1. 數學在心理學中的應用。
數學在實驗心理學有較多的應用:實驗設計,假設檢驗,實驗結果評定。
2. 數學心理學的發展
20世紀下半葉,隨著學習心理研究的不斷深入,行為主義忽視學習的內在心理過程的嚴重缺陷已日益明顯,越來越多的心理學家轉向關注學習的內在過程,這促成了認知主義學習理論的形成。
德國的格式塔是早期的認知主義代表(格式塔是一個德語詞,意即完形),其核心人物有韋特海默、考夫卡、苛勒等。該學派主張思維是整體的有意義的知覺,他們以」完形「為基本概念,強調從整體上認識學習的本質,並提出了頓悟學習理論。早期對認知理論的形成施以影響的還有托爾曼,他所提出的中間變數(即學習主體的內在機制)的思想,成為其學習理論的核心概念。
瑞士心理學家皮亞傑是當代認知主義的重要代表人物,他對心理的發生發展、認知結構及其機能等問題進行了深入研究,並提出了著名的認知建構理論、認知發展理論。」運算「(即思維操作)是皮亞傑理論中的關鍵概念,他據此將兒童認知發展分為四個主要階段,即感覺-運動階段、前運算階段、具體運算階段和形式運算階段,並討論了各階段認知發展的基本特徵及相互聯系。皮亞傑在《發生認識論原理》一書中提出同化和順應的概念,被人們普遍運用於解釋學習中的認知發展。他尤其對數學學習特有的心理特徵給予了關注,他甚至運用數學方式定義了其認知理論中的一些概念(如思維結構、自反抽象等)。 從20世紀六七十年代始,數學學習理論中的認知主義取代行為主義已成必然之勢。布魯納提出了發現學習理論,強調學習進程是一種積極的認知過程,提倡知識的發現學習。他進行了大量的數學學習實驗,並從中總結出四條數學學習原理,即建構原理、符號原理、比較和變式原理、關聯原理。此外奧蘇貝爾提出了有意義學習理論,加涅提出了信息加工學習理論。正是如此眾多認知學習理論的出現,使數學心理研究範式發生了重要轉變,並預示著認知理論將會有新的發展。

3. 心理學的研究領域有哪些
應用領域
心理學研究涉及知覺、認知、情緒、人格、行為、人際關系、社會關系等許多領域,也與日常生活的許多領域——家庭、教育、健康等發生關聯。心理學一方面嘗試用大腦運作來解釋個人基本的行為與心理機能,同時,心理學也嘗試解釋個人心理機能在社會的社會行為與社會動力中的角色;同時它也與神經科學、醫學、生物學等科學有關,因為這些科學所探討的生理作用會影響個人的心智。[1]
研究領域
發展心理學:研究人從胎兒出生到年老死亡的成長和發展的全過程。
學習心理學:探索人是如何發展成為如今的狀態。研究人類和動物的學習發生過程和原因。
人格心理學:關注包括人格特徵、動機和個體差異。
感覺與知覺心理學:研究人類怎樣感知周圍世界,如正在研究人類是如何識別面孔的。
比較心理學:研究和比較不同種系的動物行為。
生理心理學:研究行為與生理過程之間的關系,特別是神經系統的活動。
認知心理學:主要研究思維問題,試圖了解推理、問題解決、記憶及其他心理過程與人類行為的關系。

4. 用 自己的想像力寫出數學領域的新篇章
數學小論文一
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
數學小論文二
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.
數學小論文三
數學是什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」
這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。
歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」
那麼,究竟什麼是數學呢?
偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。
純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。
應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。
高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。
體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。
廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。
各門科學的「數學化」,是現代科學發展的一大趨勢。
5. 當代數學,心理學的名人
心理學主要流派
弗洛伊德 精神分析學派
華生 行為主義心理學
皮亞傑 發生認識論,兒童發展心理學
還有認知心理學、格式塔心理學,代表人物比較多。
這些理論網路就有。
6. 數學是誰發明的
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」
另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」
從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。
基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
7. 數學是誰發明的
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」
另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」
從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。
基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重
8. 數學領域中的發明心理學的讀後感
數學有兩種品格,其一是工具品格,其二是文化品格。由於數學在應用上的極端廣泛性,因而在人類社會發展中,那種揮之不去的短期效益思維模式特別是在實用主義觀點日益強化的思潮中,必然會導致數學之工具品格愈來愈受到重視,更會進一步向數學純粹工具論的觀點傾斜。相反的,數學之另一種更為重要的文化品格,卻已面臨被人淡忘的境況。
《數學領域中的發明心理學》是法國著名數學家雅克·阿達瑪的一本名著,是一本數學方法論的經典著作。著重論述了以「無意識思維」為核心的數學發明心理過程,給人以強烈印象。雖然嚴格地說,無意識問題應是專門的心理學家所關心的事,但他同時牽涉到數學和心理學這兩個領域。具有相當深厚的文化理念內涵和價值。他又不僅僅是關於數學方法論的論述,而且還能夠讓學習數學和研究數學的人們從中認識到關於數學發明的一般性思維規律的論述。
在數學的(乃至一般的)發明創造過程中,往往存在著創造靈感,或稱之曰「頓悟」的現象,這種頓悟的出現,既不能簡單地歸之於機遇,也不能無為地說成是邏輯推理「對中間階段的跳躍」,而是經歷了一種很復雜的,至今尚未被我們完全認識的「無意識思維」過程之後的結果。所謂無意識思維,乃是指思維者本人既沒有意識到他的存在,也沒有受到意識支配的一種思維過程。
關於發明所需要的條件,已被近幾十年最偉大的天才人物所闡明,他的名字為科學界所熟知,而且整個近代數學都在隨著他的脈搏跳動,此人就是亨利·龐加萊。龐加萊的例子取自他自己的最了不起的發現中的一個,即他關於富克斯群和富克斯函數理論的研究,在這個理論中閃爍著他的思想光輝。起先,龐加萊對這種函數冥思苦想了整整兩個星期,企圖證明它的不存在,但這個想法以後被證明是錯誤的。後來,在一個不眠之夜,並且是一種我們以後要談到的特定條件下,他構造出了第一類這種函數。就在此時,他又開始地質考察的旅行生活,途中的許多事使他忘掉了自己的數學工作,當他正要去駕車其他地方時,他剛把腳放到馬車上的一剎那,一個思想突然閃現在他的腦海,這個思想就是他用以富克斯函數的變換與非歐幾何的變換是等價的。在旅行結束後,龐加萊給出了這個思想的證明。此後他就把注意力轉換到與此有關系的一些算術運算問題上去,但沒有取得什麼成功,並且看起來也不像與他以前的研究工作有什麼聯系。由於龐加萊對自己的失敗感到厭煩,到海邊度過了幾天,並考慮了一些其他的事情。有一天,當他正在懸崖上散步時,一種新的思想在他的腦海中又和上一次同樣地突然閃出來,而且,同樣是一種簡單而確定的思想,這個思想就是不定三元二次型的算術變換與非歐幾何變換是等價的。
