導航:首頁 > 創造發明 > PCM是何時發明的

PCM是何時發明的

發布時間:2021-04-24 06:57:33

1. 通信的發展歷史

1、19世紀中葉以後,隨著電報、電話的發有,電磁波的發現,人類通信領域產生了根本性的巨大變革,實現了利用金屬導線來傳遞信息,甚至通過電磁波來進行無線通信,使神話中的「順風耳」、「千里眼」變成了現實。

從此,人類的信息傳遞可以脫離常規的視聽覺方式,用電信號作為新的載體,同此帶來了一系列鐵技術革新,開始了人類通信的新時代。

2、1837年,美國人塞繆樂.莫樂斯(Samuel Morse)成功地研製出世界上第一台電磁式電報機。他利用自己設計的電碼,可將信息轉換成一串或長或短的電脈沖傳向目的地,再轉換為原來的信息。

1844年5月24日,莫樂斯在國會大廈聯邦最高法院會議廳進行了「用莫爾斯電碼」發出了人類歷史上的第一份電報,從而實現了長途電報通信。

3、1864年,英國物理學家麥克斯韋(J.c.Maxwel)建立了一套電磁理論,預言了電磁波的存在,說明了電磁波與光具有相同的性質,兩者都是以光速傳播的。

4、1875年,蘇格蘭青年亞歷山大.貝爾(A.G.Bell)發明了世界上第一台電話機。並於1876年申請了發明專利。1878年在相距300公里的波士頓和紐約之間進行了首次長途電話實驗,並獲得了成功,後來就成立了著名的貝爾電話公司。

5、1888年,德國青年物理學家海因里斯.赫茲(H.R.Hertz)用電波環進行了一系列實驗,發現了電磁波的存在,他用實驗證明了麥克斯韋的電磁理論。這個實驗轟動了整個科學界,成為近代科學技術史上的一個重要里程碑,導致了無線電的誕生和電子技術的發展。

(1)PCM是何時發明的擴展閱讀

1、互聯移動跨時空:移動通信能力飛速發展,全國實現聯網

移動通信能力飛速發展。在1988年到1997年的十年間,我國經歷了移動通信發展的第一個高峰期間移動交換機容量從不到3萬戶猛增到2585.7萬戶,10年間增長861倍。

我國選用900MHz頻段的TACS系統主要引進了摩托羅拉(A網)和愛立信(B網)的交換機、基站、控制系統等設備,1995年底,A網覆蓋的21個省市和B網覆蓋的15個省市實現自動漫遊,形成真正的全國聯網。

1994年,由電子部聯合鐵道部、電力部及廣電部組建成立中國聯通。1998年,中國電信從當時的郵電部脫離組建。1999年,網通成立。

2、布局重組謀生態:「動感地帶」推向全國,電信業重組拉開帷幕

2001年,中國移動廣東分公司在廣州和深圳兩地召開品牌推介會,「動感地帶」作為新品牌進行試驗推行。2003年,中國移動正式將「動感地帶」品牌推向全國,它成為中國移動通信史上第一個客戶品牌。

2006年8月,紐約證券交易所收市,中國移動段價以33.42美元收盤,總市值達到1325.8億美元,成為全球市值最高的電信運營公司。2007年,中國移動成功收購Paktel。

2004年1月,村通工程面向全國推行。截至2007年,六家基礎電信企業共為3759個無電話行政村新開通電話,全國行政村通電話比重達99.5%,29個省區市實現了所有行政村通電話。2007年5月,政府繼續在全國啟動自然村的村通工程,形成了行政村和自然村兩方面工程並進的局面。

2007年3月,中國移動正式啟動超過200億元的TD—SCDMA網路建設招標,多家中外企業組成的四大陣營競爭激烈。

2008年5月,電信業重組拉開帷幕。隨後,工信部等聯合發布《關於深化電信體制改革的通告》。通告稱,鼓勵中國電信收購中國聯通CDMA網,中國聯通與中國網通合並,中國衛通的基礎電信業務並入中國電信,中國鐵通並入中國移動。這次改革重組完成後發放3G牌照。

專家稱,電信重組在於打破壟斷,隨著通信技術的發展,移動替代固話趨勢明顯。重組後,三家運營商都擁有全業務能力,形成充分的競爭格局。

3、代際宏圖標准中:通信業增長率高,5G將帶動通信產業下一輪發展

不久前召開的全國工業和信息化工作會議中,工信部明確了2018年多項重點工作。其中涉及強化信息通信市場監管方面,工信部相關文件透露,計劃開展VoLTE號碼攜帶技術試驗,研究制定號碼攜帶全國推廣方案。

工信部數據顯示,初步核算,2017年電信業務總量達到27557億元(按照2015年不變單價計算),比上年增長76.4%,增幅同比提高42.5個百分點;電信業務收入12620億元,比上年增長6.4%,增速同比提高1個百分點。

2018年1-2月,電信業務總量完成6853億元,同比增長117%;電信業務收入完成2168億元,同比增長4.9%。

近年來,我國通信產業發展迅速,主要經營指標向好,5G將成為下一個發展契機。2017年8月,國務院印發了《關於進一步擴大和升級信息消費持續釋放內需潛力的指導意見》,指出「加快第五代移動通信(5G)標准研究、技術試驗和產業推進,力爭2020年啟動商用」。

由於5G應用前景廣泛,5G戰略制高點爭奪戰已風起雲涌。

2. pcm技術是何時發明的

原包帶的4節電池我自己使用大概70-80小時吧
錄音和放歌
這個時間不是持續不間斷工作 是停停用用 而且用的是耳塞
整體感覺還可以

3. 調頻廣播是怎麼發展的

在無線電通信的發展史上,阿姆斯特朗的英名為人們所熟悉,他曾對無線電技術做出過兩項突出的貢獻。一項是1912年他發明的超外差接收方法,為現代無線電接收技術奠定了基礎;另一項是他於1933年發明的頻率調制方法,開創了嶄新的高質量通信方式——調頻廣播,開始了高保真優質廣播的新時代。常用的對載波的調制方式,除了振幅調制外,還有頻率調制,以及1937年裡布斯發明的脈沖編碼調制(PCM)等。

