導航:首頁 > 創造發明 > 方程的創造人

方程的創造人

發布時間:2021-05-12 20:09:11

⑴ 數學方程中的元次是誰創造

康熙皇帝。康熙是我國歷史上數學水平最高的一位帝王,他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學,是康熙首創「元」、「次」、「根」等方程術語的漢譯名。

比利時傳教士南懷仁在給康熙講解方程時,由於他漢語、滿語水平都很有限,有些術語講不清楚,解釋很久還是不得要領,康熙就建議:將未知數翻譯為「元」,最高次數翻譯為「次」,使方程左右兩邊相等的未知數的值翻譯為「根」或「解」。

南懷仁驚疑地盯著康熙,愣了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住,激動地說:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人!」康熙創造的這幾個方程術語,馭繁為簡,准確科學,非常便於理解和記憶。

(1)方程的創造人擴展閱讀

南懷仁簡介

南懷仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66歲),字敦伯,又字勛卿,西屬尼德蘭皮特姆(今比利時布魯塞爾附近)人,耶穌會傳教士,清代天文學家、科學家,1623年10月9日出生,1641年9月29日入耶穌會,1658年來華,是清初最有影響的來華傳教士之一,為近代西方科學知識在中國的傳播做出了重要貢獻。

他是康熙皇帝的科學啟蒙老師,精通天文歷法、擅長鑄炮,是當時國家天文台(欽天監)業務上的最高負責人,官至工部侍郎,正二品。1688年1月28日南懷仁在北京逝世,享年66歲,卒謚勤敏。著有《康熙永年歷法》、《坤輿圖說》、《西方要記》等。

⑵ 方程是誰發明

方程的發明者是法國數學家韋達。

韋達1540年生於法國的普瓦圖(Poitou),今旺代省的豐特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒於巴黎。年輕時學習法律並當過律師。後從事政治活動,當過議會的議員。

在對西班牙的戰爭中,曾為政府破譯敵軍的密碼。韋達還致力於數學研究,第一個有意識地和系統地使用字母來表示已知數、未知數及其乘冪,帶來了代數學理論研究的重大進步。韋達討論了方程根的各種有理變換,發現了方程根與系數之間的關系(所以人們把敘述一元二次方程根與系數關系的結論稱為「韋達定理」)。

韋達從事數學研究只是出於愛好,然而他卻完成了代數和三角學方面的巨著。他的《應用於三角形的數學定律》(1579年)是韋達最早的數學專著之一,可能是西歐第一部論述6種三角形函數解平面和球面三角形方法的系統著作。他被稱為現代代數符號之父。

韋達還專門寫了一篇論文"截角術",初步討論了正弦,餘弦,正切弦的一般公式,首次把代數變換應用到三角學中。他考慮含有倍角的方程,具體給出了將COS(nx)表示成COS(x)的函數並給出當n≤11等於任意正整數的倍角表達式了。

(2)方程的創造人擴展閱讀:

早在3600年前,古埃及人寫在草紙上的數學問題中,就涉及了方程中含有未知數的等式。

公元825年左右,中亞細亞的數學家阿爾·花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。

方程中文一詞出自古代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。

卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?

(現今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。問1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)

白話翻譯:卷第八(一)為:現在有上禾三點,中禾二點,下禾一點,實際上三十九斗;上禾二點,中禾三點,下禾一點,實際上三十四斗;上禾一點,中禾二點,下禾三點,實際上兩個十六斗。向上、中、下禾是一點各是多少?

(現在有上等黍三捆、中等黍二捆、下等黍子捆,打出來的飯共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出來的飯共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出來的飯共有二十六斗。問1捆上等人黍、一捆中等黍、1把下等人黍各能打響多少斗黃米?)

答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。

白話翻譯:他回答說:上禾一點,九斗、四分一的一,中禾一點,四斗、四分一的一,下禾一點,二斗、四分之三斗。

方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。

求中禾,以法乘中行下實,而除下禾之實。余如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。余如上禾秉數而一,即上禾之實。實皆如法,各得一斗。

白話翻譯:方程方法是:設置上禾三點,中禾二點,下禾一點,實際上三十九斗,在右邊。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不盡的遍乘左行而以直任。左下方禾不盡的,上為法,以下是真實。實立即下禾的事實。

求中禾,因法乘中走下實,而除下禾的事實。我像中禾持數而一,就是中禾的事實。求上禾也因法乘右邊走下實,而除下禾、中禾的事實。我像上禾持數而一,登上禾的事實。實際上都像法,各得一斗。

以上是出自《九章算術》中的三元一次方程組,並展示了用「遍乘直除」來消元以解此方程組。

魏晉時期的大數學家劉徽在公元263年前後為《九章算術》作了大量注釋,介紹了方程組:二物者再程,三物者三程,皆如物數程之。並列為行,故謂之方程。他還創立了比「遍乘直除」更簡便的「互乘相消」法來解方程組。

⑶ 方程是怎麼樣創造出來的,它是誰創造的

阿基米德。。。

⑷ 方程的創始人是誰急需,不要太長,大約150字左右!