這兩個結果使龐加萊認為:肯定存在著另外的富克斯群,因此也就還存在著與他在那個不眠之夜所想到的富克斯函數不同的富克斯函數,以前找到的只是一類特殊情況。然而更嚴重的困難使得他的工作由此陷於停頓。此時如果堅持不懈地致力於這個問題,或許可以得到好的結果。但他當時沒有這樣做,亦即未能克服面前的困難。直到後來,當龐加萊在軍隊中服役的日子裡,跟上兩次一樣,這一問題卻又出乎意料地獲解了。龐加萊為此而補充說:「最令人驚奇的首先是這種『頓悟』的出現,所說的這種『頓悟』,乃是在此之前的一段長時間內無意識工作的結果。在我看來,在數學的發明中,這種無意識工作的作用確實是毋庸置疑的。」
面對龐加萊的這種情況呈現在我們面前的解答是:①與前些日子的努力似乎毫無關系,因而難以認為是以前工作的結果;②出現得非常突然,幾乎無暇細想。這種突然性和自發性,在若干年之前也曾被當代科學的偉大學者赫姆霍爾茲指出來過,他在1896年的一個重要講話中就曾說到過這一點。由於赫姆霍爾茲和龐加萊的講話,這種情況已被認為是任何一類發明所共有的。格拉哈姆·沃爾斯在他的《思維的藝術》一文中,提議將這種現象稱為「頓悟」。在頓悟之前一般地有一個醞釀階段,在此階段,研究似乎完全中斷,問題彷彿被丟棄在了一邊。
我們不僅不能否認無意識的存在,而且我們還必須強調指出,如果沒有無意識,恐怕我們什麼事情都做不成。首先,思想只有當用語言表達出來時,才是最清楚的,然而當我們講出一句話的時候,下一句話在哪兒?顯然這第二句話並不在我們當時的意識范圍內,因為此時的意識只有被第一句話所佔有;然而此時我們卻在思考第二句話的內容,這句話是准備在下一時刻出現在我們的意識中的,如果我們此時不在無意識中思考著句話,那麼下一時刻他就不會出現了,但是我們這兒所說的無意識是很表面的,因為他很接近於意識,它可以立即轉化為意識。
這種情況就是弗蘭西斯·高爾頓的所謂意識「前室」現象。為了表示這種較淺的無意識過程,我們當然可以用以與「無意識」涇渭分明的「下意識」這個詞。但是還有另外一個詞,這就是「意識的邊緣」。對心理學而言,在運用內反省法時,下意識狀態是很有用的。事實上,離開了下意識,內部反省是不可能進行的。但是對某種狀態,用下意識這個詞就不一定確切。這一點沃拉斯等心理學家曾用視野做過比喻:「在我們的視野中有一個很小的圓圈,在這圓圈中,我們看的很最清楚,而在這個圓圈的旁邊還是有一個不規則的區域,即視野邊緣。在這個區域中,離開視野中心愈遠,我們就看得愈模糊。人們往往對視野邊緣的存在性不太關心,因為其中任一對象一旦引起我們的關心,我們就會立即把視野中心對准它。由此我們就可明白,為什麼我們往往會忽視意識邊緣中的事情,因為我們一旦對它有興趣,它就立即成為我們的全部意識的對象了。但有時,我們也可作些努力,使它仍然處在意識邊緣的地位而去觀察它。」一般地說,把意識和意識邊緣截然區分開是很困難的,但是關於我們目前感興趣的「發明」這樣一件事中,這種區分就稍微容易些。因為在發明過程中,我們把思想高度集中在問題的求解上,只有當問題獲解之後,我們才有可能去顧及當時在意識邊緣所發生的事情。
現在很多人的問題肯能出現了,問題在於對無意識的理解是否正確,無意識是不是一種特殊的神秘的東西。事實上,真正神秘之處使我們大腦的功能,即我們的大腦為什麼能夠思考!這種精神過程是怎麼回事?人類已有幾千年的歷史,而我們對這些問題的了解即毫無進展,不管是對這種或那種精神過程,我們至今還是一無所知。至於說無意識和意識究竟哪個更高級,我認為提出這種問題是愚蠢的。當你騎在一匹馬上時,你說它比你高級還是低級?當然,馬比你強壯,又比你跑得快,但你卻能讓它做你所要它做的事。同樣的,我也不知道氧氣和氫氣哪個更高級,也不知道左腿和右腿哪個更高級,實際上,它們在行走中是相互合作的,意識和無意識也是這樣,一種合作而相互彼此的關系。
