得新的成就。從1950年到1966年,共有4位法國學者榮獲菲爾茲國際數學獎,其中就有3位是布爾巴基的成員。布爾巴基的早期成員魏伊、狄多涅、嘉當等人,都已經成長為世界聞名的數學大師。也正是由於幾代法國數學家長期而卓有成效的合作,布爾巴基已成為20世紀最有影響的學派之一。