4. 1980年後電子通信網的發展史(80年代至今)

從70年代中期至80年代中期。這是移動通信蓬勃發展時期。1978年底,美國貝爾試驗室研製成功先進行動電話系統(AMPS),建成了蜂窩狀移動通信網,大大提高了系統容量。1983年,首次在芝加哥投入商用。同年12月,在華盛頓也開始啟用。之後,服務區域在美國逐漸擴大。到1985年3月已擴展到47個地區,約10萬移動用戶。其它工業化國家也相繼開發出蜂窩式公用移動通信網。日本於1979年推出800MHz汽車電話系統(HAMTS),在東京、神戶等地投入商用。西德於1984年完成C網,頻段為450MHz。英國在1985年開發出全地址通信系統(TACS),首先在倫敦投入使用,以後覆蓋了全國,頻段為900MHz。法國開發出450系統。加拿大推出450MHz行動電話系統MTS。瑞典等北歐四國於1980年開發出NMT-450移動通信網,並投入使用,頻段為450MHz。
這一階段的特點是蜂窩狀移動通信網成為實用系統,並在世界各地迅速發展。移動通信大發展的原因,除了用戶要求迅猛增加這一主要推動力之外,還有幾方面技術進展所提供的條件。首先,微電子技術在這一時期得到長足發展,這使得通信設備的小型化、微型化有了可能性,各種輕便電台被不斷地推出。其次,提出並形成了移動通信新體制。隨著用戶數量增加,大區制所能提供的容量很快飽和,這就必須探索新體制。在這方面最重要的突破是貝爾試驗室在70年代提出的蜂窩網的概念。蜂窩網,即所謂小區制,由於實現了頻率再用,大大提高了系統容量。可以說,蜂窩概念真正解決了公用移動通信系統要求容量大與頻率資源有限的矛盾。第三方面進展是隨著大規模集成電路的發展而出現的微處理器技術日趨成熟以及計算機技術的迅猛發展,從而為大型通信網的管理與控制提供了技術手段。
從80年代中期開始。這是數字移動通信系統發展和成熟時期。

以AMPS和TACS為代表的第一代蜂窩移動通信網是模擬系統。模擬蜂窩網雖然取得了很大成功,但也暴露了一些問題。例如,頻譜利用率低,移動設備復雜,費用較貴,業務種類受限制以及通話易被竊聽等,最主要的問題是其容量已不能滿足日益增長的移動用戶需求。解決這些問題的方法是開發新一代數字蜂窩移動通信系統。數字無線傳輸的頻譜利用率高,可大大提高系統容量。另外,數字網能提供語音、數據多種業務服務,並與ISDN等兼容。實際上,早在70年代末期,當模擬蜂窩系統還處於開發階段時,一些發達國家就接手數字蜂窩移動通信系統的研究。到80年代中期,歐洲首先推出了泛歐數字移動通信網(GSM)的體系。隨後,美國和日本也制定了各自的數字移動通信體制。泛歐網GSM已於1991年7月開始投入商用,預計1995年將覆蓋歐洲主要城市、機場和公路。可以說,在未來十多年內數字蜂窩移動通信將處於一個大發展時期,及有可能成為陸地公用移動通信的主要系統。

與其它現代技術的發展一樣,移動通信技術的發展也呈現加快趨勢,目前,當數字蜂窩網剛剛進入實用階段,正方興未艾之時,關於未來移動通信的討論已如火如荼地展開。各種方案紛紛出台,其中最熱門的是所謂個人移動通信網。關於這種系統的概念和結構,各家解釋並未一致。但有一點是肯定的,即未來移動通信系統將提供全球性優質服務,真正實現在任何時間、任何地點、向任何人提供通信服務這一移動通信的最高目標。

傅立葉變換最早是在19世紀由法國的數學家J.B. Fourier提出,他認為任何信號(例如聲音,影像等)均可被分解為頻率、振幅。由於傅立葉變換的性質,可以把圖象或者信號在頻域中進行處. 理,從而達到簡化處理過程、增強處理效 對電信發展貢獻可想而知...

5. 調頻廣播是誰發明的

在無線電通信來的發展史上,自阿姆斯特朗的英名為人們所熟悉,他曾對無線電技術做出過兩項突出的貢獻。一項是1912年他發明的超外差接收方法,為現代無線電接收技術奠定了基礎;另一項是他於1933年發明的頻率調制方法,開創了嶄新的高質量通信方式——調頻廣播,開始了高保真優質廣播的新時代。常用的對載波的調制方式,除了振幅調制外,還有頻率調制,以及1937年裡布斯發明的脈沖編碼調制(PCM)等。

6. 數字通信的發展歷史

數字通信的早期歷史是與電報的發展聯系在一起的。
1937年,英國人A.H.里夫斯提出脈碼調制(PCM),從而推動了模擬信號數字化的進程。
1946年,法國人E.M.德洛雷因發明增量調制。
1950年C.C.卡特勒提出差值編碼。1947年,美國貝爾實驗室研製出供實驗用的24路電子管脈碼調制裝置,證實了實現PCM的可行性。
1953年發明了不用編碼管的反饋比較型編碼器,擴大了輸入信號的動態范圍。
1962年,美國研製出晶體管24路1.544兆比/秒脈碼調制設備,並在市話網局間使用。
數字通信與模擬通信相比具有明顯的優點。它抗干擾能力強,通信質量不受距離的影響,能適應各種通信業務的要求,便於採用大規模集成電路,便於實現保密通信和計算機管理。不足之處是佔用的信道頻帶較寬。
20世紀90年代,數字通信向超高速大容量長距離方向發展,高效編碼技術日益成熟,語聲編碼已走向實用化,新的數字化智能終端將進一步發展。
《數字通信》創刊於1974年,進入新世紀後,為適應市場經濟的發展,我們重新對她定位,包裝,突出以「數字」為基礎;「移動」為核心;「手機」為特色,成為國內第一本面向大眾的實用手機月刊。
《數字通信》有《產品》《市場》《應用》《技術》四大版塊:包括移動新聞、手機前線、新品搶鮮、品機地帶、DC導購、手機秘笈、產業觀察、手機樂園等多個欄目若干專題。
《數字通信》集實用性、知識性、趣味性於一體,語言詼諧幽默、貼近生活.《數字通信》每半月擁有25萬多的發行量,每期雜志的有效讀者約75萬人左右。作為中國發行量第一的手機雜志,《數字通信》的讀者覆蓋全國各地,是目前發行區域最廣、滲透率最高的手機雜志。
《數字通信》是全國發行量最大,在手機領域最為權威的專業手機與無線通訊期刊。以專業的評測文章、囊括所有熱門機型的玩機指南、及時的手機資訊和市場信息而深受數十萬讀者好評。

7. 人類通信的發展歷史,急急急!!!!!!!!