大量的例子表明,這種無意識思維過程的存在,而且,一旦承認了無意識思維的存在性,頓悟現在便得到很好的科學解釋。無意識思維在發明創造中佔有舉足輕重的地位,而且這是由發明的本質所決定的。任何領域中的發明,都是思想組合的方式進行的。也即,發明就是將各種「觀念原子」(這使龐加萊用以描述各種基本思想元素的一個形象化的比喻)進行千千萬萬的組合,再從中選出有用的組合,而這種選擇的標准時所謂「科學的美感」。在發明過程的組合與選擇這樣兩大步驟中,由於無意識思維不受理智之條條框框的約束,而僅僅服從於人的直覺中之和諧的美感,因而比有意識的思維過程更為深刻和奏效。然而我們並不能如下所述那樣去理解上面的說法,即由此而認為當你面對一個問題時,你可以什麼也不要干,而只要抱有求解此問題的願望,然後就可以去睡覺了,等到明天早晨醒來時,答案就會突然出現在你面前。顯然這是一種荒唐可笑的誤解。
事實上,情況完全不是這樣,任何問題,只有經過了深思熟慮以後,認識才會產生飛躍。例如,我們在開頭所提到的,龐加萊把腳放在馬車他班上時所發生的事情,就是在此之前經過了深思熟慮以後所產生的飛躍。牛頓關於萬有引力的發現也是一個典型的例子。他曾經被問到,他是如何發現這個定律的。他回答說:「我就是不斷地想,想,想。」這件事也許是軼事,但是始終如一的努力,一定是發現這個定律的必要條件。他有一個信念,即任何東西(不論是不是蘋果)既然都掉向地球,那麼月亮也一定是這樣掉向地球,正是這種自覺的信念和頑強的努力,才使他發現了萬有引力定律。如果不是經過一定時間的有意識的艱苦努力,盡管這些努力沒有產生結果,完全是一種盲目的摸索,那麼突然的靈感是不會產生的,可是這些努力並不是白費的。實際上,正是通過這些努力才使得無意識機器能以開動起來,亦即如果沒有這些艱苦努力,無意識機器是不會開動起來的,從而什麼靈感也不會出現,那麼牛頓也只是看著蘋果掉下來,只是有幸撿到了一個蘋果,而發現不了萬有引力定律。
伴隨著靈感而出現的絕對的感覺一般是正確的,但是也可能欺騙我們。究竟是對是錯,還要由我們稱之為「理由」的東西來確定,或者說,還要去證明它們。當然這一證明過程是有意識的。龐加萊說過,無意識不可能做相當長的運算。如果我們以為無意識具有這種能力,具有自動運算的性質,那我們就可以在睡覺之前考慮一個代數運算的問題,而到第二天早晨醒來時就得到結果了,顯然永遠不會有這種事發生。實際上,對於無意識的自動性質是不能這樣來理解的。正確的運算必須注意力高度集中,並且具有頑強的意志和符合規則,因而完全是自覺的和有意識的工作。這種工作是在靈感產生以後的又一個有意識階段。如此,我們這里似乎遇到了一種自相矛盾的結論,當然我將對此做些說明,如同我對牛頓的情況所作的說明那樣。所說的自相矛盾,就是一方面我們看到了作為我們靈魂的最高本能之一,我們的願望,我們的意識在整個發明中占據相當重要的地位,他是支配著無意識的;但在這里,他似乎是從屬於無意識的,因為他是在無意識以後產生的。但實際上,這兩個階段不僅很難分開,而且是相輔相成的,也就是說,它們是一件事情的兩個方面。
至此,我以根據阿達瑪在數學發明工作中的體會,以及對我所了解的無意識思維有關問題就此結束。總之,我們所觀察到的在發明過程中所出現的無意識的種種情況,都將在數學之文化品格和心理學中放射光芒。
數學乃是一切科學的基礎、工具和精髓,因為數學的內容和方法不僅要滲透到其他任何一個學科中去,而且要是真的沒有了數學,則就無法想像其他任何學科的存在和發展了。尤其是我們談到的數學之文化品格之無意識思維,會讓我們更好地學習數學,了解數學,體會數學的本意,並實際的運用在我們日常生活之中,服務我們,方便我們。書中說到過的:對於那些當年接受過立足於數學之文化品格數學訓練的學生來說,當他們後來真正成為哲學大師、著名律師或運籌帷幄的將帥時,可能早已把學生時代所學到的那些非實用性的數學知識忘得一干二凈了。但那種銘刻於頭腦中的數學精神和數學文化理念,卻會長期的在他們的事業中發揮著重要作用。也就是說,他們當年所受到的數學訓練,一隻會在他們的生存方式和思維方式中潛在地起著根本性的作用,並且受用終身。
9. 數學心理學的歷史
1860年德國心理學家費希納在心理物理學研究中,最早用數學公式描述了客觀物理量和主觀感覺強度之間的函數關系。
1927年瑟斯頓在制定心理量表時提出了比較判斷率,並用公式來表明兩個刺激間的主觀距離。
第二次世界大戰後,在資訊理論、控制論、統計決策論和計算機科學的推動下,數學心理學發展迅速。
20世紀50年代初,埃斯蒂斯、布希和莫斯蒂勒提出的學習模型,是這一新方向的開端。
目前實驗心理學的許多重要領域,如測量、決策、學習和社會的相互作用等方面,都已制定出大量的數學模型。
