1. 笛卡爾乘積的案例
給出三個域:
D1=SUPERVISOR = { 張清玫,劉逸 }
D2=SPECIALITY= {計算機專業,信息專業}
D3=POSTGRADUATE = {李勇,劉晨,王敏}
則D1,D2,D3的笛卡爾積為D:
D=D1×D2×D3 ={(張清玫, 計算機專業, 李勇), (張清玫, 計算機專業, 劉晨),
(張清玫, 計算機專業, 王敏), (張清玫, 信息專業, 李勇),
(張清玫, 信息專業, 劉晨), (張清玫, 信息專業, 王敏),
(劉逸, 計算機專業, 李勇), (劉逸, 計算機專業, 劉晨),
(劉逸, 計算機專業, 王敏), (劉逸, 信息專業, 李勇),
(劉逸, 信息專業, 劉晨), (劉逸, 信息專業, 王敏)}
這樣就把D1,D2,D3這三個集合中的每個元素加以對應組合,形成龐大的集合群。
本個例子中的D中就會有2X2X3個元素,如果一個集合有1000個元素,有這樣3個集合,他們的笛卡爾積所組成的新集合會達到十億個元素。假若某個集合是無限集,那麼新的集合就將是有無限個元素。
2. 關於笛卡爾乘積
1.設A={0,1},B={1,2}試求(1)A平方*B(2)(A*B)平方
A²=A*A={(0,0),(0,1),(1,0)(1,1)}
A²*B={((0,0),1),((0,0),2),((0,1),1),((0,1),2),((1,0),1),((1,0),2),((1,1),1),((1,1),2)}
A*B={(0,1),(0,2),(1,1),(1,2)}
(A*B)²={((0,1),(0,1)),((0,1),(0,2)),((0,1),(1,1)),((0,1),(1,2)),((0,2),(0,1)),((0,2),(0,2)),((0,2),(1,1)),((0,2),(1,2)),((1,1),(0,1)),((1,1),(0,2)),((1,1),(1,1)),((1,1),(1,2)),((1,2),(0,1)),((1,2),(0,2)),((1,2),(1,1)),((1,2),(1,2))}
2.設A={1,2,3},B={a,b,c}試求A平方
A²=A*A={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}
3. 笛卡爾乘積的介紹
在數學中,兩個集合X和Y的笛卡兒積(Cartesian proct),又稱直積,表示為X × Y,第一個對象是X的成員而第二個對象是Y的所有可能有序對的其中一個成員。假設集合A={a, b},集合B={0, 1, 2},則兩個集合的笛卡爾積為{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。類似的例子有,如果A表示某學校學生的集合,B表示該學校所有課程的集合,則A與B的笛卡爾積表示所有可能的選課情況。A表示所有聲母的集合,B表示所有韻母的集合,那麼A和B的笛卡爾積就為所有可能的漢字全拼。
4. 笛卡爾積德關系演算是怎麼得到的,為什麼是這么寫
笛卡爾(Descartes)乘積又叫直積。假設集合A={a,b},集合B={0,1,2},則兩個集合的笛卡爾積為{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。可以擴展到多個集合的情況。類似的例子有,如果A表示某學校學生的集合,B表示該學校所有課程的集合,則A與B的笛卡爾積表示所有可能的選課情況。
5. 笛卡爾乘積
答案是對的。
兩個集合A和B相乘,就是把A、B裡面的元素分別組合在一起。
比如本題A*{1}={<0,1>, <1, 1>}
A*B={<0,1>, <0, 2>,<1,1>,<1,2>}
有幾個集合相乘,乘積里的元素就有幾個項,按順序排列。
現在A*{1}*B 你自己會計算了吧?加油
6. 什麼是笛卡爾積請簡單介紹一下(早忘了...)