1.
人類進行通信的歷史已很悠久。早在遠古時期,人們就通過簡單的語言、壁畫等方式交換信息。千百年來,人們一直在用語言、圖符、鍾鼓、煙火、竹簡、紙書等傳遞信息,古代人的烽火狼煙、飛鴿傳信、驛馬郵遞就是這方面的例子。現在還有一些國家的個別原始部落,仍然保留著諸如擊鼓鳴號這樣古老的通信方式。在現代社會中,交通警的指揮手語、航海中的旗語等不過是古老通信方式進一步發展的結果。這些信息傳遞的基本方都是依靠人的視覺與聽覺。
19世紀中葉以後,隨著電報、電話的發有,電磁波的發現,人類通信領域產生了根本性的巨大變革,實現了利用金屬導線來傳遞信息,甚至通過電磁波來進行無線通信,使神話中的「順風耳」、「千里眼」變成了現實。從此,人類的信息傳遞可以脫離常規的視聽覺方式,用電信號作為新的載體,同此帶來了一系列鐵技術革新,開始了人類通信的新時代。
1837年,美國人塞繆樂.莫樂斯(Samuel Morse)成功地研製出世界上第一台電磁式電報機。他利用自己設計的電碼,可將信息轉換成一串或長或短的電脈沖傳向目的地,再轉換為原來的信息。1844年5月24日,莫樂斯在國會大廈聯邦最高法院會議廳進行了「用莫爾斯電碼」發出了人類歷史上的第一份電報,從而實現了長途電報通信。
1864年,英國物理學家麥克斯韋(J.c.Maxwel)建立了一套電磁理論,預言了電磁波的存在,說明了電磁波與光具有相同的性質,兩者都是以光速傳播的。
1875年,蘇格蘭青年亞歷山大.貝爾(A.G.Bell)發明了世界上第一台電話機。並於1876年申請了發明專利。1878年在相距300公里的波士頓和紐約之間進行了首次長途電話實驗,並獲得了成功,後來就成立了著名的貝爾電話公司。
1888年,德國青年物理學家海因里斯.赫茲(H.R.Hertz)用電波環進行了一系列實驗,發現了電磁波的存在,他用實驗證明了麥克斯韋的電磁理論。這個實驗轟動了整個科學界,成為近代科學技術史上的一個重要里程碑,導致了無線電的誕生和電子技術的發展。
電磁波的發現產生了巨大影響。不到6年的時間,俄國的波波夫、義大利的馬可尼分別發明了無線電報,實現了信息的無線電傳播,其他的無線電技術也如雨後春筍般涌現出來。1904年英國電氣工程師弗萊明發明了二極體。1906年美國物理學家費森登成功地研究出無線電廣播。1907年美國物理學家德福萊斯特發明了真空三極體,美國電氣工程師阿姆斯特朗應用電子器件發明了超外差式接收裝置。1920年美國無線電專家康拉德在匹茲堡建立了世界上第一家商業無線電廣播電台,從此廣播事業在世界各地蓬勃發展,收音機成為人們了解時事新聞的方便途徑。1924年第一條短波通信線路在瑙恩和布宜諾斯艾利斯之間建立,1933年法國人克拉維爾建立了英法之間和第一第商用微波無線電線路,推動了無線電技術的進一步發展。
電磁波的發現也促使圖像傳播技術迅速發展起來。1922年16歲的美國中學生菲羅.法恩斯沃斯設計出第一幅電視傳真原理圖,1929年申請了發明專利,被裁定為發明電視機的第一人。1928年美國西屋電器公司的茲沃爾金發明了光電顯像管,並同工程師范瓦斯合作,實現了電子掃描方式的電視發送和傳輸。1935年美國紐約帝國大廈設立了一座電視台,次年就成功地把電視節目發送到70公里以外的地方。1938年茲沃爾金又製造出第一台符合實用要求的電視攝像機。經過人們的不斷探索和改進,1945年在三基色工作原理的基礎上美國無線電公司製成了世界上第一台全電子管彩色電視機。直到1946年,美國人羅斯.威瑪發明了高靈敏度攝像管,同年日本人八本教授解決了家用電視機接收天線問題,從此一些國家相繼建立了超短波轉播站,電視迅速普及開來。
圖像傳真也是一項重要的通信。自從1925年美國無線電公司研製出第一部實用的傳真機以後,傳真技術不斷革新。1972年以前,該技術主要用於新聞、出版、氣象和廣播行業;1972年至1980年間,傳真技術已完成從模擬向數字、從機械掃描向電子掃描、從低速向高速的轉變,除代替電報和用於傳送氣象圖、新聞稿、照片、衛星雲圖外,還在醫療、圖書館管理、情報咨詢、金融數據、電子郵政等方面得到應用;1980年後,傳真技術向綜合處理終端設備過渡,除承擔通信任務外,它還具備圖像處理和數據處理的能力,成為綜合性處理終端。靜電復印機、磁性錄音機、雷達、激光器等等都是信息技術史上的重要發明。
此外,作為信息超遠控制的遙控、遙測和遙感技術也是非常重要的技術。遙控是利用通信線路對遠處被控對象進行控制的一種技術,用於電氣事業、輸油管道、化學工業、軍事和航天事業;遙測是將遠處需要測量的物理量如電壓、電流、氣壓、溫度、流量等變換成電量,利用通信線路傳送到觀察點的一種測量技術,用於氣象、軍事和航空航天業;遙感是一門綜合性的測量技術,在高空或遠處利用感測器接收物體輻射的電磁波信息,經過加工處理或能夠識別的圖像或電子計算機用的記錄磁帶,提示被測物體一性質、形狀和變化動態,主要用於氣象、軍事和航空航天事業。
隨著電子技術的高速發展,軍事、科研迫切需要解決的計算工具也大大改進。1946年美國賓夕法尼亞大學的埃克特和莫希里研製出世界上第一台電子計算機。電子元器件材料的革新進一步促使電子計算機朝小型化、高精度、高可靠性方向發展。20世紀40年代,科學家們發現了半導體材料,用它製成晶體管,替代了電子管。1948年美國貝爾實驗室的肖克萊、巴丁和布拉坦發明了晶體三極體,於是晶體管收音機、晶體管電視、晶體管計算機很快代替了各式各樣的真空電子管產品。1959年美國的基爾比和諾伊斯發明了集成電路,從此微電子技術誕生了。1967年大規模集成電路誕生了,一塊米粒般大小的硅晶片上可以集成1千多個晶體管的線路。1977年美國、日本科學家製成超大規模集成電路,30平方毫米的硅晶片上集成了13萬個晶體管。微電子技術極大地推動了電子計算機的更新換代,使電子計算機顯示了前所未有的信息處理功能,成為現代高新科技的重要標志。
為了解決資源共享問題,單一計算機很快發展成計算機聯網,實現了計算機之間的數據通信、數據共享。通信介質從普通導線、同軸電纜發展到雙絞線、光纖導線、光纜;電子計算機的輸入輸出設備也飛速發展起來,掃描儀、繪圖儀、音頻視頻設備等,使計算機如虎添翼,可以處理更多的復雜問題。20世紀80年代末多媒體技術的興起,使計算機具備了綜合處理文字、聲音、圖像、影視等各種形式信息的能力,日益成為信息處理最重要和必不可少的工具。
至此,我們可以初步認為:信息技術(Information Technology,簡稱IT)是以微電子和光電技術為基礎,以計算機和通信技術為支撐,以信息處理技術為主題的技術系統的總稱,是一門綜合性的技術。電子計算機和通信技術的緊密結合,標志著數字化信息時代的到來
2.
通信發展史
有線通信
美國莫爾斯(F.B.Morse):約5km的電報(點,劃,空間→字母,數字);
美國貝爾(A.G.Bell):取得電話機專利(電信號→語音);
美國普賓:通信電纜;
1972年 日本:公共通信網的數據通信,傳真通信業務;
美國:發表貝爾數據網路,英國:圖像信息服務實驗;
現代 通信系統利用某些集中轉接設施→復雜信息網路
→"交換功能"→實現任意兩點之間信號的傳輸.

