⑴ 請問有人知道些有關數學歷史嗎
中國數學[Chinese Mathematics]
中國是世界文明古國之一,地處亞洲東部,瀕太平洋西岸。數學在中國的發展源遠流長,成就輝煌。下面我們依歷史的發展,分段敘述。
1.先秦萌芽時期
黃河流域和長江流域是中華民族文化的搖籃,大約在公元前2000年,在黃河中下游產生了第一個奴隸制國家——夏朝。其後有商、殷兩代[約1500 B.C -1027 B.C]、及周朝[1027 B.C -221 B.C]。歷史上又稱公元前八世紀至秦王朝的建立[221 B.C]為春秋戰國時期。
據《易.系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:
1 2 3 4 5 6 7 8 9
表示一個多位數字時,採用十進制值制,各位值的數目從左到右排列,縱橫相間[法則是:一縱十橫,百立千僵,千、十相望,萬、百相當],並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。
籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記.夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理[西方稱勾股定理]的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
2.漢唐初創時期
這一時期包括從秦漢到隋唐1000多年間的數學發展,所經歷的朝代依次為秦、漢、魏、晉、南北朝、隋、唐。 秦漢是中國古代數學體系的形成時期。為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
西漢末年[公元前一世紀]編纂的天文學著作《周髀算經》在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年[公元前一世紀]。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。 魏晉時期中國數學在理論上有了較大的發展。其中趙爽和劉徽的工作被認為是中國古代數學理論體系的開端。趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋。劉徽注釋《九章算術》,不僅對原書的方法、公式和定理進行一般的解釋和推導,且在論述過程中多有創新,更撰寫《海島算經》,應用重差術解決有關測量的問題。劉徽其中一項重要的工作是創立割圓術,為圓周率的研究工作奠定理論基礎和提供了科學的演算法。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。《孫子算經》、《夏侯陽算經》、《張丘建算經》就是這個時期的作品。《孫子算經》給出「物不知數」問題,導致求解一次同餘組問題;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
祖沖之、祖日桓父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113;(2)得到祖 日桓定理[冪勢既同,則積不容異]並得到球體積公式;(3)發展了二次與三次方程的解法。
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是討論土木工程中計算土方、工程的分工與驗收以及倉庫和地窖的計算問題。
唐朝在數學教育方面有長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》[包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》],作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
此外,隋唐時期由於歷法需要,創立出二次內插法,為宋元時期的高次內插法奠定了基礎。而唐朝後期的計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
3.宋元全盛時期
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀[宋、元兩代],籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》[11世紀中葉],劉益的《議古根源》[12世紀中葉],秦九韶的《數書九章》[1247],李冶的《測圓海鏡》[1248]和《益古演段》[1259],楊輝的《詳解九章演算法》[1261]、《日用演算法》[1262]和《楊輝演算法》[1274-1275],朱世傑的《算學啟蒙》[1299]和《四元玉鑒》[1303]等等。 宋元數學在很多領域都達到了中國古代數學,甚至是當時世界數學的巔峰。其中主要的工作有:
1. 高次方程數值解法;
2. 天元術與四元術,即高次方程的立法與解法,是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題;
3. 大衍求一術,即一次同餘式組的解法,現在稱為中國剩餘定理;
4. 招差術和垛積術,即高次內插法和高階等差級數求和。 另外,其它成就包括勾股形解法新的發展、解球面直角三角形的研究、縱橫圖[幻方]的研究、小數[十進分數]具體的應用、珠算的出現等等。 這一時期民間數學教育也有一定的發展,以及中國和伊斯蘭國家之間的數學知識的交流也得到了發展。
4.西學輸入時期
這一時期從十四世紀中葉明王朝建立到二十世紀清代結束共500多年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。十六世紀末,西方初等數學開始傳入中國,使中國數學研究出現了一個中西融合貫通的局面。鴉片戰爭後,近代高等數學開始傳入中國,中國數學轉入一個以學習西方數學為主的時期。直到十九世紀末,中國的近代數學研究才真正開始。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》[1592]問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。
