導航:首頁 > 創造發明 > 數學名詞創造

數學名詞創造

發布時間:2021-05-09 15:58:11

A. 數學中常用名詞有哪些

1、平方

平方是一種運算,比如,a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等於a的2次方),例如4×4=16,8×8=64,平方符號為2。

2、立方

立方也叫三次方。三個相同的數相乘,叫做這個數的立方。如5×5×5叫做5的立方,記做5³。

3、方程

方程(equation)是指含有未知數的等式。是表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。

4、解集

解集是一個數學用語,指以一個方程(組)或不等式(組)的所有解為元素的集合叫做該方程(組)或不等式(組)的解集。表示解的集合的方法有三種:列舉法、描述法和圖示法。解集作為數學中的重要工具,在數學中有著十分廣泛的應用。

5、排列

排列,一般地,從n個不同元素中取出m(m≤n)個元素,按照一定的順序排成一列,叫做從n個元素中取出m個元素的一個排列(permutation)。特別地,當m=n時,這個排列被稱作全排列(all permutation)。

B. 我們現在數學用的方程,根,解等名詞都是康熙創造出來的嗎有何依據(正史,謝謝!)

康熙教皇子數學、天文學、地理學、醫學、測量學、農學等。先以觀測日食回為例。康熙三十六年答(1697年)閏三月初一日,日食。時康熙帝親征噶爾丹在外,皇太子在北京觀測,使用皇父所賜嵌有三層玻璃的小鏡子,裝於自鳴鍾之上,用望日千里眼觀望。日食似不到十分,日光、房屋、牆壁及人影俱可見,甚屬明耀。觀測奏報自京城發出,送皇父覽閱。康熙帝得到奏報後,硃批曰:「覽爾所奏,果然如此。」後來皇四子胤禛(雍正)回憶道:「昔年遇日食四五分之時,日光照耀,難以仰視。皇考親率朕同諸兄弟在乾清宮,用千里鏡,四周用夾紙遮蔽日光,然後看出考驗所虧分數。此朕身經實驗者。」又以幾何學為例。法國耶穌會士白晉寫給法王路易十四的信中說,康熙帝親自給皇三子胤祉講解幾何學,並培養其科學才能。後又讓胤祉等向義大利耶穌會士德理格學習律呂知識,「命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日講究其精微,修造新書」。康熙帝命在暢春園蒙養齋開館,派允祉主持纂修《律歷淵源》,匯律呂、歷法和演算法於一書。允祉還為《古今圖書集成》的纂輯做出貢獻,成為康熙朝一位傑出的學者。但他在雍正繼位後,仍未逃過劫難:被奪爵,禁景山永安亭而死。

C. 什麼是數學再創造

由世界著名教學教育權威弗賴登塔爾提出的「再創造」的論述內容相當豐富,他認為:

1)數學是最容易創造的一種學科。它實質上是人們常識的系統化。教師不必將各種規則、定律灌輸給學生,而是應該創造合適的條件,提供很多具體的例子,讓學生在實踐的過程中,自己去發現或是「再創造」出各種運演算法則和各種定律。

2)每個人都應該按照自己的特點重新創造數學知識。個人學習數學的進程和數學發展的歷史有著相似之處。每個人在學習過程中都可以根據自己的體驗,用自己的思維方式重新創造有關的數學知識。

3)每個人有不同的「數學現實」,因而可達到不同的水平。這里「數學現實」是指客觀現實與人們的數學認識的統一體。是人們用數學概念、數學方法對客觀事物的認識的總體。其中既含有客觀世界的現實情況,也包含學生個人用自己的數學水平觀察這些事物所獲得的認識。教師應當針對各個學生數學現實和思維水平的不同,通過適當的啟發,引導學生加強反思,使學生的創造活動由不自覺的狀態,發展為有意識的活動。

4)「再創造」應當貫穿於數學教育的全過程。數學教育的整個過程學生都應該積極參與,教師的任務就是為學生提供廣闊的天地,聽任各種不同的思維、不同的方法自由發展,絕不可以對內容作任何限制,更不應對其發現設置任何預先的圈套。

更多請參考 http://learning.sohu.com/20060417/n242808119.shtml
望採納,謝謝!!

