① 珠算口訣怎麼理解
上:是指將梁下面靠下框的珠子撥到靠梁,或者將靠樑上面的珠子撥到靠上框,四上四:加4就是撥四個下珠靠梁,第一個數是要加的數。下:與上相反。
去,是指撥去、減去的意思,將靠梁的珠子撥到靠框,四下五去一,第一個數是要加的數,下五的意思是將5靠梁,去4,是將靠梁的四顆下珠撥去,也可以叫減4.比如4+4。
進:在前一檔進一,四去六進一,比如6+4,先撥入6,加4,需要在前一檔加1,然後再本當撥去6.
(1)補碼誰發明的擴展閱讀:
珠算
現存最早的珠算書是徐心魯訂正的《盤珠演算法》。 流行最廣,在歷史上起作用最大的珠算書
則是明代程大位編的《直指演算法統宗》。
加減口訣,為珠算所特有,最早見於吳敬《九章演算法比類大全》。
乘法除法口訣,採用的則是籌算口訣。
乘法「九九」口訣,在春秋戰國時已在籌算中得到應用;
歸除口訣,首見楊輝《乘除通變算寶》,
朱世傑《算學啟蒙》所載九歸口訣已與現代基本相同。
有了四則口訣,珠算的演算法就形成一個體系,長期沿用下來。

② 最早發明二進制的人是誰 科舉鄉試
二進制是計抄算技術中廣襲泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的代碼。其運算模式正是二進制。19世紀愛爾蘭邏輯學家喬治布爾對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字元號,非常簡單方便,易於用電子方式實現。
③ c語言求補碼
發明
補碼
的目的
是
用
硬體「加法器」來做減法運算。
換句話說,減一個數,就是加它的
補碼。
正數的補碼就是原數,就是自己。
負數的補碼是它的反碼加1。
反碼,就是
符號位不變,其它位
是1的變0,是0的變1。
變完後,最低位
加1,成了補碼。
④ 一個數的原碼,反碼,補碼怎麼算
計算機中的存儲系統都是用2進制儲存的,對我們輸入的每一個信息它都會自動轉變成二進制的形式,而二進制在存儲的時候就會用到原碼,反碼和補碼
例如:輸入25
原碼就是:0000000000011001
反碼: 1111111111100110
補碼: 1111111111100111
~
數值在計算機中表示形式為機器數,計算機只能識別0和1,使用的是二進制,而在日常生活中人們使用的是十進制,"正如亞里士多德早就指出的那樣,今天十進制的廣泛採用,只不過我們絕大多數人生來具有10個手指頭這個解剖學事實的結果.盡管在歷史上手指計數(5,10進制)的實踐要比二或三進制計數出現的晚. "(摘自<<數學發展史>>有空大家可以看看哦~,很有意思的).為了能方便的與二進制轉換,就使用了十六進制(2 4)和八進制(23).下面進入正題.
數值有正負之分,計算機就用一個數的最高位存放符號(0為正,1為負).這就是機器數的原碼了.假設機器能處理的位數為8.即字長為1byte,原碼能表示數值的范圍為
(-127~-0 +0~127)共256個.
有了數值的表示方法就可以對數進行算術運算.但是很快就發現用帶符號位的原碼進行乘除運算時結果正確,而在加減運算的時候就出現了問題,如下: 假設字長為8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 顯然不正確.
因為在兩個整數的加法運算中是沒有問題的,於是就發現問題出現在帶符號位的負數身上,對除符號位外的其餘各位逐位取反就產生了反碼.反碼的取值空間和原碼相同且一一對應. 下面是反碼的減法運算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有問題.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正確
問題出現在(+0)和(-0)上,在人們的計算概念中零是沒有正負之分的.(印度人首先將零作為標記並放入運算之中,包含有零號的印度數學和十進制計數對人類文明的貢獻極大).
於是就引入了補碼概念. 負數的補碼就是對反碼加一,而正數不變,正數的原碼反碼補碼是一樣的.在補碼中用(-128)代替了(-0),所以補碼的表示範圍為:
(-128~0~127)共256個.
注意:(-128)沒有相對應的原碼和反碼, (-128) = (10000000) 補碼的加減運算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)補 + (11111111)補 = (00000000)補 = ( 0 ) 正確
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 補+ (11111110) 補= (11111111)補 = ( -1 ) 正確
所以補碼的設計目的是:
⑴使符號位能與有效值部分一起參加運算,從而簡化運算規則.
⑵使減法運算轉換為加法運算,進一步簡化計算機中運算器的線路設計
所有這些轉換都是在計算機的最底層進行的,而在我們使用的匯編、C等其他高級語言中使用的都是原碼
⑤ 二進制數字系統是誰發明的
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的專數。它屬的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
⑥ 二進制的計算「機」發明者是是誰計算機
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示版的數。它的基數權為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。 20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的代碼。其運算模式正是二進制。19世紀愛爾蘭邏輯學家喬治布爾對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字元號,非常簡單方便,易於用電子方式實現。
⑦ 二進制是誰在哪一年提出的
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用1來表示「開」,0來表示「關」。
20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的代碼。其運算模式正是二進制。19世紀愛爾蘭邏輯學家喬治布爾對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字元號,非常簡單方便,易於用電子方式實現。
⑧ 補碼是誰發明的,它的最初作用是什麼
補碼就是正數的原碼的相反數的另一種編碼方式。它能把字長內的正數,補足為全是0。
⑨ c語言裡面,反碼誰發明的
當然是c語言的專家了。
所謂原碼就是二進制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。
反碼表示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。
原碼10010= 反碼11101 (10010,1為符號碼,故為負)
(11101) 二進制= -2 十進制
補碼表示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
提示信息不要太少,可「某某數的反碼是某某」,而不是只顯示數值。
1.原碼的求法:(1)對於正數,轉化為二進制數,在最前面添加一符號位(這是規定的),用1表示負數,0表示正數.如:0000 0000是一個位元組,其中左邊第一個0為符號位,表示是正數,其它七位表示二進制的值.其實,機器不管這些,什麼符號位還是值,機器統統看作是值來計算. 正數的原碼、反碼、補碼是同一個數!
(2)對於負數,轉化為二進制數,前面符號位為1.表示是負數.
計算原碼只要在轉化的二進制數前面加上相應的符號位就行了.
2.反碼的求法:對於負數,將原碼各位取反,符號位不變.
3.補碼的求法:對於負數,將反碼加上二進制的1即可,也就是反碼在最後一位上加上1就是補碼了.
⑩ 二進制到底怎麼算
比如23這個數字 ,我們就讓它除以2得11餘1 ,然後11再除以2得5餘1 ,然後5再除以2得2餘1 ,
2再除以2得1餘0 ,所以23化成2進制就是10111 ,就是把余數從下往上寫下來,第一位是1 。
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統。
數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的代碼。其運算模式正是二進制。19世紀愛爾蘭邏輯學家喬治布爾對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字元號,非常簡單方便,易於用電子方式實現。