㈠ 笛卡爾是誰,他的基本貢獻是什麼
笛卡爾是偉大的哲學家、物理學家、數學家、生理學家。解析幾何的創始人。笛卡兒是歐洲近代資產階級哲學的奠基人之一。他自成體系,熔唯物主義與唯心主義於一爐,在哲學史上產生了深遠的影響。
㈡ 笛卡爾受到什麼動物的啟發發明了平面直角坐標系
傳說:
有一天,笛卡爾(Descartes 1596—1650,法國哲學家、數學家、物理學家)生病卧床,但他頭腦一直沒有休息,在反復思考一個問題:幾何圖形是直觀的,而代數方程則比較抽象,能不能用幾何圖形來表示方程呢?這里,關鍵是如何把組成幾何的圖形的點和滿足方程的每一組「數」掛上鉤。他就拚命琢磨。通過什麼樣的辦法、才能把「點」和「數」聯系起來。突然,他看見屋頂角上的一隻蜘蛛,拉著絲垂了下來,一會兒,蜘蛛又順著絲爬上去,在上邊左右拉絲。蜘蛛的「表演」,使笛卡爾思路豁然開朗。他想,可以把蜘蛛看做一個點,它在屋子裡可以上、下、左、右運動,能不能把蜘蛛的每個位置用一組數確定下來呢?他又想,屋子裡相鄰的兩面牆與地面交出了三條直線,如果把地面上的牆角作為起點,把交出來的三條線作為三根數軸,那麼空間中任意一點的位置,不是都可以用這三根數軸上找到的有順序的三個數來表示嗎?反過來,任意給一組三個有順序的數,例如3、2、1,也可以用空間中的一個點 P來表示它們。同樣,用一組數(a, b)可以表示平面上的一個點,平面上的一個點也可以用一組二個有順序的數來表示。於是在蜘蛛的啟示下,笛卡爾創建了直角坐標系。
㈢ 笛卡爾提出的方法論原則是什麼
笛卡兒在方法論中指出,研究問題的原則:
1. 不接受任何我自己不清楚的真理,就是說要盡量避免魯莽和偏見,只能是根據自己的判斷非常清楚和確定,沒有任何值得懷疑的地方的真理。就是說只要沒有經過自己切身體會的問題,不管有什麼權威的結論,都可以懷疑。這就是著名的「懷疑一切」理論。例如亞里士多德曾下結論說,女人比男人
笛卡兒
笛卡兒
少兩顆牙齒。但事實並非如此。
2. 要研究的復雜問題,盡量分解為多個比較簡單的小問題,一個一個地分開解決。
3. 小問題從簡單到復雜排列,先從容易解決的問題著手。
4. 問題解決後,再綜合起來檢驗,看是否完全,是否將問題徹底解決了。
在1960年代以前,西方科學研究的方法,從機械到人體解剖的研究,基本是按照笛卡兒的方法論進行的,對西方近代科學的飛速發展,起了相當大的促進作用。但也有其一定的缺陷,如人體功能,只是各部位機械的綜合,而對其互相之間的作用則研究不透。直到阿波羅號登月工程的出現,科學家們才發現,有的復雜問題無法分解,必須以復雜的方法來對待,因此導致系統工程的出現,方法論的方法才第一次被綜合性的方法所取代。系統工程的出現對許多大規模的西方傳統科學起了相當大的促進作用,如環境科學,氣象學,生物學,人工智慧等等。
笛卡兒在方法論中還第一次提出「我思故我在」的名言,第一次引入笛卡兒坐標系。對牛頓和萊布尼茨發明微積分理論有很大的作用。
㈣ 笛卡爾做什麼夢發現了直角坐標系
笛卡爾和笛卡爾坐標系的產生 據說有一天,法國哲學家、數學家笛卡爾生病卧床,病情很重,盡管如此他還反復思考一個問題:幾何圖形是直觀的,而代數方程是比較抽象的,能不能把幾何圖形與代數方程結合起來,也就是說能不能用幾何圖形來表示方程呢?要想達到此目的,關鍵是如何把組成幾何圖形的點和滿足方程的每一組「數」掛上鉤,他苦苦思索,拚命琢磨,通過什麼樣的方法,才能把「點」和「數」聯系起來。突然,他看見屋頂角上的一隻蜘蛛,拉著絲垂了下來,一會功夫,蜘蛛又順著絲爬上去,在上邊左右拉絲。蜘蛛的「表演」使笛卡爾的思路豁然開朗。