導航:首頁 > 創造發明 > 數學方程元次水創造的

數學方程元次水創造的

發布時間:2021-05-29 06:04:29

『壹』 數學方程的" 元""次"是誰 發明

解:數學方程的元次是康熙首先提出的。

『貳』 數學方程中:元.次等術語,是誰創業造的

選康熙創造

『叄』 數學方程中的元次是誰創造的

康熙皇帝。康熙是我國歷史上數學水平最高的一位帝王,他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學,是康熙首創「元」、「次」、「根」等方程術語的漢譯名。

比利時傳教士南懷仁在給康熙講解方程時,由於他漢語、滿語水平都很有限,有些術語講不清楚,解釋很久還是不得要領,康熙就建議:將未知數翻譯為「元」,最高次數翻譯為「次」,使方程左右兩邊相等的未知數的值翻譯為「根」或「解」。

南懷仁驚疑地盯著康熙,愣了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住,激動地說:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人!」康熙創造的這幾個方程術語,馭繁為簡,准確科學,非常便於理解和記憶。

(3)數學方程元次水創造的擴展閱讀

南懷仁簡介

南懷仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66歲),字敦伯,又字勛卿,西屬尼德蘭皮特姆(今比利時布魯塞爾附近)人,耶穌會傳教士,清代天文學家、科學家,1623年10月9日出生,1641年9月29日入耶穌會,1658年來華,是清初最有影響的來華傳教士之一,為近代西方科學知識在中國的傳播做出了重要貢獻。

他是康熙皇帝的科學啟蒙老師,精通天文歷法、擅長鑄炮,是當時國家天文台(欽天監)業務上的最高負責人,官至工部侍郎,正二品。1688年1月28日南懷仁在北京逝世,享年66歲,卒謚勤敏。著有《康熙永年歷法》、《坤輿圖說》、《西方要記》等。