隋及唐初,印度數學和天文學知識曾傳入中國,但影響較細。到了十六世紀末,西方傳教士開始到中國活動,和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷[1607],其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》[2卷,1631]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷,1631]。在徐光啟主持編譯的《崇禎歷書》[137卷,1629-1633]中,介紹了有關圓椎曲線的數學知識。
入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》[53卷,1723],是一部比較全面的初等數學書,對當時的數學研究有一定影響。
干嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》[約1859]中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷[1795-1810],開數學史研究之先河。
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷[1857],使中國有了完整的《幾何原本》中譯本;《代數學》13卷[1859];《代微積拾級》18卷[1859]。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷[1872],《微積溯源》8卷[1874],《決疑數學》10卷[1880]等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。
5.近現代數學發展時期
這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來[1915年轉留法],1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學[今南京大學]和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵[1927]、陳省身[1934]、華羅庚[1936]、許寶騄[1936]等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素[1920],美國的伯克霍夫[1934]、奧斯古德[1934]、維納[1935],法國的阿達馬[1936]等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騄在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊[1952年改為《數學學報》],1951年10月《中國數學雜志》復刊[1953年改為《數學通報》]。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》[1953]、蘇步青的《射影曲線概論》[1954]、陳建功的《直角函數級數的和》[1954]和李儼的《中算史論叢》5集[1954-1955]等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
古代埃及數學(Ancient Egyptian Mathematics)
非洲東北部的尼羅河流域,孕育了埃及的文化。在公元前3500~3000年間,這里曾建立了一個統一的帝國。
目前我們對古埃及數學的認識,主要源於兩份用僧侶文寫成的紙草書,其一是成書於公元前1850年左右的莫斯科紙草書,另一份是約成書於公元前1650年的蘭德(Rhind)紙草書,又稱阿梅斯(Ahmes)紙草書。阿梅斯紙草書的內容相當豐富,講述了埃及的乘法和除法、單位分數的用法、試位法、求圓面積問題的解和數學在許多實際問題中的應用。
古埃及人使用象形文字,其數字以十進製表示,但並非位值制,而分數還有一套專門的記法。由埃及數系建立起來的算術具有加法特徵,其乘、除法的計算也只是利用連續加倍的方法來完成。古埃及人將所有的分數都化成單位分數(分子為 1的分數之和),在阿梅斯紙草書中,有很大一張分數表,把2/(2n+1)狀分數表示成單位分數之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+
1/776,等等。
古埃及人已經能解決一些屬於一次方程和最簡單的二次方程的問題,還有一些關於等差數列、等比數列的初步知識。
如果說巴比倫人發展了卓越的算術和代數學,那麼在另一方面,人們一般認為埃及人在幾何學方面要勝過巴比倫人。一種觀點認為尼羅河水每年一次的定期泛濫,淹沒河流兩岸的谷地。大水過後,法老要重新分配土地,長期積累起來的土地測量知識逐漸發展為幾何學。
埃及人能夠計算簡單平面圖形的面積,計算出的圓周率為 3.16049;他們還知道如何計算棱椎、圓椎、圓柱體及半球的體積。其中最驚人的成就在於方棱椎平頭截體體積的計算,他們給出的計算過程與現代的公式相符。
至於在建造金字塔和神殿過程中,大量運用數學知識的事實表明,埃及人已積累了許多實用知識,而有待於上升為系統的理論。
印度數學(Hin mathematics)
印度是世界上文化發達最早的地區之一,印度數學的起源和其它古老民族的數學起源一樣,是在生產實際需要的基礎上產生 的。但是,印度數學的發展也有一個特殊的因素,便是它的數學和歷法一樣,是在婆羅門祭禮的影響下得以充分發展的。再加上 佛教的交流和貿易的往來,印度數學和近東,特別是中國的數學便在互相融合,互相促進中前進。另外,印度數學的發展始終與天文學有密切的關系,數學作品大多刊載於天文學著作中的某些篇章。
《繩法經》屬於古代婆羅門教的經典,可能成書於公元前6世紀,是在數學史上有意義的宗教作品,其中講到拉繩設計祭壇時所體現到的幾何法則,並廣泛地應用了勾股定理。