D. 數學這科目是誰創造

數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」 生活中,數學無處不在!那麼,數學是怎樣產生的?它起源於何時呢?這可是些不易回答的問題,因為基本數學概念的原始積累過程,發生在人類創造出文字來記錄自己的思想之前。 關於數學的起源,流傳著一些古老而神奇的傳說。相傳在非常非常遙遠的古代,有一天,從黃河的波濤中忽然跳出一匹「龍馬」來,馬背上馱著一幅圖,圖上畫著許多神秘的數學符號,後來,從波瀾不驚的洛水裡,又爬出一隻「神龜」來,龜背上也馱著一卷書,書中闡述了數的排列方法。馬背上的圖叫做「河圖」,龜背上的書叫做「洛書」,當「河圖洛書」出現之後,數學也就誕生了。 數學是一門最古老的學科,它的起源可以上溯到一萬多年以前。但是,公元1000年以前的資料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。 遠在1萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。 這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的呢)……等等各個分支,而且現在還在不斷發展下去。

E. 有哪些名詞是用來表示創造的

製造,建造,開拓,創新

F. 常用的數學符號是誰創造出來的

人們會計算加法、減法、乘法和除法已經有好幾千年的歷史了。

但是使用+、-、×、÷等數學符號卻是近幾百年的事。那麼,這些符號是由誰創造出來的呢?

加、減號(+、-),是15世紀德國數學家魏德曼首創的。他在橫線上加一豎,表示增加、合並的意思;在加號上去掉一豎表示減少、拿去的意思。

乘號(×),是17世紀英國數學家歐德萊最先使用的。因為乘法與加法有一定的聯系,所以他把加號斜著寫表示相乘。後來,德國數學家萊布尼茲認為「×」易與字母「x」混淆,主張用「·」號,至今「×」與「·」並用。

除號(÷),是17世紀瑞士數學家雷恩首先使用的。他用一道橫線把兩個圓點分開,表示分解的意思。後來萊布尼茲主張用「:」作除號,與當時流行的比號一致。現在有些國家的除號和比號都用「:」表示。

等號(=),是16世紀英國學者列科爾德創造的,他用兩條平行而又相等的直線來表示兩數相等。

中括弧()和大括弧(),是16世紀英國數學家魏治德創造的。

大於號(>)和小於號(<),是17世紀的數學家哈里奧特創立的。

這些數學符號既簡單,又方便。使用它們,是數學上的一大進步。

G. 數學名詞有那些,越難越好,還要帶有解釋

拓撲學 拓撲學,是近代發展起來的一個研究連續性現象的數學分支。中文名稱起源於希臘語Τοπολογα的音譯。Topology原意為地貌,於19世紀中期由科學家引入,當時主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。 分支學科 點集拓撲學又稱為一般拓撲學 組合拓撲學 代數拓撲學 微分拓撲學 幾何拓撲學 拓撲學 拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。在拓撲學的孕育階段,19世紀末,就拓撲已出現點集拓撲學與組合拓撲學兩個方向。現在,前者演化為一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓樸學、幾何拓撲學等分支。 在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。