『肆』 數學的方程解法問題

一元二次方程的解法
一、知識要點:
一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是今後學習數學的基 礎。
一元二次方程的一般形式為:ax^2(2為次數,即X的平方)+bx+c=0, (a≠0),它是只含一個未知數,並且未知數的最高次數是2 的整式方程。
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:
1、直接開平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例題精講:
1、直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的 方程,其解為x=±m .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丟解)
∴x=
∴原方程的解為x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解為x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項系數化為1:x2+x=-
方程兩邊分別加上一次項系數的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=
當b2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:將常數項移到方程右邊 3x2-4x=2
將二次項系數化為1:x2-x=
方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接開平方得:x-=±
∴x=
∴原方程的解為x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解為x1=,x2= .
4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)
(1)解:(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小結:
一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項系數化為正數。
直接開平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。
配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定系數法)。
例5.用適當的方法解下列方程。(選學)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先應觀察題目有無特點,不要盲目地先做乘法運算。觀察後發現,方程左邊可用平方差公式分解因式,化成兩個一次因式的乘積。
(2)可用十字相乘法將方程左邊因式分解。
(3)化成一般形式後利用公式法解。
(4)把方程變形為 4x2-2(2m+5)x+(m+2)(m+3)=0,然後可利用十字相乘法因式分解。
(1)解:4(x+2)2-9(x-3)2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x2+(2- )x+ -3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x2-2 x=-
x2-2 x+ =0 (先化成一般形式)
△=(-2 )2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x2-4mx-10x+m2+5m+6=0
4x2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (選學)
分析:此方程如果先做乘方,乘法,合並同類項化成一般形式後再做將會比較繁瑣,仔細觀察題目,我們發現如果把x+1和x-4分別看作一個整體,則方程左邊可用十字相乘法分解因式(實際上是運用換元的方法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解。
例7.用配方法解關於x的一元二次方程x2+px+q=0
解:x2+px+q=0可變形為
x2+px=-q (常數項移到方程右邊)
x2+px+( )2=-q+()2 (方程兩邊都加上一次項系數一半的平方)
(x+)2= (配方)
當p2-4q≥0時,≥0(必須對p2-4q進行分類討論)
∴x=- ±=
∴x1= ,x2=
當p2-4q<0時,<0此時原方程無實根。
說明:本題是含有字母系數的方程,題目中對p, q沒有附加條件,因此在解題過程中應隨時注意對字母取值的要求,必要時進行分類討論。
練習:
(一)用適當的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3
3. x2-x=0 4. x2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列關於x的方程
1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
練習參考答案:
(一)1.x1=- ,x2= 2.x1=2,x2=-2
3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
6.解:(把2x+3看作一個整體,將方程左邊分解因式)
[(2x+3)+6][(2x+3)-1]=0
即 (2x+9)(2x+2)=0
∴2x+9=0或2x+2=0
∴x1=-,x2=-1是原方程的解。
(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0
[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
∴x1= +b,x2= -b是 ∴x1= a,x2=a是
原方程的解。 原方程的解。
測試
選擇題
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多項式a2+4a-10的值等於11,則a的值為( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax2+bx+c=0中的二次項系數,一次項系數和常數項之和等於零,那麼方程必有一個根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax2+bx+c=0有一個根是零的條件為( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x2-3x=10的兩個根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x2-3x+3=0的解是( )。
A、 B、 C、 D、無實根
7. 方程2x2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x2-x-4=0左邊配成一個完全平方式後,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不對
9. 已知一元二次方程x2-2x-m=0,用配方法解該方程配方後的方程是( )。
A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
答案與解析
答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:
1.分析:移項得:(x-5)2=0,則x1=x2=5,
注意:方程兩邊不要輕易除以一個整式,另外一元二次方程有實數根,一定是兩個。
2.分析:依題意得:a2+4a-10=11, 解得 a=3或a=-7.
3.分析:依題意:有a+b+c=0, 方程左側為a+b+c, 且具僅有x=1時, ax2+bx+c=a+b+c,意味著當x=1時,方程成立,則必有根為x=1。
4.分析:一元二次方程 ax2+bx+c=0若有一個根為零,
則ax2+bx+c必存在因式x,則有且僅有c=0時,存在公因式x,所以 c=0.
另外,還可以將x=0代入,得c=0,更簡單!
5.分析:原方程變為 x2-3x-10=0,
則(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-3<0,則原方程無實根。
7.分析:2x2=0.15
x2=
x=±
注意根式的化簡,並注意直接開平方時,不要丟根。
8.分析:兩邊乘以3得:x2-3x-12=0,然後按照一次項系數配方,x2-3x+(-)2=12+(- )2,
整理為:(x-)2=
方程可以利用等式性質變形,並且 x2-bx配方時,配方項為一次項系數-b的一半的平方。
9.分析:x2-2x=m, 則 x2-2x+1=m+1
則(x-1)2=m+1.
中考解析
考題評析
1.(河南省)已知x的二次方程的一個根是–2,那麼k=__________。
評析:k=4.將x=-2代入到原方程中去,構造成關於k的一元二次方程,然後求解。
2.(西安市)用直接開平方法解方程(x-3)2=8得方程的根為( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
評析:用解方程的方法直接求解即可,也可不計算,利用一元二次方程有解,則必有兩解及8的平方根,即可選出答案。
課外拓展
一元二次方程
一元二次方程(quadratic equation of one variable)是指含有一個未知數且未知數的最高次項是二次的整式方程。
一般形式為: ax^2+bx+c=0, (a≠0)
在公元前兩千年左右,一元二次方程及其解法已出現於古巴比倫人的泥板文書中:求出一個數使它與它的倒數之和等於 一個已給數,即求出這樣的x與,使
x=1, x+ =b,
x2-bx+1=0,
他們做出(2);再做出 ,然後得出解答:+ 及 - 。可見巴比倫人已知道一元二次方程的求根公式。但他們當時並不接受 負數,所以負根是略而不提的。
埃及的紙草文書中也涉及到最簡單的二次方程,例如:ax^2=b。
在公元前4、5世紀時,我國已掌握了一元二次方程的求根公式。希臘的丟番圖(246-330)卻只取二次方程的一個正根,即使遇到兩個都是正根的情況,他亦只取其中之一。
公元628年,從印度的婆羅摩笈多寫成的《婆羅摩修正體系》中,得到二次方程x2+px+q=0的一個求根公式。在阿拉伯阿爾.花拉子米的《代數學》中討論到方程的解法,解出了一次、二次方程,其中涉及到六種不同的形式,令 a、b、c為正數,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成 不同形式作討論,是依照丟番圖的做法。阿爾.花拉子米除了給出二次方程的幾種特殊解法外,還第一 次
給出二次方程的一般解法,承認方程有兩個根,並有無理根存在,但卻未有虛根的認識。十六世紀義大利的 數學家們為了解三次方程而開始應用復數根。
韋達(1540-1603)除已知一元方程在復數范圍內恆有解外,還給出根與系數的關系。 我國《九章算術.勾股》章中的第二十題是通過求相當於 x2+34x-71000=0的正根而解決的。我國數學家還在方程的研究中應用了內插法。