此後約1000年之中,由於缺少可靠的史料,數學的發展所知甚少。
公元5-12世紀是印度數學的迅速發展時期,其成就在世界數學史上佔有重要地位。在這個時期出現了一些著名的學者,如6世紀的阿利耶波多(第一)( ryabhata),著有《阿利耶波多歷數書》;7世紀的婆羅摩笈多(Brahmagupta ),著有《婆羅摩笈多修訂體系》(Brahma-sphuta-sidd'h nta ),在這本天文學著作中,包括「算術講義」和「不定方程講義 」等數學章節;9世紀摩訶毗羅(Mah vira );12世紀的婆什迦羅(第二)(Bh skara ),著有《天文系統極致》(Siddh nta iromani ),有關數學的重要部份為《麗羅娃提》(Lil vati) )和《演算法本源》(V jaganita)等等。
在印度,整數的十進制值制記數法產生於6世紀以前,用9個數字和表示零的小圓圈,再藉助於位值制便可寫出任何數字。他們由此建立了算術運算,包括整數和分數的四則運演算法則;開平方和開立方的法則等。對於「零」,他們不單是把它看成「一無所有」或空位,還把它當作一個數來參加運算,這是印度算術的一大貢獻。
印度人創造的這套數字和位值記數法在8世紀傳入伊斯蘭世界,被阿拉伯人採用並改進。13世紀初經斐波納契的《算盤書》 流傳到歐洲,逐漸演變成今天廣為利用的1,2,3,4,…,等等,稱為印度-阿拉伯數碼。
印度對代數學做過重大的貢獻。他們用符號進行代數運算,並用縮寫文字表示未知數。他們承認負數和無理數,對負數的四 則運演算法則有具體的描述,並意識到具有實解的二次方程有兩種形式的根。印度人在不定分析中顯示出卓越的能力,他們不滿足於對一個不定方程只求任何一個有理解,而致力於求所有可能的整數解。印度人還計算過算術級數和幾何級數的和,解決過單利 與復利、折扣以及合股之類的商業問題。
印度人的幾何學是憑經驗的,他們不追求邏輯上嚴謹的證明,只注重發展實用的方法,一般與測量相聯系,側重於面積、體積的計算。其貢獻遠遠比不上他們在算術和代數方面的貢獻大。在三角學方面,印度人用半弦(即正弦)代替了希臘人的全弦, 製作正弦表,還證明了一些簡單的三角恆等式等等。他們在三角學所做的研究是十分重要的。
阿拉伯數學[Arabic mathematics]
從九世紀開始,數學發展的中心轉向阿拉伯和中亞細亞。
自從公元七世紀初伊斯蘭教創立後,很快形成了強大的勢力,迅速擴展到阿拉伯半島以外的廣大地區,跨越歐、亞、非三大洲。在這一廣大地區內,阿拉伯文是通用的官方文字,這里所敘述的阿拉伯數學,就是指用阿拉伯語研究的數學。
從八世紀起大約有一個到一個半世紀是阿拉伯數學的翻譯時期,巴格達成為學術中心,建有科學宮、觀象台、圖書館和一個學院。來自各地的學者把希臘、印度和波斯的古典著作大量地譯為阿拉伯文。在翻譯過程中,許多文獻被重新校訂、考證和增補,大量的古代數學遺產獲得了新生。阿拉伯文明和文化在接受外來文化的基礎上,迅速發展起來,直到15世紀還充滿活力。
花拉子米[Al-khowarizmi]是阿拉伯初期最主要的數學家,他編寫了第一本用阿拉伯語在伊斯蘭世界介紹印度數字和記數法的著作。公元十二世紀後,印度數字、十進制值制記數法開始傳入歐洲,又經過幾百年的改革,這種數字成為我們今天使用的印度—阿拉伯數碼。花拉子米的另一名著《ilm al-jabr wa'lmugabalah》[《代數學》]系統地討論了一元二次方程的解法,該種方程的求根公式便是在此書中第一次出現。現代」algebra」[代數學]一詞亦源於書名中出現的」al jabr」。
三角學在阿拉伯數學中佔有重要地位,它的產生與發展和天文學有密切關系。阿拉伯人在印度人和希臘人工作的基礎上發展了三角學。他們引進了幾種新的三角量,揭示了它們的性質和關系,建立了一些重要的三角恆等式。給出了球面三角形和平面三角形的全部解法,製造了許多較精密的三角函數表。其中著名的數學家有:阿爾.巴塔尼[Al-Battani]、阿卜爾.維法[Abu'l-Wefa]、阿爾.比魯尼[Al-Beruni]等。系統而完整地論述三角學的著作是由十三世紀的學者納西爾丁[Nasir ed-din]完成的,該著作使三角學脫離天文學而成為數學的獨立分支,對三角學在歐洲的發展有很大的影響。
在近似計算方面,十五世紀的阿爾.卡西[Al-kashi]在他的《圓周論》中,敘述了圓周率π的計算方法,並得到精確到小數點後16位的圓周率,從而打破祖沖之保持了一千年的記錄。此外,阿爾.卡西在小數方面做過重要工作,亦是我們所知道的以「帕斯卡三角形」形式處理二項式定理的第一位阿拉伯學者。
阿拉伯幾何學的成就低於代數和三角。希臘幾何學嚴密的邏輯論證沒有被阿拉伯人接受。
總的來看,阿拉伯數學較缺少創造性,但當時世界上大多數地方正處於科學上的貧瘠時期,其成績相對顯得較大,值得贊美的是他們充當了世界上大量精神財富的保存者,在黑暗時代過去後,這些精神財富才傳回歐洲。歐洲人主要就是通過他們的譯著才了解古希臘和印度以及中國數學的成就。
⑵ 近世代數發明人是誰
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等回代數學和抽象代答數學兩部分。初等代數學是指19世紀上半葉以前發展的方程理論,主要研究某一方程〔組〕是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性質等問題。(法國數學家伽羅瓦〔1811-1832〕)在1832年運用「群」的思想徹底解決了用根式求解代數方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
⑶ 近世代數 有什麼用
1、學以致用,抄將其應用於專業:近世代數課程不但在數學的各個分支有很多應用,而且隨著計算機技術的發展,它在通信理論、計算機科學、系統工程等許多領域中也有廣泛的應用。所學的東西一定會派上用場。學以致用才是學習的關鍵所在。
2、理解體系結構:學完近世代數,能理解開篇所講的"現代數學的重要發展趨勢是公理化和結構化",這是成之為一個體系的必然。因此,在我們的研究工作中,如何建模成了非常關鍵的問題。建立類比的關系,通過已知推導未知,這將在很大程度上將工作形象化,便於盡快地進入預定角色。