無線通信
1864年 英國麥克斯韋:電磁波的存在設想;
1888年 德國赫茲(H.Hertz):證實電磁波的存在;
1895年 義大利馬可尼:傳距僅數百米的無線通信;
1901年 義大利馬可尼:橫渡大西洋的無線通信;
1938年 法國里本斯:PCM方式;
1940年 美國CBS:彩色電視實驗廣播;
1951年 美國CBS:彩色電視正式廣播;
現代 無線通信遍及全球並通向宇宙,
如GPS其精度可達數十米之內.
數學分析方法發展史
一,傅立葉分析
1822年 法國數學家傅立葉(J.Fourier):奠定傅立葉級數理論基礎;
泊松(Poisson),高斯(Gauss):應用到電學中;
19世紀末 用於工程實際的電容器→處理各種頻率的正弦信號;
20世紀 諧振電路,濾波器,正弦振盪器→擴展應用領域.
二,拉普拉斯變換
19世紀末 英國工程師赫維賽德(O.Heaviside):運演算法(運算元法)-先驅;
法國數學家拉普拉斯(P.S.Laplace):拉普拉斯變換方法;
20世紀70年代後 CAD求解電路分析方法 →替代拉氏變換.
離散等其它系統的發展→
三,Z變換
1730年 英國數學家棣莫弗(De Moivre):生成函數-類似;
19世紀 拉普拉斯: 貢獻
20世紀 沙爾(H.L.Seal): 貢獻;
20世紀50~60年代 抽樣數據控制系統 →Z變換應用.
數字計算機的研究與實踐
四,狀態方程分析
20世紀50年代 經典的線性系統理論(外特性);
20世紀60年代 現代的線性系統理論(內部特性),
卡爾曼(R.E.Kalman):狀態空間方法.

8. 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

9. PCM設備和PDH設備有什麼區別

數字信號是對連續變化的模擬信號進行抽樣、量化和編碼產生的,稱為PCM(pulse code molation),即脈沖編碼調制。這種電的數字信號稱為數字基帶信號,由PCM電端機產生。現在的數字傳輸系統都是採用脈碼調制(Pulse-code molation)體制。PCM最初並非傳輸計算機數據用的,而是使交換機之間有一條中繼線不是只傳送一條電話信號。
PDH光傳輸設備,在數字通信系統中,傳送的信號都是數字化的脈沖序列。這些數字信號流在數字交換設備之間傳輸時,其速率必須完全保持一致,才能保證信息傳送的准確無誤,這就叫做「同步」。
在數字傳輸系統中,有兩種數字傳輸系列,一種叫「准同步數字系列」(Plesiochronous Digital Hierarchy),簡稱PDH;另一種叫「同步數字系列」(Synchronous Digital Hierarchy),簡稱SDH。
兩者屬於完全不同的兩者設備。PCM是綜合業務接入設備,PDH設備是光傳輸設備。