『伍』 創造一元一次方程的是誰

一元一次方程式
--- 方程式的由來
十六世紀,隨著各種數學符號的相繼出現,特別是法國數學家韋達創
立了較系統的表示未知量和已知量的符號以後,"含有未知數的等式"
這一專門概念出現了,當時拉丁語稱它為"aequatio",英文為"equation".
十七世紀前後,歐洲代數首次傳進中國,當時譯"equation"為"相等式.
由於那時我國古代文化的勢力還較強,西方近代科學文化未能及時
在我國廣泛傳播和產生較的影響,因此"代數學"連同"相等式"等這
些學科或概念都只是在極少數人中學習和研究.
十九世紀中葉,近代西方數學再次傳入我國.1859年,李善蘭和英國
傳教士偉烈亞力,將英國數學家德.摩爾根的譯出.李.偉
兩人很注重數學名詞的正確翻譯,他們借用或創設了近四百個數
學的漢譯名詞,許多至今一直沿用.其中,"equation"的譯名就是借
用了我國古代的"方程"一詞.這樣,"方程"一詞首次意為"含有未知
數的等式.
1873年,我國近代早期的又一個西方科學的傳播者華蘅芳,與英國傳
教士蘭雅合譯英國渥里斯的,他們則把"equation"譯為"方程
式",他們的意思是,"方程"與"方程式"應該區別開來,方程仍指中的意思,而方程式是指"今有未知數的等式".華.傅的主張在
很長時間裏被廣泛採納.直到1934年,中國數學學會對名詞進行一審
查,確定"方程"與"方程式"兩者意義相通.在廣義上,它們是指一元n次
方程以及由幾個方程聯立起來的方程組.狹義則專指一元n次方程.
既然"方程"與"方程式"同義,那麼"方程"就顯得更為簡潔明了了.
(本文摘自九章出版社之"數學誕生的故事")

『陸』 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼

一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時專提出的,因屬當時沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。

公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。

(6)數學方程元次水創造的擴展閱讀:

一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。

如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。

『柒』 解一元一次方程的基本步驟

  1. 去分母:在觀察方程的構成後,在方程左右兩邊乘以各分母的最小公倍數;

  2. 去括弧:仔細觀察方程後,先去掉方程中的小括弧,再去掉中括弧,最後去掉大括弧;

  3. 移項:把方程中含有未知數的項全部都移到方程的另外一邊,剩餘的幾項則全部移動到方程的另一邊;

  4. 合並同類項:通過合並方程中相同的幾項,把方程化成ax=b(a≠0)的形式;

  5. 把系數化成1:通過方程兩邊都除以未知數的系數a,使得x前面的系數變成1,從而得到方程的解。

)也屬於一元一次方程。一元一次方程是一種線性方程,且只有一個根。

參考鏈接:網路——一元一次方程

『捌』 數學方程元次房

(1)雙人的13間,三人的8間
(2)3040元

『玖』 數學方程式中的元和次是誰創立的

數學方程式中的元和次是中國清朝時期的康熙皇帝創立的。

康熙皇帝是中國歷史上聲名顯赫,又有遠大抱負,聰明好學的一位皇帝。他除了其文治武功之外 ,還十分愛好數學,曾拜比利時的南懷仁等傳教士為師,學習數學 、天文、地理以及拉丁文等,康熙皇帝雖然聰穎過人,但是聽外籍教師講課也有困難,因為南懷仁等人的漢語和滿語水平有限,日常會話勉強對付,但要將嚴謹而高深的科學知識表達出來就顯得力不從心了。而當時課本多是外文,即使中譯本也是半通不通的。這樣,學習中就必然有許多精 力被消耗在語言溝通上,進度不快 。

不過,康熙學習很刻苦,也很有耐心,不懂就請教,直至真正弄懂為止。南懷仁在講方程時,句子冗長,吐音又很不清楚,康熙的腦子常常被搞得暈暈糊糊的,怎樣才能讓老師講得好懂呢?一陣冥思苦想後,一個妙法突然冒出來。他向南懷仁建議 ,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」(解)⋯⋯南懷仁用筆認真地記了下來 ,隨即用這些新創術語換下自己原先使用的繁瑣詞語 :「求二『元』一『次』方程的『根 』(解 )⋯⋯「如此一來,果然簡單了很多,而且還可以提高教學效率,南懷仁驚疑地盯著康熙,愣怔了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人 !」

正因為康熙創造的這幾個數學術語科學而簡潔,十分便於理解和記憶,因此一直延用到今天 。

閱讀全文

與數學方程元次水創造的相關的資料

熱點內容
網路侵犯著作權報案 瀏覽:734
稅務報到期限 瀏覽:6
怎樣查詢銀行卡有效期 瀏覽:19
浙江省溫州市工商局企業查詢 瀏覽:592
馬鞍山全套多少錢 瀏覽:568
艾丁頓發明了什麼 瀏覽:651
希臘誰創造了人類 瀏覽:415
社區公共衛生服務工作總結 瀏覽:66
學校矛盾糾紛排查化解方案 瀏覽:752
衛生院公共衛生服務績效考核總結 瀏覽:490
郴州學府世家糾紛 瀏覽:197
馬鞍山ok論壇怎麼刪除帖子 瀏覽:242
馬鞍山恆生陽光集團 瀏覽:235
麻城工商局領導成員 瀏覽:52
鄉級公共衛生服務績效考核方案 瀏覽:310
樂聚投訴 瀏覽:523
輪子什麼時候發明 瀏覽:151
馬鞍山陶世宏 瀏覽:16
馬鞍山茂 瀏覽:5
通遼工商局咨詢電話 瀏覽:304