具體誰創始恐怕無據可靠了,在中國的九章算術中就有方程的記載。國外,也是早在古巴比倫數學和印度數學中就有方程的記載。

⑸ 哪個法國數學家創造了 方程

法國數學家韋達

十六世紀,隨著各種數學符號的相繼出現,特別是法國數學家韋達創
立了較系統的表示未知量和已知量的符號以後,"含有未知數的等式"

這一專門概念出現了,當時拉丁語稱它為"aequatio",英文為"equation".

十七世紀前後,歐洲代數首次傳進中國,當時譯"equation"為"相等式.

由於那時我國古代文化的勢力還較強,西方近代科學文化未能及時

在我國廣泛傳播和產生較的影響,因此"代數學"連同"相等式"等這

些學科或概念都只是在極少數人中學習和研究.

十九世紀中葉,近代西方數學再次傳入我國.1859年,李善蘭和英國

傳教士偉烈亞力,將英國數學家德.摩爾根的<代數初步>譯出. 李.偉

兩人很注重數學名詞的正確翻譯,他們借用或創設了近四百個數

學的漢譯名詞,許多至今一直沿用.其中,"equation"的譯名就是借

用了我國古代的"方程"一詞.這樣,"方程"一詞首次意為"含有未知

數的等式.

1873年,我國近代早期的又一個西方科學的傳播者華蘅芳,與英國傳

教士蘭雅合譯英國渥里斯的<代數學>,他們則把"equation"譯為"方程

式",他們的意思是,"方程"與"方程式"應該區別開來,方程仍指<九章

算術>中的意思,而方程式是指"今有未知數的等式".華.傅的主張在

很長時間裏被廣泛採納.直到1934年,中國數學學會對名詞進行一審

查,確定"方程"與"方程式"兩者意義相通.在廣義上,它們是指一元n次

方程以及由幾個方程聯立起來的方程組.狹義則專指一元n次方程.

既然"方程"與"方程式"同義,那麼"方程"就顯得更為簡潔明了了.

(本文摘自九章出版社之"數學誕生的故事")

⑹ 楊氏方程的創始人是誰

首先還是要多看書,多思考。 指向曲率中心的那是叫做附加壓力,而不是表面張力。表面張力永遠是與該表面相切的! 知道了這點,然後畫出受力圖,那個什麼楊氏方程根本就不用記。