H. 數學名詞是什麼

邊、差、長、乘、除、底、點、度、分、高、勾、股、行、和、弧
環、集、加、減、積、角、解、寬、棱、列、面、秒、冪、模、球
式、勢、商、體、項、象、線、弦、腰、圓
十位、個位、幾何、子集、大圓、小圓、元素、下標、下凸、下凹
百位、千位、萬位、分子、分母、中點、約分、加數、減數、數位
通分、除數、商數、奇數、偶數、質數、合數、乘數、算式、進率
因式、因數、單價、數量、約數、正數、負數、整數、分數、倒數
乘方、開方、底數、指數、平方、立方、數軸、原點、同號、異號
余數、除式、商式、余式、整式、系數、次數、速度、距離、時間
方程、等式、左邊、右邊、變號、相等、解集、分式、實數、根式
對數、真數、底數、首數、尾數、坐標、橫軸、縱軸、函數、常顯
變數、截距、正弦、餘弦、正切、餘切、正割、餘割、坡度、坡比
頻數、頻率、集合、數集、點集、空集、原象、交集、並集、差集
映射、對角、數列、等式、基數、正角、負角、零角、弧度、密位
函數、端點、全集、補集、值域、周期、相位、初相、首項、通項
公比、公差、復數、虛數、實數、實部、虛部、實軸、虛軸、向量
輻角、排列、組合、通項、概率、直線、公理、定義、概念、射線
線段、頂點、始邊、終邊、圓角、平角、銳角、純角、直角、餘角
補角、垂線、垂足、斜線、斜足、命題、定理、條件、題設、結論
證明、內角、外角、推論、斜邊、曲線、弧線、周長、對邊、距離
矩形、菱形、鄰邊、梯形、面積、比例、合比、等比、分比、垂心
重心、內心、外心、旁心、射影、圓心、半徑、直徑、定點、定長
圓弧、優弧、劣弧、等圓、等弧、弓形、相離、相切、切點、切線
相交、割線、外離、外切、內切、內徑、外徑、中心、弧長、扇形
軌跡、誤差、視圖、交點、橢圓、焦點、焦距、長袖、短軸、准線
法線、移軸、轉軸、斜率、夾角、曲線、參數、擺線、基圓、極軸
極角、平面、稜柱、底面、側面、側棱、楔體、球缺、棱錐、斜高
稜台、圓柱、圓錐、圓台、母線、球面、球體、體積、環體、環面
球冠、極限、導數、微分、微商、駐點、拐點、積分、切面、面角
極值
被減數、被乘數、被除數、假分數、代分數、質因數、小數點
多位數、百分數、單名數、復名數、統計表、統計圖、比例尺
循環節、近似數、准確數、圓周率、百分位、十分位、千分位
萬分位、自然數、正整數、負整數、相反數、絕對值、正分數
負分數、有理數、正方向、負方向、正因數、負因數、正約數
運算律、交換律、結合律、分配律、最大數、最小數、逆運算
奇次冪、偶次冪、平方表、立方表、平方數、立方數、被除式
代數式、平方和、平方差、立方和、立方差、單項式、多項式
二項式、三項式、常數項、一次項、二次項、同類項、填空題
選擇題、判斷題、證明題、未知數、大於號、小於號、等於號
恆等號、不等號、公分母、不等式、方程組、代入法、加減法
公因式、有理式、繁分式、換元法、平方根、立方式、根指數
小數點、無理數、公式法、判別式、零指數、對數式、冪指數
對數表、橫坐標、縱坐標、自變數、因變數、函數值、解析法
解析式、列表法、圖象法、指點法、截距式、正弦表、餘弦表
正切表、餘切表、平均數、有限集、描述法、列舉法、圖示法
真子集、歐拉圖、非空集、逆映射、自反性、對稱性、傳遞性
可數集、可數勢、維恩圖、反函數、冪函數、角度制、弧度制
密位制、定義城、函數值、開區間、閉區間、增函數、減函數
單調性、奇函數、偶函數、奇偶性、五點法、公因子、對逆性
比較法、綜合法、分析法、最大值、最小值、遞推式、歸納法
復平面、純虛數、零向量、長方體、正方體、正方形、相交線
延長線、中垂線、對預角、同位角、內錯角、無限極、長方形
平行線、真命題、假命題、三角形、內角和、輔助線、直角邊
全等形、對應邊、對應角、原命題、逆命解、原定理、逆定理
對稱點、對稱軸、多邊形、對角線、四邊形、五邊形、三角形
否命題、中位線、相似形、比例尺、內分點、外分點、平面圖
同心圓、內切圓、外接圓、弦心距、圓心角、圓周角、弓形角
內對角、連心線、公切線、公共弦、中心角、圓周長、圓面積
反證法、主視圖、俯視圖、二視圖、三視圖、虛實線、左視圖
離心率、雙曲線、漸近線、拋物線、傾斜角、點斜式、斜截式
兩點式、一般式、參變數、漸開線、旋輪線、極坐標、公垂線
斜線段、半平面、二面角、斜稜柱、直稜柱、正梭柱、直觀圖
正棱錐、上底面、下底面、多面體、旋轉體、旋轉面、旋轉軸
擬柱體、圓柱面、圓錐面、多面角、變化率、左極限、右極限
隱函數、顯函數、導函數、左導教、右導數、極大值、極小值