(3)近世代數的發明人是擴展閱讀
由於代數可處理實數與復數以外的物集,例如向量、矩陣超數、變換等,這些物集的分別是依它們各有的演算定律而定,而數學家將個別的演算經由抽象手法把共有的內容升華出來,並因此而達到更高層次,這就誕生了抽象代數。
抽象代數,包含有群論、環論、伽羅瓦理論、格論、線性代數等許多分支,並與數學其它分支相結合產生了代數幾何、代數數論、代數拓撲、拓撲群等新的數學學科。抽象代數已經成了當代大部分數學的通用語言。
⑷ 費爾馬大定理已經被人證明了么
300多年以來,費爾馬大定理使世界上許多著名數學家殫精竭慮,有的甚至耗盡了畢
生精力。費爾馬大定理神秘的面紗終於在1995年揭開,被43歲的英國數學家維爾斯一舉
證明。這被認為是「20世紀最重大的數學成就」。
費爾馬大定理的由來
故事涉及到兩位相隔1400年的數學家,一位是古希臘的丟番圖,一位是法國的費爾
馬。丟番圖活動於公元250年前後。
1637年,30來歲的費爾馬在讀丟番圖的名著《算術》的法文譯本時,他在書中關於
不定方程 x2+ y2 =z2 的全部正整數解這頁的空白處用拉丁文寫道:「任何一個數的
立方,不能分成兩個數的立方之和;任何一個數的四次方,不能分成兩個數的四次方之
和,一般來說,不可能將一個高於二次的冪分成兩個同次的冪之和。我已發現了這個斷
語的美妙證法,可惜這里的空白地方太小,寫不下。」
費爾馬去世後,人們在整理他的遺物時發現了這段寫在書眉上的話。1670年,他的
兒子發表了費爾馬的這一部分頁端筆記,大家才知道這一問題。後來,人們就把這一論
斷稱為費爾馬大定理。用數學語言來表達就是:形如x^n +y^n =z^n 的方程,當n大於
2時沒有正整數解。
費爾馬是一位業余數學愛好者,被譽為「業余數學家之王」。1601年,他出生在法
國南部圖盧茲附近一位皮革商人的家庭。童年時期是在家裡受的教育。長大以後,父親
送他在大學學法律,畢業後當了一名律師。從1648年起,擔任圖盧茲市議會議員。
他酷愛數學,把自己所有的業余時間都用於研究數學和物理。由於他思維敏捷,記
憶力強,又具備研究數學所必須的頑強精神,所以,獲得了豐碩的成果,使他躋身於17
世紀大數學家之列。
艱難的探索
起初,數學家想重新找到費爾馬沒有寫出來的那個「美妙證法」,但是誰也沒有成
功。著名數學家歐拉用無限下推法證明了方程 x3+ y3 =z3 和 x4 + y4 =z4 不可能
有正整數解。
因為任何一個大於2的整數,如果不是4的倍數,就一定是某一奇素數或它的倍數。
因此,只要能證明n=4以及n是任一奇素數時,方程都沒有正整數解,費爾馬大定理就完
全證明了。n=4的情形已經證明過,所以,問題就集中在證明n等於奇素數的情形了。
在歐拉證明了 n= 3, n= 4以後, 1823年和 1826年勒讓德和狄利克雷各自獨立
證明了 n= 5的情形, 1839年拉梅證明了 n= 7的情形。就這樣,一個一個奇素數證下
去的長征便開始了。
其中,德國數學家庫默爾作出了重要貢獻。他用近世代數的方法,引入了自己發明
的「理想數」和「分圓數」的概念,指出費爾馬大定理只可能在n等於某些叫非正則素數
的值時,才有可能不正確,所以只需對這些數進行研究。這樣的數,在100以內,只有3
7、59、67三個。他還具體證明了當 n= 37、59、67時,方程xn+ yn=zn是不可能有正
整數解的。這就把費爾馬大定理一下推進到n在100以內都是成立的。庫默爾「成批地」
證明了定理的成立,人們視之為一次重大突破。1857年,他獲得巴黎科學院的金質獎章
。
這一「長征」式的證法,雖然不斷地刷新著記錄,如 1992年更進到n=1000000,但
這不等於定理被證明。看來,需要另闢蹊徑。
10萬馬克獎給誰
從費爾馬時代起,巴黎科學院曾先後兩次提供獎章和獎金,獎勵證明費爾馬大定理
的人,布魯塞爾科學院也懸賞重金,但都無結果。1908年,德國數學家佛爾夫斯克爾逝
世的時候,將他的10萬馬克贈給了德國哥庭根科學會,作為費爾馬大定理的解答獎金。
哥庭根科學會宣布,獎金在100年內有效。哥庭根科學會不負責審查稿件。
10萬馬克在當時是一筆很大的財富,而費爾馬大定理又是小學生都能聽懂題意的問
題。於是,不僅專搞數學這一行的人,就連很多工程師、牧師、教師、學生、銀行職員
、政府官吏和一般市民,都在鑽研這個問題。在很短時間內,各種刊物公布的證明就有
上千個之多。
當時,德國有個名叫《數學和物理文獻實錄》的雜志,自願對這方面的論文進行鑒
定,到 1911年初為止,共審查了111個「證明」,全都是錯的。後來實在受不了沉重的
審稿負擔,於是它宣布停止這一審查鑒定工作。但是,證明的浪潮仍洶涌澎湃,雖然兩
次世界大戰後德國的貨幣多次大幅度貶值,當初的10萬馬克折算成後來的馬克已無多大
價值。但是,熱愛科學的可貴精神,還在鼓勵著很多人繼續從事這一工作。
姍姍來遲的證明
經過前人的努力,證明費爾馬大定理取得了許多成果,但離定理的證明,無疑還有
遙遠的距離。怎麼辦?來必須要用一種新的方法,有的數學家用起了傳統的辦法——轉
化問題。
人們把丟番圖方程的解與代數曲線上的某種點聯系起來,成為一種代數幾何學的轉
化,而費爾馬問題不過是丟番圖方程的一個特例。在黎曼的工作基礎上,1922年,英國
數學家莫德爾提出一個重要的猜想。:「設F(x,y)是兩個變數x、y的有理系數多項式
,那麼當曲線F(x,y)= 0的虧格(一種與曲線有關的量)大於1時,方程F(x,y)=
0至多隻有有限組有理數」。1983年,德國29歲的數學家法爾廷斯運用蘇聯沙法拉維奇在
代數幾何上的一系列結果證明了莫德爾猜想。這是費爾馬大定理證明中的又一次重大突
破。法爾廷斯獲得了1986年的菲爾茲獎。
維爾斯仍採用代數幾何的方法去攀登,他把別人的成果奇妙地聯系起來,並且吸取
了走過這條道路的攻克者的經驗教訓,注意到一條嶄新迂迴的路徑:如果谷山——志村
猜想成立,那麼費爾馬大定理一定成立。這是1988年德國數學家費雷在研究日本數學家
谷山——志村於1955年關於橢圓函數的一個猜想時發現的。
維爾斯出生於英國牛津一個神學家庭,從小對費爾馬大定理十分好奇、感興趣,這
條美妙的定理導致他進入了數學的殿堂。大學畢業以後,他開始了幼年的幻想,決心去