⑺ 二元一次方程的創始人

我覺得應該是中國人

⑻ 方程創始人

笛卡爾 http://ke..com/view/4704.html?wtp=tt#2
x y 的這種變數的思想就是解析幾何 的由來

◆數學方面
笛卡兒最傑出的成就是在數學發展上創立了解析幾何學。在笛卡兒時代,代數還是一個比較新的學科,幾何學的思維還在數學家的頭腦中佔有統治地位。笛卡兒致力於代數和幾何聯系起來的研究,於1637年,在創立了坐標系後,成功地創立了解析幾何學。他的這一成就為微積分的創立奠定了基礎。解析幾何直到現在仍是重要的數學方法之一。
[編輯本段]三、解析幾何的誕生
文藝復興使歐洲學者繼承了古希臘的幾何學,也接受了東方傳入的代數學。利學技術的發展,使得用數學方法描述運動成為人們關心的中心問題。笛卡兒分析了幾何學與代數學的優缺點,表示要去「尋求另外一種包含這兩門科學的好處,而沒有它們的缺點的方法」。
在《幾何學》卷一中,他用平面上的一點到兩條固定直線的距離來確定點的距離,用坐標來描述空間上的點。他進而創立了解析幾何學,表明了幾何問題不僅可以歸結成為代數形式,而且可以通過代數變換來實現發現幾何性質,證明幾何性質。
笛卡兒把幾何問題化成代數問題,提出了幾何問題的統一作圖法。為此,他引入了單位線段,以及線段的加、減、乘、除、開方等概念,從而把線段與數量聯系起來,通過線段之間的關系,「找出兩種方式表達同一個量,這將構成一個方程」,然後根據方程的解所表示的線段間的關系作圖。
在卷二中,笛卡兒用這種新方法解決帕普斯問題時,在平面上以一條直線為基線,為它規定一個起點,又選定與之相交的另一條直線,它們分別相當於x軸、原點、y軸,構成一個斜坐標系。那麼該平面上任一點的位置都可以用(x,y)惟一地確定。帕普斯問題就化成了一個含兩個未知數的二次不定方程。笛卡兒指出,方程的次數與坐標系的選擇無關,因此可以根據方程的次數將曲線分類。
《幾何學》一書提出了解析幾何學的主要思想和方法,標志著解析幾何學的誕生。此後,人類進入變數數學階段。
在卷三中,笛卡兒指出,方程可能有和它的次數一樣多的根,還提出了著名的笛卡兒符號法則:方程正根的最多個數等於其系數變號的次數;其負根的最多個數(他稱為假根)等於符號不變的次數。笛卡兒還改進了韋達創造的符號系統,用a,b,c,…表示已知量,用x,y,z,…表示未知量。
解析幾何的出現,改變了自古希臘以來代數和幾何分離的趨向,把相互對立著的「數」與「形」統一了起來,使幾何曲線與代數方程相結合。笛卡兒的這一天才創見,更為微積分的創立奠定了基礎,從而開拓了變數數學的廣闊領域。
正如恩格斯所說:「數學中的轉折點是笛卡兒的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學,有了變數,微分和積分也就立刻成為必要了。」

⑼ 方程是誰發明的

方程是法國數學家韋達首創 。十六世紀,隨著各種數學符號的出現,法國數學家韋達創立內了較系統的表容示未知量和已知量的符號以後,「含有未知數的等式」 ,這一專門概念便出現了。方程史話:一、大約3600年前古埃及人寫在紙草上的數學問題中,就涉及了方程中含有未知數的等式。二、公元825年左右中亞細亞的數學家阿爾-花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。三、宋元時期中國數學家創立了「天元術」,用「天元」表示未知數進而建立方程。這種方法的代表作是數學家李冶寫的《測圓海鏡》(1248),書中所說的「立天元一」相當於「設未知數x。」所以在簡稱方程時,將未知數稱為「元」,如一個未知數的方程叫「一元方程」。而兩個以上的未知數,在古代又稱為「天元」、「地元」、「人元」。《九章算術·方程》白尚恕注釋:「『方』即方形,『程』即表達相課的意思,或者是表達式。於某一問題中,如有含若干個相關的數據,將這些相關的數據並肩排列成方形,則稱為『方程』。

⑽ 方程是誰創造的

古代國來人
《後漢書·馬嚴源傳》「善《九章筭術》」 唐 李賢 註:「 劉徽 《九章算術》曰《方田》第一,《粟米》第二,《差分》第三,《少廣》第四,《商功》第五,《均輸》第六,《盈不足》第七,《方程》第八,《句股》第九。」《九章算術·方程》 白尚恕 注釋:「『方』即方形,『程』即表達相課的意思,或者是表達式。於某一問題中,如有含若干個相關的數據,將這些相關的數據並肩排列成方形,則稱為『方程』。所謂『方程』即現今的增廣矩陣。」

閱讀全文

與方程的創造人相關的資料

熱點內容
武漢疫情投訴 瀏覽:149
知識產權合作開發協議doc 瀏覽:932
廣州加里知識產權代理有限公司 瀏覽:65
企業知識產權部門管理辦法 瀏覽:455
消費315投訴 瀏覽:981
馬鞍山鋼城醫院 瀏覽:793
馮超知識產權 瀏覽:384
介紹小發明英語作文 瀏覽:442
版權使用權協議 瀏覽:1000
2018年基本公共衛生服務考核表 瀏覽:884
馬鞍山候車亭 瀏覽:329
學校矛盾糾紛排查領導小組 瀏覽:709
張江管委會知識產權合作協議 瀏覽:635
關於開展公共衛生服務項目相關項目督導的函 瀏覽:941
閨蜜證書高清 瀏覽:11
轉讓房轉讓合同協議 瀏覽:329
矛盾糾紛排查調處工作協調交賬會議紀要 瀏覽:877
雲南基金從業資格證書查詢 瀏覽:313
新知識的搖籃創造力 瀏覽:187
股轉轉讓協議 瀏覽:676