10. 數據壓縮技術的數據壓縮技術簡史

電腦里的數據壓縮其實類似於美眉們的瘦身運動,不外有兩大功用。第一,可以節省空間。拿瘦身美眉來說,要是八個美眉可以擠進一輛計程車里,那該有多省錢啊!第二,可以減少對帶寬的佔用。例如,我們都想在不到 100Kbps 的 GPRS 網上觀看 DVD 大片,這就好比瘦身美眉們總希望用一尺布裁出七件吊帶衫,前者有待於數據壓縮技術的突破性進展,後者則取決於美眉們的恆心和毅力。
簡單地說,如果沒有數據壓縮技術,我們就沒法用 WinRAR 為 Email 中的附件瘦身;如果沒有數據壓縮技術,市場上的數碼錄音筆就只能記錄不到 20 分鍾的語音;如果沒有數據壓縮技術,從 Internet 上下載一部電影也許要花半年的時間……可是這一切究竟是如何實現的呢?數據壓縮技術又是怎樣從無到有發展起來的呢? 一千多年前的中國學者就知道用「班馬」這樣的縮略語來指代班固和司馬遷,這種崇尚簡約的風俗一直延續到了今天的 Internet 時代:當我們在 BBS 上用「 7456 」代表「氣死我了」,或是用「 B4 」代表「 Before 」的時候,我們至少應該知道,這其實就是一種最簡單的數據壓縮呀。
嚴格意義上的數據壓縮起源於人們對概率的認識。當我們對文字信息進行編碼時,如果為出現概率較高的字母賦予較短的編碼,為出現概率較低的字母賦予較長的編碼,總的編碼長度就能縮短不少。遠在計算機出現之前,著名的 Morse 電碼就已經成功地實踐了這一準則。在 Morse 碼表中,每個字母都對應於一個唯一的點劃組合,出現概率最高的字母 e 被編碼為一個點「 . 」,而出現概率較低的字母 z 則被編碼為「 --.. 」。顯然,這可以有效縮短最終的電碼長度。
資訊理論之父 C. E. Shannon 第一次用數學語言闡明了概率與信息冗餘度的關系。在 1948 年發表的論文「通信的數學理論( A Mathematical Theory of Communication )」中, Shannon 指出,任何信息都存在冗餘,冗餘大小與信息中每個符號(數字、字母或單詞)的出現概率或者說不確定性有關。 Shannon 借鑒了熱力學的概念,把信息中排除了冗餘後的平均信息量稱為「信息熵」,並給出了計算信息熵的數學表達式。這篇偉大的論文後來被譽為資訊理論的開山之作,信息熵也奠定了所有數據壓縮演算法的理論基礎。從本質上講,數據壓縮的目的就是要消除信息中的冗餘,而信息熵及相關的定理恰恰用數學手段精確地描述了信息冗餘的程度。利用信息熵公式,人們可以計算出信息編碼的極限,即在一定的概率模型下,無損壓縮的編碼長度不可能小於信息熵公式給出的結果。
有了完備的理論,接下來的事就是要想辦法實現具體的演算法,並盡量使演算法的輸出接近信息熵的極限了。當然,大多數工程技術人員都知道,要將一種理論從數學公式發展成實用技術,就像僅憑一個 E=mc 2 的公式就要去製造核武器一樣,並不是一件很容易的事。 設計具體的壓縮演算法的過程通常更像是一場數學游戲。開發者首先要尋找一種能盡量精確地統計或估計信息中符號出現概率的方法,然後還要設計一套用最短的代碼描述每個符號的編碼規則。統計學知識對於前一項工作相當有效,迄今為止,人們已經陸續實現了靜態模型、半靜態模型、自適應模型、 Markov 模型、部分匹配預測模型等概率統計模型。相對而言,編碼方法的發展歷程更為曲折一些。
1948 年, Shannon 在提出信息熵理論的同時,也給出了一種簡單的編碼方法—— Shannon 編碼。 1952 年, R. M. Fano 又進一步提出了 Fano 編碼。這些早期的編碼方法揭示了變長編碼的基本規律,也確實可以取得一定的壓縮效果,但離真正實用的壓縮演算法還相去甚遠。
第一個實用的編碼方法是由 D. A. Huffman 在 1952 年的論文「最小冗餘度代碼的構造方法( A Method for the Construction of Minimum Rendancy Codes )」中提出的。直到今天,許多《數據結構》教材在討論二叉樹時仍要提及這種被後人稱為 Huffman 編碼的方法。 Huffman 編碼在計算機界是如此著名,以至於連編碼的發明過程本身也成了人們津津樂道的話題。據說, 1952 年時,年輕的 Huffman 還是麻省理工學院的一名學生,他為了向老師證明自己可以不參加某門功課的期末考試,才設計了這個看似簡單,但卻影響深遠的編碼方法。
Huffman 編碼效率高,運算速度快,實現方式靈活,從 20 世紀 60 年代至今,在數據壓縮領域得到了廣泛的應用。例如,早期 UNIX 系統上一個不太為現代人熟知的壓縮程序 COMPACT 實際就是 Huffman 0 階自適應編碼的具體實現。 20 世紀 80 年代初, Huffman 編碼又出現在 CP/M 和 DOS 系統中,其代表程序叫 SQ 。今天,在許多知名的壓縮工具和壓縮演算法(如 WinRAR 、 gzip 和 JPEG )里,都有 Huffman 編碼的身影。不過, Huffman 編碼所得的編碼長度只是對信息熵計算結果的一種近似,還無法真正逼近信息熵的極限。正因為如此,現代壓縮技術通常只將 Huffman 視作最終的編碼手段,而非數據壓縮演算法的全部。