圓童年的夢。他極其秘密地進行費爾馬大定理的研究,守口如瓶,不透半點風聲。
窮七年的鍥而不舍,直到1993年6月23日。這天,英國劍橋大學牛頓數學研究所的大
廳里正在進行例行的學術報告會。報告人維爾斯將他的研究成果作了長達兩個半小時的
發言。10點30分,在他結束報告時,他平靜地宣布:「因此,我證明了費爾馬大定理」
。這句話像一聲驚雷,把許多隻要作例行鼓掌的手定在了空中,大廳時鴉雀無聲。半分
鍾後,雷鳴般的掌聲似乎要掀翻大廳的屋頂。英國學者顧不得他們優雅的紳士風度,忘
情地歡騰著。
消息很快轟動了全世界。各種大眾傳媒紛紛報道,並稱之為「世紀性的成就」。人
們認為,維爾斯最終證明了費爾馬大定理,被列入1993年世界科技十大成就之一。
可不久,傳媒又迅速地報出了一個「爆炸性」新聞:維爾斯的長達200頁的論文送交
審查時,卻被發現證明有漏洞。
維爾斯在挫折面前沒有止步,他用一年多時間修改論文,補正漏洞。這時他已是「
為伊消得人憔悴」,但他「衣帶漸寬終不悔」。1994年9月,他重新寫出一篇108頁的論
文,寄往美國。論文順利通過審查,美國的《數學年刊》雜志於1995年5月發表了他的這
一篇論文。維爾斯因此獲得了1995~1996年度的沃爾夫數學獎。
經過 300多年的不斷奮戰,數學家們世代的努力,圍繞費爾馬大定理作出了許多重
大的發現,並促進了一些數學分支的發展,尤其是代數數論的進展。現代代數數論中的
核心概念「理想數」,正是為了解決費爾馬大定理而提出的。難怪大數學家希爾伯特稱
贊費爾馬大定理是「一隻會下金蛋的母雞」。
⑸ 抽象代數的創始人
被譽為天才數學家的(1811-1832)是近世代數的創始人之一。他深入研究了一個方程能用根式求解所必須滿足的本質條件,他提出的「Galois域」、「Galois群」和「Galois理論」都是近世代數所研究的最重要的課題。Galois群理論被公認為十九世紀最傑出的數學成就之一。他給方程可解性問題提供了全面而透徹的解答,解決了困擾數學家們長達數百年之久的問題。Galois群論還給出了判斷幾何圖形能否用直尺和圓規作圖的一般判別法,圓滿解決了三等分任意角或倍立方體的問題都是不可解的。最重要的是,群論開辟了全新的研究領域,以結構研究代替計算,把從偏重計算研究的思維方式轉變為用結構觀念研究的思維方式,並把數學運算歸類,使群論迅速發展成為一門嶄新的數學分支,對近世代數的形成和發展產生了巨大影響。同時這種理論對於物理學、化學的發展,甚至對於二十世紀結構主義哲學的產生和發展都發生了巨大的影響。
1843年,Hamilton發明了一種乘法交換律不成立的代數——四元數代數。 第二年,Grassmann推演出更有一般性的幾類代數。1857年,Cayley設計出另一種不可交換的代數——矩陣代數。他們的研究打開了抽象代數(也叫近世代數)的大門。實際上,減弱或刪去普通代數的某些假定,或將某些假定代之以別的假定(與其餘假定是兼容的),就能研究出許多種代數體系。
1870年,Kronecker給出了有限Abel群的抽象定義;Dedekind開始使用「體」的說法,並研究了代數體;1893年,韋伯定義了抽象的體;1910年,施坦尼茨展開了體的一般抽象理論;Dedekind和Kronecker創立了環論;1910年,施坦尼茨總結了包括群、代數、域等在內的代數體系的研究,開創了抽象代數學。

⑹ 數學猜想
四色猜想(三大數學難題之三)
世界近代三大數學難題之一。四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」這個結論能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。
1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德.摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家哈密爾頓爵士請教。哈密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決。
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了。
11年後,即1890年,數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題:先輩數學大師們的努力,為後世的數學家揭示四色猜想之謎鋪平了道路。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,伯克霍夫在肯普的基礎上引進了一些新技巧,美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國。看來這種推進仍然十分緩慢。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。它不僅解決了一個歷時100多年的難題,而且有可能成為數學史上一系列新思維的起點。不過也有不少數學家並不滿足於計算機取得的成就,他們還在尋找一種簡捷明快的書面證明方法。
哥德巴赫猜想(三大數學難題之二)
世界近代三大數學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a) 任何一個>=6之偶數,都可以表示成兩個奇質數之和。
(b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。到了20世紀20年代,才有人開始向它靠近。1920年、挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了「哥德巴赫」。
目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s Theorem) ? 「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」 通常都簡稱這個結果為大偶數可表示為 「1 + 2 」的形式。