極大點、極小點、極值點、原函數、積分號、被積式、定積分
無窮小、無窮大、連分數、近似數、弦切角
混合運算、乘法口訣、循環小數、無限小數、有限小數、簡易方程
四舍五人、單位長度、加法法則、減法法則、乘法法則、除法法則
數量關系、升冪排列、降冪排列、分解因式、完全平方、完全立方
同解方程、連續整數、連續奇數、連續偶數、同題原理、最簡方程
最簡分式、字母系數、公式變形、公式方程、整式方程、二次方根
三次方根、被開方數、平方根表、立方根表、二次根式、幾次方根
求根公式、韋達定理、高次方程、分式方程、有理方程、無理方程
分數指數、同次根式、異次根式、最簡根式、同類根式、常用對數
換底公式、反對數表、坐標平面、坐標原點、比例系數、一次函數
二次函數、三角函數、正弦定理、餘弦定理、樣本方差、集合相交
等價集合、可數集合、對應法則、指數函數、對數函數、自然對數
指數方程、對數方程、單值對應、單調區間、單調函數、誘導公式
周期函數、周期交換、振幅變換、相位變換、正弦曲線、餘弦曲線
正切曲線、餘切曲線、倍角公式、半形公式、積化和差、和差化積
三角方程、線性方程、主對角線、副對角錢、零多項式、余數定理
因式定理、通項公式、有窮數列、無窮數列、等比數列、總和符號
特殊數列、不定方程、系數矩陣、增廣炬陣、初等變換、虛數單位
共軛復數、共軛虛數、輻角主值、三角形式、代數形式、加法原理
乘法原理、幾何圖形、平面圖形、等量代換、度量單位、角平分線
互為餘角、互為補角、同旁內角、平行公理、性質定理、判定定理
斜三角形、對應頂點、尺規作圖、基本作圖、互逆命題、互逆定理
凸多邊形、平行線段、逆否命題、對稱中心、等腰梯形、等分線段
比例線段、勾股定理、黑金分割、比例外項、比例內項、比例中項
比例定理、相似系數、位似圖形、位似中心、內公切線、外公切線
正多邊形、扇形面積、互否命題、互逆命題、等價命題、尺寸注法
標准方程、平移公式、旋轉公式、有向線段、定比分點、有向直線
經驗公式、有心曲線、無心曲線、參數方程、普通方程、極坐標系
等速螺線、異面直線、直二面角、凸多面體、祖恆原理、體積單位
球面距離、凸多面角、直三角面、正多面體、歐拉定理、連續函數
復合函數、中間變數、瞬間速度、瞬時功率、二階導數、近似計算
輔助函數、不定積分、被積函數、積分變數、積分常數、湊微分法
相對誤差、絕對誤差、帶余除法、微分方程、初等變換、立體幾何
平面幾何、解析幾何、初等函數、等差數列
四捨五入法、純循環小數、一次二項式、二次三項式、最大公約數
最小公倍數、代入消元法、加減消元法、平方差公式、立方差公式
立方和公式、提公因式法、分組分解法、十字相乘法、最簡公分母
算數平方根、完全平方數、幾次算數根、因式分解法、雙二次方程
負整數指數、科學記數法、有序實數對、兩點間距離、解析表達式
正比例函數、反比例函數、三角函數表、樣本標准差、樣本分布表
總體平均數、樣本平均數、集合不相交、基本恆等式、最小正周期
兩角和公式、兩角差公式、反三角函數、反正弦函數、反餘弦函數
反正切函數、反餘切函數、第一象限角、第二象限角、第三象限角
第四象限角、線性方程組、二階行列式、三階行列式、四階行列式
對角錢法則、系數行列式、代數餘子式、降階展開法、絕對不等式
條件不等式、矛盾不等式、克萊姆法則、算術平均數、幾何平均數
一元多項武、乘法單調性、加法單調性、最小正周期、零次多項式
待定系數法、輾轉相除法、二項式定法、二項展開式、二項式系數
數學歸納法、同解不等式、垂直平分線、互為鄰補角、等腰三角形
等邊三角形、銳角三角形、鈍角三角形、直角三角形、全等三角形
邊角邊公理、角邊角公理、邊邊邊定理、軸對稱圖形、第四比例項
外角平分線、相似多邊形、內接四邊形、相似三角形、內接三角形
內接多邊形、內接五邊形、外切三角形、外切多邊形、共軛雙曲線
斜二測畫法、三垂線定理、平行六面體、直接積分法、換元積分法
第二積分法、分部積分法、混循環小數、第一積分法、同類二次根
一元一次方程、一元二次方程、完全平方公式、最簡二次根式
直接開平方法、半開半閉區間、萬能置換公式、絕對值不等式
實系數多項式、復系數多項式、整系數多項式、不等邊三角形
中心對稱圖形、基本初等函數、基本積分公式、分部積分公式
二元一次方程、三元一次方程
一元一次不等式、一元二次不等式、二元一次方程組
三元一次方程組、二元二次方程組、平面直角坐標系
等腰直角三角形、二元一次不等式、二元線性方程組
三元線性方程組、四元線性方程組、多項式恆等定律
一元一次不等式組、三元一次不定方程、三元齊次線性方程組