科學家們一直沒有放棄向信息熵極限挑戰的理想。 1968 年前後, P. Elias 發展了 Shannon 和 Fano 的編碼方法,構造出從數學角度看來更為完美的 Shannon-Fano-Elias 編碼。沿著這一編碼方法的思路, 1976 年, J. Rissanen 提出了一種可以成功地逼近信息熵極限的編碼方法——算術編碼。 1982 年, Rissanen 和 G. G. Langdon 一起改進了算術編碼。之後,人們又將算術編碼與 J. G. Cleary 和 I. H. Witten 於 1984 年提出的部分匹配預測模型( PPM )相結合,開發出了壓縮效果近乎完美的演算法。今天,那些名為 PPMC 、 PPMD 或 PPMZ 並號稱壓縮效果天下第一的通用壓縮演算法,實際上全都是這一思路的具體實現。
對於無損壓縮而言, PPM 模型與算術編碼相結合,已經可以最大程度地逼近信息熵的極限。看起來,壓縮技術的發展可以到此為止了。不幸的是,事情往往不像想像中的那樣簡單:算術編碼雖然可以獲得最短的編碼長度,但其本身的復雜性也使得算術編碼的任何具體實現在運行時都慢如蝸牛。即使在摩爾定律大行其道, CPU 速度日新月異的今天,算術編碼程序的運行速度也很難滿足日常應用的需求。沒辦法,如果不是後文將要提到的那兩個猶太人,我們還不知要到什麼時候才能用上 WinZIP 這樣方便實用的壓縮工具呢。 逆向思維永遠是科學和技術領域里出奇制勝的法寶。就在大多數人絞盡腦汁想改進 Huffman 或算術編碼,以獲得一種兼顧了運行速度和壓縮效果的「完美」編碼的時候,兩個聰明的猶太人 J. Ziv 和 A. Lempel 獨辟蹊徑,完全脫離 Huffman 及算術編碼的設計思路,創造出了一系列比 Huffman 編碼更有效,比算術編碼更快捷的壓縮演算法。我們通常用這兩個猶太人姓氏的縮寫,將這些演算法統稱為 LZ 系列演算法。
按照時間順序, LZ 系列演算法的發展歷程大致是: Ziv 和 Lempel 於 1977 年發表題為「順序數據壓縮的一個通用演算法( A Universal Algorithm for Sequential Data Compression )」的論文,論文中描述的演算法被後人稱為 LZ77 演算法。 1978 年,二人又發表了該論文的續篇「通過可變比率編碼的獨立序列的壓縮( Compression of Indivial Sequences via Variable Rate Coding )」,描述了後來被命名為 LZ78 的壓縮演算法。 1984 年, T. A. Welch 發表了名為「高性能數據壓縮技術( A Technique for High Performance Data Compression )」的論文,描述了他在 Sperry 研究中心(該研究中心後來並入了 Unisys 公司)的研究成果,這是 LZ78 演算法的一個變種,也就是後來非常有名的 LZW 演算法。 1990 年後, T. C. Bell 等人又陸續提出了許多 LZ 系列演算法的變體或改進版本。
說實話, LZ 系列演算法的思路並不新鮮,其中既沒有高深的理論背景,也沒有復雜的數學公式,它們只是簡單地延續了千百年來人們對字典的追崇和喜好,並用一種極為巧妙的方式將字典技術應用於通用數據壓縮領域。通俗地說,當你用字典中的頁碼和行號代替文章中每個單詞的時候,你實際上已經掌握了 LZ 系列演算法的真諦。這種基於字典模型的思路在表面上雖然和 Shannon 、 Huffman 等人開創的統計學方法大相徑庭,但在效果上一樣可以逼近信息熵的極限。而且,可以從理論上證明, LZ 系列演算法在本質上仍然符合信息熵的基本規律。
LZ 系列演算法的優越性很快就在數據壓縮領域里體現 了 出來,使用 LZ 系列演算法的工具軟體數量呈爆炸式增長。 UNIX 系統上最先出現了使用 LZW 演算法的 compress 程序,該程序很快成為了 UNIX 世界的壓縮標准。緊隨其後的是 MS-DOS 環境下的 ARC 程序,以及 PKWare 、 PKARC 等仿製品。 20 世紀 80 年代,著名的壓縮工具 LHarc 和 ARJ 則是 LZ77 演算法的傑出代表。
今天, LZ77 、 LZ78 、 LZW 演算法以及它們的各種變體幾乎壟斷了整個通用數據壓縮領域,我們熟悉的 PKZIP 、 WinZIP 、 WinRAR 、 gzip 等壓縮工具以及 ZIP 、 GIF 、 PNG 等文件格式都是 LZ 系列演算法的受益者,甚至連 PGP 這樣的加密文件格式也選擇了 LZ 系列演算法作為其數據壓縮的標准。
沒有誰能否認兩位猶太人對數據壓縮技術的貢獻。我想強調的只是,在工程技術領域,片面追求理論上的完美往往只會事倍功半,如果大家能像 Ziv 和 Lempel 那樣,經常換個角度來思考問題,沒准兒你我就能發明一種新的演算法,就能在技術方展史上揚名立萬呢。 LZ 系列演算法基本解決了通用數據壓縮中兼顧速度與壓縮效果的難題。但是,數據壓縮領域里還有另一片更為廣闊的天地等待著我們去探索。 Shannon 的資訊理論告訴我們,對信息的先驗知識越多,我們就可以把信息壓縮得越小。換句話說,如果壓縮演算法的設計目標不是任意的數據源,而是基本屬性已知的特種數據,壓縮的效果就會進一步提高。這提醒我們,在發展通用壓縮演算法之餘,還必須認真研究針對各種特殊數據的專用壓縮演算法。比方說,在今天的數碼生活中,遍布於數碼相機、數碼錄音筆、數碼隨身聽、數碼攝像機等各種數字設備中的圖像、音頻、視頻信息,就必須經過有效的壓縮才能在硬碟上存儲或是通過 USB 電纜傳輸。實際上,多媒體信息的壓縮一直是數據壓縮領域里的重要課題,其中的每一個分支都有可能主導未來的某個技術潮流,並為數碼產品、通信設備和應用軟體開發商帶來無限的商機。
讓我們先從圖像數據的壓縮講起。通常所說的圖像可以被分為二值圖像、灰度圖像、彩色圖像等不同的類型。每一類圖像的壓縮方法也不盡相同。