在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱「s + t 」問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了 「9 + 9 」。
1924年,德國的拉特馬赫(Rademacher)證明了「7 + 7 」。
1932年,英國的埃斯特曼(Estermann)證明了 「6 + 6 」。
1937年,義大利的蕾西(Ricei)先後證明了「5 + 7 」, 「4 + 9 」, 「3 + 15 」和「2 + 366。
1938年,蘇聯的布赫 夕太勃(Byxwrao)證明了「5 + 5 」。
1940年,蘇聯的布赫 夕太勃(Byxwrao)證明了 「4 + 4 」。
1948年,匈牙利的瑞尼(Renyi)證明了「1 + c 」,其中c是一很大的自然 數。
1956年,中國的王元證明了 「3 + 4 」。
1957年,中國的王元先後證明了 「3 + 3 」和 「2 + 3 」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了 「1 + 5 」, 中國的王元證明了「1 + 4 」。
1965年,蘇聯的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 義大利的朋比利(Bombieri)證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
最終會由誰攻克 「1 + 1 」這個難題呢?現在還沒法預測。
費爾馬大定理及其證明(三大數學難題之一)
近代數學如參天大樹,已是分支眾多,枝繁葉茂。在這棵蒼勁的大樹上懸掛著不勝其數的數學難題。其中最耀眼奪目的是四色地圖問題、費爾馬大定理和哥德巴赫猜想。它們被稱為近代三大數學難題。
300多年以來,費爾馬大定理使世界上許多著名數學家殫精竭慮,有的甚至耗盡了畢生精力。費爾馬大定理神秘的面紗終於在1995年揭開,被43歲的英國數學家維爾斯一舉證明。這被認為是「20世紀最重大的數學成就」。
費爾馬大定理的由來
故事涉及到兩位相隔1400年的數學家,一位是古希臘的丟番圖,一位是法國的費爾馬。丟番圖活動於公元250年前後。
1637年,30來歲的費爾馬在讀丟番圖的名著《算術》的法文譯本時,他在書中關於不定方程 x2+ y2 =z2 的全部正整數解這頁的空白處用拉丁文寫道:「任何一個數的立方,不能分成兩個數的立方之和;任何一個數的四次方,不能分成兩個數的四次方之和,一般來說,不可能將一個高於二次的冪分成兩個同次的冪之和。我已發現了這個斷語的美妙證法,可惜這里的空白地方太小,寫不下。」
費爾馬去世後,人們在整理他的遺物時發現了這段寫在書眉上的話。1670年,他的兒子發表了費爾馬的這一部分頁端筆記,大家才知道這一問題。後來,人們就把這一論斷稱為費爾馬大定理。用數學語言來表達就是:形如xn +yn =zn 的方程,當n大於2時沒有正整數解。
費爾馬是一位業余數學愛好者,被譽為「業余數學家之王」。1601年,他出生在法國南部圖盧茲附近一位皮革商人的家庭。童年時期是在家裡受的教育。長大以後,父親送他在大學學法律,畢業後當了一名律師。從1648年起,擔任圖盧茲市議會議員。
他酷愛數學,把自己所有的業余時間都用於研究數學和物理。由於他思維敏捷,記憶力強,又具備研究數學所必須的頑強精神,所以,獲得了豐碩的成果,使他躋身於17世紀大數學家之列。
艱難的探索
起初,數學家想重新找到費爾馬沒有寫出來的那個「美妙證法」,但是誰也沒有成功。著名數學家歐拉用無限下推法證明了方程 x3+ y3 =z3 和 x4 + y4 =z4 不可能有正整數解。
因為任何一個大於2的整數,如果不是4的倍數,就一定是某一奇素數或它的倍數。因此,只要能證明n=4以及n是任一奇素數時,方程都沒有正整數解,費爾馬大定理就完全證明了。n=4的情形已經證明過,所以,問題就集中在證明n等於奇素數的情形了。
在歐拉證明了 n= 3, n= 4以後, 1823年和 1826年勒讓德和狄利克雷各自獨立證明了 n= 5的情形, 1839年拉梅證明了 n= 7的情形。就這樣,一個一個奇素數證下去的長征便開始了。
其中,德國數學家庫默爾作出了重要貢獻。他用近世代數的方法,引入了自己發明的「理想數」和「分圓數」的概念,指出費爾馬大定理只可能在n等於某些叫非正則素數的值時,才有可能不正確,所以只需對這些數進行研究。這樣的數,在100以內,只有37、59、67三個。他還具體證明了當 n= 37、59、67時,方程xn+ yn=zn是不可能有正整數解的。這就把費爾馬大定理一下推進到n在100以內都是成立的。庫默爾「成批地」證明了定理的成立,人們視之為一次重大突破。1857年,他獲得巴黎科學院的金質獎章。
這一「長征」式的證法,雖然不斷地刷新著記錄,如 1992年更進到n=1000000,但這不等於定理被證明。看來,需要另闢蹊徑。
10萬馬克獎給誰
從費爾馬時代起,巴黎科學院曾先後兩次提供獎章和獎金,獎勵證明費爾馬大定理的人,布魯塞爾科學院也懸賞重金,但都無結果。1908年,德國數學家佛爾夫斯克爾逝世的時候,將他的10萬馬克贈給了德國哥庭根科學會,作為費爾馬大定理的解答獎金。
哥庭根科學會宣布,獎金在100年內有效。哥庭根科學會不負責審查稿件。
10萬馬克在當時是一筆很大的財富,而費爾馬大定理又是小學生都能聽懂題意的問題。於是,不僅專搞數學這一行的人,就連很多工程師、牧師、教師、學生、銀行職員、政府官吏和一般市民,都在鑽研這個問題。在很短時間內,各種刊物公布的證明就有上千個之多。
當時,德國有個名叫《數學和物理文獻實錄》的雜志,自願對這方面的論文進行鑒定,到 1911年初為止,共審查了111個「證明」,全都是錯的。後來實在受不了沉重的審稿負擔,於是它宣布停止這一審查鑒定工作。但是,證明的浪潮仍洶涌澎湃,雖然兩次世界大戰後德國的貨幣多次大幅度貶值,當初的10萬馬克折算成後來的馬克已無多大價值。但是,熱愛科學的可貴精神,還在鼓勵著很多人繼續從事這一工作。
姍姍來遲的證明
經過前人的努力,證明費爾馬大定理取得了許多成果,但離定理的證明,無疑還有遙遠的距離。怎麼辦?來必須要用一種新的方法,有的數學家用起了傳統的辦法——轉化問題。