他想,可以把蜘蛛看做一個點,它在屋子裡可以上、下、左、右運動,能不能把蜘蛛的每個位置用一組數確定下來呢?他又想,屋子裡相鄰的兩面牆與地面交出了三條線,如果把地面上的牆角作為起點,把交出來的三條線作為三根數軸,那麼空間中任意一點的位置就可以用這三根數軸上找到有順序的三個數。反過來,任意給一組三個有順序的數也可以在空間中找出一點P與之對應,同樣道理,用一組數(x、y)可以表示平面上的一個點,平面上的一個點也可以有用一組兩個有順序的數來表示,這就是坐標系的雛形。
直角坐標系的創建,在代數和幾何上架起了一座橋梁,它使幾何概念用數來表示,幾何圖形也可以用代數形式來表示。由此笛卡爾在創立直角坐標系的基礎上,創造了用代數的方法來研究幾何圖形的數學分支——解析幾何, 他大膽設想:如果把幾何圖形看成是動點的運動軌跡,就可以把幾何圖形看成是由具有某種共同特徵的點組成的。舉一個例子來說,我們可以把圓看作是動點到定點距離相等的點的軌跡,如果我們再把點看作是組成幾何圖形的基本元素,把數看作是組成方程的解,於是代數和幾何就這樣合為一家人了。
參考:http://ke..com/view/968758.htm
㈤ 笛卡爾坐標系的發明是必然的嗎
二維的直角坐標系通常由兩個互相垂直的坐標軸設定,通常分別稱為x-軸和y-軸;兩個坐標軸的相交點,稱為原點,通常標記為O,既有「零」的意思,又是英語「Origin」的首字母。每一個軸都指向一個特定的方向。這兩個不同線的坐標軸,決定了一個平面,稱為xy-平面,又稱為笛卡爾平面。通常兩個坐標軸只要互相垂直,其指向何方對於分析問題是沒有影響的,但習慣性地(見右圖),x-軸被水平擺放,稱為橫軸,通常指向右方;y-軸被豎直擺放而稱為縱軸,通常指向上方。兩個坐標軸這樣的位置關系,稱為二維的右手坐標系,或右手系。如果把這個右手系畫在一張透明紙片上,則在平面內無論怎樣旋轉它,所得到的都叫做右手系;但如果把紙片翻轉,其背面看到的坐標系則稱為「左手系」。這和照鏡子時左右對掉的性質有關。為了要知道坐標軸的任何一點,離原點的距離。假設,我們可以刻畫數值於坐標軸。那麼,從原點開始,往坐標軸所指的方向,每隔一個單位長度,就刻畫數值於坐標軸。這數值是刻畫的次數,也是離原點的正值整數距離;同樣地,背著坐標軸所指的方向,我們也可以刻畫出離原點的負值整數距離。稱x-軸刻畫的數值為x-坐標,又稱橫坐標,稱y-軸刻畫的數值為y-坐標,又稱縱坐標。雖然,在這里,這兩個坐標都是整數,對應於坐標軸特定的點。按照比例,我們可以推廣至實數坐標和其所對應的坐標軸的每一個點。這兩個坐標就是直角坐標系的直角坐標,標記為。任何一個點P在平面的位置,可以用直角坐標來獨特表達。只要從點P畫一條垂直於x-軸的直線。從這條直線與x-軸的相交點,可以找到點P的x-坐標。同樣地,可以找到點P的y-坐標。這樣,我們可以得到點P的直角坐標。直角坐標系也可以推廣至三維空間(3dimension)與高維空間(higherdimension)。直角坐標系的兩個坐標軸將平面分成了四個部分,稱為象限,分別用羅馬數字編號為Ⅰ,Ⅱ,Ⅲ,Ⅳ。依照慣例,象限Ⅰ的兩個坐標都是正值;象限Ⅱ的x-坐標是負值,y-坐標是正值;象限Ⅲ的兩個坐標都是負值的;象限Ⅳ的x-坐標是正值,y-坐標是負值。所以,象限的編號是按照逆時針方向,從象限Ⅰ編到象限Ⅳ。
㈥ 法國數學家笛卡爾發明了什麼
笛卡爾[1596—1650](又譯笛卡兒)出生於法國都蘭,他洗禮的時候取名「熱奈」,表示「再生」的意思.當時一場肺炎的爆發奪去了他母親的生命,但他死裡逃生,好歹活了下來.