傳真技術的發明和廣泛使用促進了二值圖像壓縮演算法的飛速發展。 CCITT (國際電報電話咨詢委員會,是國際電信聯盟 ITU 下屬的一個機構)針對傳真類應用建立了一系列圖像壓縮標准,專用於壓縮和傳遞二值圖像。這些標准大致包括 20 世紀 70 年代後期的 CCITT Group 1 和 Group 2 , 1980 年的 CCITT Group 3 ,以及 1984 年的 CCITT Group 4 。為了適應不同類型的傳真圖像,這些標准所用的編碼方法包括了一維的 MH 編碼和二維的 MR 編碼,其中使用了行程編碼( RLE )和 Huffman 編碼等技術。今天,我們在辦公室或家裡收發傳真時,使用的大多是 CCITT Group 3 壓縮標准,一些基於數字網路的傳真設備和存放二值圖像的 TIFF 文件則使用了 CCITT Group 4 壓縮標准。 1993 年, CCITT 和 ISO (國際標准化組織)共同成立的二值圖像聯合專家組( Joint Bi-level Image Experts Group , JBIG )又將二值圖像的壓縮進一步發展為更加通用的 JBIG 標准。
實際上,對於二值圖像和非連續的灰度、彩色圖像而言,包括 LZ 系列演算法在內的許多通用壓縮演算法都能獲得很好的壓縮效果。例如,誕生於 1987 年的 GIF 圖像文件格式使用的是 LZW 壓縮演算法, 1995 年出現的 PNG 格式比 GIF 格式更加完善,它選擇了 LZ77 演算法的變體 zlib 來壓縮圖像數據。此外,利用前面提到過的 Huffman 編碼、算術編碼以及 PPM 模型,人們事實上已經構造出了許多行之有效的圖像壓縮演算法。
但是,對於生活中更加常見的,像素值在空間上連續變化的灰度或彩色圖像(比如數碼照片),通用壓縮演算法的優勢就不那麼明顯了。幸運的是,科學家們發現,如果在壓縮這一類圖像數據時允許改變一些不太重要的像素值,或者說允許損失一些精度(在壓縮通用數據時,我們絕不會容忍任何精度上的損失,但在壓縮和顯示一幅數碼照片時,如果一片樹林里某些樹葉的顏色稍微變深了一些,看照片的人通常是察覺不到的),我們就有可能在壓縮效果上獲得突破性的進展。這一思想在數據壓縮領域具有革命性的地位:通過在用戶的忍耐范圍內損失一些精度,我們可以把圖像(也包括音頻和視頻)壓縮到原大小的十分之一、百分之一甚至千分之一,這遠遠超出了通用壓縮演算法的能力極限。也許,這和生活中常說的「退一步海闊天空」的道理有異曲同工之妙吧。
這種允許精度損失的壓縮也被稱為有損壓縮。在圖像壓縮領域,著名的 JPEG 標準是有損壓縮演算法中的經典。 JPEG 標准由靜態圖像聯合專家組( Joint Photographic Experts Group , JPEG )於 1986 年開始制定, 1994 年後成為國際標准。 JPEG 以離散餘弦變換( DCT )為核心演算法,通過調整質量系數控制圖像的精度和大小。對於照片等連續變化的灰度或彩色圖像, JPEG 在保證圖像質量的前提下,一般可以將圖像壓縮到原大小的十分之一到二十分之一。如果不考慮圖像質量, JPEG 甚至可以將圖像壓縮到「無限小」。
JPEG 標準的最新進展是 1996 年開始制定, 2001 年正式成為國際標準的 JPEG 2000 。與 JPEG 相比, JPEG 2000 作了大幅改進,其中最重要的是用離散小波變換( DWT )替代了 JPEG 標准中的離散餘弦變換。在文件大小相同的情況下, JPEG 2000 壓縮的圖像比 JPEG 質量更高,精度損失更小。作為一個新標准, JPEG 2000 暫時還沒有得到廣泛的應用,不過包括數碼相機製造商在內的許多企業都對其應用前景表示樂觀, JPEG 2000 在圖像壓縮領域里大顯身手的那一天應該不會特別遙遠。
JPEG 標准中通過損失精度來換取壓縮效果的設計思想直接影響了視頻數據的壓縮技術。 CCITT 於 1988 年制定了電視電話和會議電視的 H.261 建議草案。 H.261 的基本思路是使用類似 JPEG 標準的演算法壓縮視頻流中的每一幀圖像,同時採用運動補償的幀間預測來消除視頻流在時間維度上的冗餘信息。在此基礎上, 1993 年, ISO 通過了動態圖像專家組( Moving Picture Experts Group , MPEG )提出的 MPEG-1 標准。 MPEG-1 可以對普通質量的視頻數據進行有效編碼。我們現在看到的大多數 VCD 影碟,就是使用 MPEG-1 標准來壓縮視頻數據的。
為了支持更清晰的視頻圖像,特別是支持數字電視等高端應用, ISO 於 1994 年提出了新的 MPEG-2 標准(相當於 CCITT 的 H.262 標准)。 MPEG-2 對圖像質量作了分級處理,可以適應普通電視節目、會議電視、高清晰數字電視等不同質量的視頻應用。在我們的生活中,可以提供高清晰畫面的 DVD 影碟所採用的正是 MPEG-2 標准。
Internet 的發展對視頻壓縮提出了更高的要求。在內容交互、對象編輯、隨機存取等新需求的刺激下, ISO 於 1999 年通過了 MPEG-4 標准(相當於 CCITT 的 H.263 和 H.263+ 標准)。 MPEG-4 標准擁有更高的壓縮比率,支持並發數據流的編碼、基於內容的交互操作、增強的時間域隨機存取、容錯、基於內容的尺度可變性等先進特性。 Internet 上新興的 DivX 和 XviD 文件格式就是採用 MPEG-4 標准來壓縮視頻數據的,它們可以用更小的存儲空間或通信帶寬提供與 DVD 不相上下的高清晰視頻,這使我們在 Internet 上發布或下載數字電影的夢想成為了現實。