人們把丟番圖方程的解與代數曲線上的某種點聯系起來,成為一種代數幾何學的轉化,而費爾馬問題不過是丟番圖方程的一個特例。在黎曼的工作基礎上,1922年,英國數學家莫德爾提出一個重要的猜想。:「設F(x,y)是兩個變數x、y的有理系數多項式,那麼當曲線F(x,y)= 0的虧格(一種與曲線有關的量)大於1時,方程F(x,y)=0至多隻有有限組有理數」。1983年,德國29歲的數學家法爾廷斯運用蘇聯沙法拉維奇在代數幾何上的一系列結果證明了莫德爾猜想。這是費爾馬大定理證明中的又一次重大突破。法爾廷斯獲得了1986年的菲爾茲獎。
維爾斯仍採用代數幾何的方法去攀登,他把別人的成果奇妙地聯系起來,並且吸取了走過這條道路的攻克者的經驗教訓,注意到一條嶄新迂迴的路徑:如果谷山——志村猜想成立,那麼費爾馬大定理一定成立。這是1988年德國數學家費雷在研究日本數學家谷山——志村於1955年關於橢圓函數的一個猜想時發現的。
維爾斯出生於英國牛津一個神學家庭,從小對費爾馬大定理十分好奇、感興趣,這條美妙的定理導致他進入了數學的殿堂。大學畢業以後,他開始了幼年的幻想,決心去圓童年的夢。他極其秘密地進行費爾馬大定理的研究,守口如瓶,不透半點風聲。
窮七年的鍥而不舍,直到1993年6月23日。這天,英國劍橋大學牛頓數學研究所的大廳里正在進行例行的學術報告會。報告人維爾斯將他的研究成果作了長達兩個半小時的發言。10點30分,在他結束報告時,他平靜地宣布:「因此,我證明了費爾馬大定理」。這句話像一聲驚雷,把許多隻要作例行鼓掌的手定在了空中,大廳時鴉雀無聲。半分鍾後,雷鳴般的掌聲似乎要掀翻大廳的屋頂。英國學者顧不得他們優雅的紳士風度,忘情地歡騰著。
消息很快轟動了全世界。各種大眾傳媒紛紛報道,並稱之為「世紀性的成就」。人們認為,維爾斯最終證明了費爾馬大定理,被列入1993年世界科技十大成就之一。
可不久,傳媒又迅速地報出了一個「爆炸性」新聞:維爾斯的長達200頁的論文送交審查時,卻被發現證明有漏洞。
維爾斯在挫折面前沒有止步,他用一年多時間修改論文,補正漏洞。這時他已是「為伊消得人憔悴」,但他「衣帶漸寬終不悔」。1994年9月,他重新寫出一篇108頁的論文,寄往美國。論文順利通過審查,美國的《數學年刊》雜志於1995年5月發表了他的這一篇論文。維爾斯因此獲得了1995~1996年度的沃爾夫數學獎。
經過 300多年的不斷奮戰,數學家們世代的努力,圍繞費爾馬大定理作出了許多重大的發現,並促進了一些數學分支的發展,尤其是代數數論的進展。現代代數數論中的核心概念「理想數」,正是為了解決費爾馬大定理而提出的。難怪大數學家希爾伯特稱贊費爾馬大定理是「一隻會下金蛋的母雞」。
⑺ 近世代數包括哪些方面
抽象代數即近世代數。
代數〔Algebra〕是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。
初等代數學是指19世紀上半葉以前發展的方程理論,主要研究某一方程〔組〕是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性質等問題。
法國數學家伽羅瓦〔1811-1832〕在1832年運用「群」的思想徹底解決了用根式求解代數方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數的創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
抽象代數學對於全部現代數學和一些其它科學領域都有重要的影響。抽象代數學隨著數學中各分支理論的發展和應用需要而得到不斷的發展。經過伯克霍夫、馮.諾伊曼、坎托羅維奇和斯通等人在1933-1938年所做的工作,格論確定了在代數學的地位。而自20世紀40年代中葉起,作為線性代數的推廣的模論得到進一步的發展並產生深刻的影響。泛代數、同調代數、范疇等新領域也被建立和發展起來。
中國數學家在抽象代數學的研究始於30年代。當中已在許多方面取得了有意義和重要的成果,其中尤以曾炯之、華羅庚和周煒良的工作更為顯著。
==============================================================
現代數學的基礎課程正在更新。50年代數學系的教學計劃,以「高等微積分」、「高等代數」、「高等幾何」為主體。時至今日,人們認為光靠這「老三高」已不夠用了,應該發展「新三高」,即抽象代數、拓撲學和泛函分析。現代數學理論是由這三根支柱撐著的。現在,我們來追尋它們形成和發展的歷史足跡,並從這一側面窺視20世紀數學的特徵。
一、抽象代數
抽象代數在上一個世紀已經有了良好的開端,伽羅瓦在方程求根中就蘊蓄了群的概念。後來凱利對群作了抽象定義(Cayley,1821~1895)。他在1849年的一項工作里提出抽象群的概念,可惜沒有引起反響。「過早的抽象落到了聾子的耳朵里」。直到1878年,凱利又寫了抽象群的四篇文章才引起注意。1874年,挪威數學家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程時,發現某些微分方程解對一些連續變換群是不變的,一下子接觸到連續群。1882年,英國的馮·戴克(von Dyck,1856~1934)把群論的三個主要來源—方程式論,數論和無限變換群—納入統一的概念之中,並提出「生成元」概念。20世紀初給出了群的抽象公里系統。
群論的研究在20世紀沿著各個不同方向展開。例如,找出給定階的有限群的全體。群分解為單群、可解群等問題一直被研究著。有限單群的分類問題在20世紀七、八十年代才獲得可能是最終的解決。伯恩賽德(Burnside,1852~1927年)曾提出過許多問題和猜想。如1902年問道一個群G是有限生成且每個元素都是有限階,G是不是有限群?並猜想每一個非交換的單群是偶數階的。前者至今尚未解決,後者於1963年解決。
舒爾(Schur,1875~1941)於1901年提出有限群表示的問題。群特徵標的研究由弗羅貝尼烏斯首先提出。龐加萊對群論抱有特殊的熱情,他說:「群論就是那摒棄其內容而化為純粹形式的整個數學。」這當然是過分誇大了。