他最初學習法律,曾在幾支軍隊里任職.從1620到1628年間,笛卡爾遍游歐洲,最後在荷蘭定居.雖然他發明了笛卡爾坐標— 一種繪制圖形的方法 —和若干方程式,並研究了慣性,但他最為知名的還是他的哲學.笛卡爾以懷疑一切為出發點,只相信「我思,故我在」.他敦促人們利用自己的感官去確定並了解周圍的世界,不要簡單地依賴過去的知識.這是一種激進派的觀念,它引出了一個叫做啟蒙運動的歷史階段,這期間科學得到了長足的發展.1649年,笛卡爾移居瑞典,並逝於該地.[顯著成就:在17世紀開現代哲學之先河.]
你可以在網路上搜「笛卡爾」
㈦ 笛卡爾是如何發現/發明的解析幾何的
1637年,笛卡爾發表了《幾何學》,創立了平面直角坐標系。他用平面上的一點到兩條固定直線的距離來確定點的位置,用坐標來描述空間上的點。他進而又創立了解析幾何學,據說,笛卡爾曾在一個晚上做了三個奇特的夢。第一個夢是,笛卡爾被風暴吹到一個風力吹不到的地方;第二個夢是他得到了打開自然寶庫的鑰匙;第三個夢是他開辟了通向真正知識的道路。這三個奇特的夢增強了他創立新學說的信心。這一天是笛卡爾思想上的一個轉折點,也有些學者把這一天定為解析幾何的誕生日。
㈧ 數對是怎麼發明的
阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
阿拉伯數字是古代印度人在生產和實踐中逐步創造出來的。在古代印度,進行城市建設時需要設計和規劃,進行祭祀時需要計算日月星辰的運行,於是,數學計算就產生了。大約在公元前3000年,印度河流域居民的數字就比較先進,而且採用了十進位的計算方法。到公元前三世紀,印度出現了整套的數字,但在各地區的寫法並不完全一致,其中最有代表性的是婆羅門式:這一組數字在當時是比較常用的。它的特點是從「1」到「9」每個數都有專字。現代數字就是由這一組數字演化而來。在這一組數字中,還沒有出現「0」(零)的符號。「0」這個數字是到了笈多王朝(公元320—550年)時期才出現的。公元四世紀完成的數學著作《太陽手冊》中,已使用「0」的符號,當時只是實心小圓點「·」。後來,小圓點演化成為小圓圈「0」。這樣,一套從「1」到「0」的數字就趨於完善了。這是古代印度人民對世界文化的巨大貢獻。
㈨ 數對是怎麼發明的
數對是笛卡爾發明的,有一次,他生病了,躺在床上,發現牆角有一隻蜘蛛。笛卡爾便把蜘蛛的位置作為開始,標為(0,0),便用數對表示出了蜘蛛網上的所有交叉點。
有了數對,我們就能很容易的表示出某一點的位置。我想,數對不僅能表示二維空間(長,寬)還可以表示三維空間(長,寬,高)或四維空間(長,寬,高,時間),世界上的所有點都可以用數對表示,那麼數對將給我們的生活帶來極大的方便。