就像視頻壓縮和電視產業的發展密不可分一樣,音頻數據的壓縮技術最早也是由無線電廣播、語音通信等領域里的技術人員發展起來的。這其中又以語音編碼和壓縮技術的研究最為活躍。自從 1939 年 H. Dudley 發明聲碼器以來,人們陸續發明了脈沖編碼調制( PCM )、線性預測( LPC )、矢量量化( VQ )、自適應變換編碼( ATC )、子帶編碼( SBC )等語音分析與處理技術。這些語音技術在採集語音特徵,獲取數字信號的同時,通常也可以起到降低信息冗餘度的作用。像圖像壓縮領域里的 JPEG 一樣,為獲得更高的編碼效率,大多數語音編碼技術都允許一定程度的精度損失。而且,為了更好地用二進制數據存儲或傳送語音信號,這些語音編碼技術在將語音信號轉換為數字信息之後又總會用 Huffman 編碼、算術編碼等通用壓縮演算法進一步減少數據流中的冗餘信息。
對於電腦和數字電器(如數碼錄音筆、數碼隨身聽)中存儲的普通音頻信息,我們最常使用的壓縮方法主要是 MPEG 系列中的音頻壓縮標准。例如, MPEG-1 標准提供了 Layer I 、 Layer II 和 Layer III 共三種可選的音頻壓縮標准, MPEG-2 又進一步引入了 AAC ( Advanced Audio Coding )音頻壓縮標准, MPEG-4 標准中的音頻部分則同時支持合成聲音編碼和自然聲音編碼等不同類型的應用。在這許多音頻壓縮標准中,聲名最為顯赫的恐怕要數 MPEG-1 Layer III ,也就是我們常說的 MP3 音頻壓縮標准了。從 MP3 播放器到 MP3 手機,從硬碟上堆積如山的 MP3 文件到 Internet 上版權糾紛不斷的 MP3 下載, MP3 早已超出了數據壓縮技術的范疇,而成了一種時尚文化的象徵了。
很顯然,在多媒體信息日益成為主流信息形態的數字化時代里,數據壓縮技術特別是專用於圖像、音頻、視頻的數據壓縮技術還有相當大的發展空間——畢竟,人們對信息數量和信息質量的追求是永無止境的。 從信息熵到算術編碼,從猶太人到 WinRAR ,從 JPEG 到 MP3 ,數據壓縮技術的發展史就像是一個寫滿了「創新」、「挑戰」、「突破」和「變革」的羊皮卷軸。也許,我們在這里不厭其煩地羅列年代、人物、標准和文獻,其目的只是要告訴大家,前人的成果只不過是後人有望超越的目標而已,誰知道在未來的幾年裡,還會出現幾個 Shannon ,幾個 Huffman 呢?
談到未來,我們還可以補充一些與數據壓縮技術的發展趨勢有關的話題。
1994年, M. Burrows 和 D. J. Wheeler 共同提出了一種全新的通用數據壓縮演算法。這種演算法的核心思想是對字元串輪轉後得到的字元矩陣進行排序和變換,類似的變換演算法被稱為 Burrows-Wheeler 變換,簡稱 BWT 。與 Ziv 和 Lempel 另闢蹊徑的做法如出一轍, Burrows 和 Wheeler 設計的 BWT 演算法與以往所有通用壓縮演算法的設計思路都迥然不同。如今, BWT 演算法在開放源碼的壓縮工具 bzip 中獲得了巨大的成功, bzip 對於文本文件的壓縮效果要遠好於使用 LZ 系列演算法的工具軟體。這至少可以表明,即便在日趨成熟的通用數據壓縮領域,只要能在思路和技術上不斷創新,我們仍然可以找到新的突破口。
分形壓縮技術是圖像壓縮領域近幾年來的一個熱點。這一技術起源於 B. Mandelbrot 於 1977 年創建的分形幾何學。 M. Barnsley 在 20 世紀 80 年代後期為分形壓縮奠定了理論基礎。從 20 世紀 90 年代開始, A. Jacquin 等人陸續提出了許多實驗性的分形壓縮演算法。今天,很多人相信,分形壓縮是圖像壓縮領域里最有潛力的一種技術體系,但也有很多人對此不屑一顧。無論其前景如何,分形壓縮技術的研究與發展都提示我們,在經過了幾十年的高速發展之後,也許,我們需要一種新的理論,或是幾種更有效的數學模型,以支撐和推動數據壓縮技術繼續向前躍進。
人工智慧是另一個可能對數據壓縮的未來產生重大影響的關鍵詞。既然 Shannon 認為,信息能否被壓縮以及能在多大程度上被壓縮與信息的不確定性有直接關系,假設人工智慧技術在某一天成熟起來,假設計算機可以像人一樣根據已知的少量上下文猜測後續的信息,那麼,將信息壓縮到原大小的萬分之一乃至十萬分之一,恐怕就不再是天方夜譚了。
回顧歷史之後,人們總喜歡暢想一下未來。但未來終究是未來,如果僅憑你我幾句話就可以理清未來的技術發展趨勢,那技術創新的工作豈不就索然無味了嗎?依我說,未來並不重要,重要的是,趕快到 Internet 上下載幾部大片,然後躺在沙發里,好好享受一下數據壓縮為我們帶來的無限快樂吧。

閱讀全文

與PCM是何時發明的相關的資料

熱點內容
武漢疫情投訴 瀏覽:149
知識產權合作開發協議doc 瀏覽:932
廣州加里知識產權代理有限公司 瀏覽:65
企業知識產權部門管理辦法 瀏覽:455
消費315投訴 瀏覽:981
馬鞍山鋼城醫院 瀏覽:793
馮超知識產權 瀏覽:384
介紹小發明英語作文 瀏覽:442
版權使用權協議 瀏覽:1000
2018年基本公共衛生服務考核表 瀏覽:884
馬鞍山候車亭 瀏覽:329
學校矛盾糾紛排查領導小組 瀏覽:709
張江管委會知識產權合作協議 瀏覽:635
關於開展公共衛生服務項目相關項目督導的函 瀏覽:941
閨蜜證書高清 瀏覽:11
轉讓房轉讓合同協議 瀏覽:329
矛盾糾紛排查調處工作協調交賬會議紀要 瀏覽:877
雲南基金從業資格證書查詢 瀏覽:313
新知識的搖籃創造力 瀏覽:187
股轉轉讓協議 瀏覽:676