給定一組域D1,D2,…,Dn,這些域中可以有相同的。D1,D2,…,Dn的笛卡爾積為:
D1×D2×…×Dn={(d1,d2,…,dn)|diDi,i=1,2,…,n}
所有域的所有取值的一個組合
不能重復
例 給出三個域:
D1=SUPERVISOR ={ 張清玫,劉逸 }
D2=SPECIALITY={計算機專業,信息專業}
D3=POSTGRADUATE={李勇,劉晨,王敏}
則D1,D2,D3的笛卡爾積為:
D1×D2×D3 =
{(張清玫,計算機專業,李勇),(張清玫,計算機專業,劉晨),
(張清玫,計算機專業,王敏),(張清玫,信息專業,李勇),
(張清玫,信息專業,劉晨),(張清玫,信息專業,王敏),
(劉逸,計算機專業,李勇),(劉逸,計算機專業,劉晨),
(劉逸,計算機專業,王敏),(劉逸,信息專業,李勇),
(劉逸,信息專業,劉晨),(劉逸,信息專業,王敏) }
7. 離散數學笛卡爾積
答案如下圖:
8. 什麼是笛卡爾積笛卡爾積是什麼意思
笛卡爾乘積是指在數學中,兩個集合X和Y的笛卡尓積(Cartesian proct),又稱直積,表示為X×Y,第一個對象是X的成員而第二個對象是Y的所有可能有序對的其中一個成員 。
假設集合A={a, b},集合B={0, 1, 2},則兩個集合的笛卡爾積為{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。
類似的例子有,如果A表示某學校學生的集合,B表示該學校所有課程的集合,則A與B的笛卡爾積表示所有可能的選課情況。A表示所有聲母的集合,B表示所有韻母的集合,那麼A和B的笛卡爾積就為所有可能的漢字全拼。
設A,B為集合,用A中元素為第一元素,B中元素為第二元素構成有序對,所有這樣的有序對組成的集合叫做A與B的笛卡爾積,記作AxB.
笛卡爾積的符號化為:
A×B={(x,y)|x∈A∧y∈B}
例如,A={a,b}, B={0,1,2},則
A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}
(8)笛卡爾乘積誰創造的擴展閱讀
給出三個域:
D1=SUPERVISOR = { 張清玫,劉逸 }
D2=SPECIALITY= {計算機專業,信息專業}
D3=POSTGRADUATE = {李勇,劉晨,王敏}
則D1,D2,D3的笛卡爾積為D:
D=D1×D2×D3 ={(張清玫, 計算機專業, 李勇), (張清玫, 計算機專業, 劉晨),
(張清玫, 計算機專業, 王敏), (張清玫, 信息專業, 李勇),
(張清玫, 信息專業, 劉晨), (張清玫, 信息專業, 王敏),
(劉逸, 計算機專業, 李勇), (劉逸, 計算機專業, 劉晨),
(劉逸, 計算機專業, 王敏), (劉逸, 信息專業, 李勇),
(劉逸, 信息專業, 劉晨), (劉逸, 信息專業, 王敏)}
這樣就把D1,D2,D3這三個集合中的每個元素加以對應組合,形成龐大的集合群。
本個例子中的D中就會有2X2X3個元素,如果一個集合有1000個元素,有這樣3個集合,他們的笛卡爾積所組成的新集合會達到十億個元素。假若某個集合是無限集,那麼新的集合就將是有無限個元素
9. 什麼叫直積什麼叫笛卡爾乘積
直積和笛卡爾乘積同義。
1、直積又叫笛卡爾(Descartes)乘積。
2、設( G1,* )、( G2,· )是兩個群,有各自的乘法 *、· 和各自的單位元e、l,分別從G1和G2中任取一個元素組成所有可能的有序對,組成的集合記作G1×G2,在上面定義一個運算◎,對於G1×G2中任意兩個元素(a1,B1)、(a2,B2),規定(a1,B1) (a2,B2)=(a1 * a2,B1 · B2),這叫做G1和G2的直積,記作{ G1×G2, ◎ },單位元是(e,l)。