這些都叫數學名詞

就像語文中有名詞 動詞之分一樣
數學也有它慣用的名詞

I. 關於數學名詞的定義

實數的定義:有理數與無理數統稱為實數
有理數可以按「整」與「分」來分類(即定義),也可按正、負分類(即數性)
要給出自然數的嚴謹定義並非易事。Peano公設提出自然數要適合五點:
有一起始自然數
0。
任一自然數
a
必有後繼(successor),記作
a
+1。
0
並非任何自然數的後繼。
不同的自然數有不同的後繼。
(數學歸納公設)有一與自然數有關的命題。設此命題對
0
成立,而當對任一自然數成立時,則對其後繼亦成立,則此命題對所有自然數皆成立。
若把
0
除出自然數之外,則公設內的
0
要換作
1。
集合論中的一般構作法是把一自然數看作是所有比它少的自然數組成的集,即
0
={
},1
=
,2
=
,3
=
……若有人把自然數看作集合,通常就是如上。
在此定義下,在集合
n
內就有
n
個元素;而若
n
小於
m,則
n
會是
m
的子集。

閱讀全文

與數學名詞創造相關的資料

熱點內容
武漢疫情投訴 瀏覽:149
知識產權合作開發協議doc 瀏覽:932
廣州加里知識產權代理有限公司 瀏覽:65
企業知識產權部門管理辦法 瀏覽:455
消費315投訴 瀏覽:981
馬鞍山鋼城醫院 瀏覽:793
馮超知識產權 瀏覽:384
介紹小發明英語作文 瀏覽:442
版權使用權協議 瀏覽:1000
2018年基本公共衛生服務考核表 瀏覽:884
馬鞍山候車亭 瀏覽:329
學校矛盾糾紛排查領導小組 瀏覽:709
張江管委會知識產權合作協議 瀏覽:635
關於開展公共衛生服務項目相關項目督導的函 瀏覽:941
閨蜜證書高清 瀏覽:11
轉讓房轉讓合同協議 瀏覽:329
矛盾糾紛排查調處工作協調交賬會議紀要 瀏覽:877
雲南基金從業資格證書查詢 瀏覽:313
新知識的搖籃創造力 瀏覽:187
股轉轉讓協議 瀏覽:676