抽象代數的另一部分是域論。1910年施泰尼茨(Steinitz,1871~1928)發表《域的代數理論》,成為抽象代數的重要里程碑。他提出素域的概念,定義了特徵數為P的域,證明了每個域可由其素域經添加而得。
環論是抽象代數中較晚成熟的。盡管環和理想的構造在19世紀就可以找到,但抽象理論卻完全是20世紀的產物。韋德伯恩(Wedderburn,1882~1948)《論超復數》一文中,研究了線形結合代數,這種代數實際上就是環。環和理想的系統理論由諾特給出。她開始工作時,環和理想的許多結果都已經有了,但當她將這些結果給予適當的確切表述時,就得到了抽象理論。諾特把多項式環的理想論包括在一般理想論之中,為代數整數的理想論和代數整函數的理想論建立了共同的基礎。諾特對環和理想作了十分深刻的研究。人們認為這一總結性的工作在1926年臻於完成,因此,可以認為抽象代數形成的時間為1926年。范德瓦爾登根據諾特和阿廷的講稿,寫成《近世代數學》一書,(1955年第四版時改名為《代數學》),其研究對象從研究代數方程根的計算與分布進到研究數字、文字和更一般元素的代數運算規律和各種代數結構。這就發生了質變。由於抽象代數的一般性,它的方法和結果帶有基本的性質,因而滲入到各個不同的數學分支。范德瓦爾登的《代數學》至今仍是學習代數的好書。人們從抽象代數奠基人——諾特、阿廷等人燦爛的成果中吸取到了營養,從那以後,代數研究有了長足進展。
===============================================================
抽象代數
抽象代數又稱近世代數,它產生於十九世紀。
抽象代數是研究各種抽象的公理化代數系統的數學學科。由於代數可處理實數與復數以外的物集,例如向量、矩陣超數、變換等,這些物集的分別是依它們各有的演算定律而定,而數學家將個別的演算經由抽象手法把共有的內容升華出來,並因此而達到更高層次,這就誕生了抽象代數。抽象代數,包含有群論、環論、伽羅瓦理論、格論、線性代數等許多分支,並與數學其它分支相結合產生了代數幾何、代數數論、代數拓撲、拓撲群等新的數學學科。抽象代數已經成了當代大部分數學的通用語言。
被譽為天才數學家的伽羅瓦(1811-1832)是近世代數的創始人之一。他深入研究了一個方程能用根式求解所必須滿足的本質條件,他提出的「伽羅瓦域」、「伽羅瓦群」和「伽羅瓦理論」都是近世代數所研究的最重要的課題。伽羅瓦群理論被公認為十九世紀最傑出的數學成就之一。他給方程可解性問題提供了全面而透徹的解答,解決了困擾數學家們長達數百年之久的問題。伽羅瓦群論還給出了判斷幾何圖形能否用直尺和圓規作圖的一般判別法,圓滿解決了三等分任意角或倍立方體的問題都是不可解的。最重要的是,群論開辟了全新的研究領域,以結構研究代替計算,把從偏重計算研究的思維方式轉變為用結構觀念研究的思維方式,並把數學運算歸類,使群論迅速發展成為一門嶄新的數學分支,對近世代數的形成和發展產生了巨大影響。同時這種理論對於物理學、化學的發展,甚至對於二十世紀結構主義哲學的產生和發展都發生了巨大的影響。
1843年,哈密頓發明了一種乘法交換律不成立的代數——四元數代數。第二年,Grassmann推演出更有一般性的幾類代數。1857年,凱萊設計出另一種不可交換的代數——矩陣代數。他們的研究打開了抽象代數(也叫近世代數)的大門。實際上,減弱或刪去普通代數的某些假定,或將某些假定代之以別的假定(與其餘假定是兼容的),就能研究出許多種代數體系。
1870年,克隆尼克給出了有限阿貝爾群的抽象定義;狄德金開始使用「體」的說法,並研究了代數體;1893年,韋伯定義了抽象的體;1910年,施坦尼茨展開了體的一般抽象理論;狄德金和克隆尼克創立了環論;1910年,施坦尼茨總結了包括群、代數、域等在內的代數體系的研究,開創了抽象代數學。
有一位傑出女數學家被公認為抽象代數奠基人之一,被譽為代數女皇,她就是諾特, 1882年3月23日生於德國埃爾朗根,1900年入埃朗根大學,1907年在數學家哥爾丹指導下獲博士學位。
諾特的工作在代數拓撲學、代數數論、代數幾何的發展中有重要影響。1907-1919年,她主要研究代數不變式及微分不變式。她在博士論文中給出三元四次型的不變式的完全組。還解決了有理函數域的有限有理基的存在問題。對有限群的不變式具有有限基給出一個構造性證明。她不用消去法而用直接微分法生成微分不變式,在格丁根大學的就職論文中,討論連續群(李群)下不變式問題,給出諾特定理,把對稱性、不變性和物理的守恆律聯系在一起。
1920~1927年間她主要研究交換代數與「交換算術」。1916年後,她開始由古典代數學向抽象代數學過渡。1920年,她已引入「左模」、「右模」的概念。1921年寫出的<<整環的理想理論>>是交換代數發展的里程碑。建立了交換諾特環理論,證明了准素分解定理。1926年發表<<代數數域及代數函數域的理想理論的抽象構造>>,給戴德金環一個公理刻畫,指出素理想因子唯一分解定理的充分必要條件。諾特的這套理論也就是現代數學中的「環」和「理想」的系統理論,一般認為抽象代數形式的時間就是1926年,從此代數學研究對象從研究代數方程根的計算與分布,進入到研究數字、文字和更一般元素的代數運算規律和各種代數結構,完成了古典代數到抽象代數的本質的轉變。諾特當之無愧地被人們譽為抽象代數的奠基人之一。
1927-1935年,諾特研究非交換代數與「非交換算術」。她把表示理論、理想理論及模理論統一在所謂「超復系」即代數的基礎上。後又引進交叉積的概念並用決定有限維枷羅瓦擴張的布饒爾群。最後導致代數的主定理的證明,代數數域上的中心可除代數是循環代數。
諾特的思想通過她的學生范.德.瓦爾登的名著<<近世代數學>>得到廣泛的傳播。她的主要論文收在<<諾特全集>>(1982)中。
1930年,畢爾霍夫建立格論,它源於1847年的布爾代數;第二次世界大戰後,出現了各種代數系統的理論和布爾巴基學派;1955年,嘉當、格洛辛狄克和愛倫伯克建立了同調代數理論。
到現在為止,數學家們已經研究過200多種這樣的代數結構,其中最主要德若當代數和李代數是不服從結合律的代數的例子。這些工作的絕大部分屬於20世紀,它們使一般化和抽象化的思想在現代數學中得到了充分的反映。
⑻ 數學的發展歷史
搜狐博客 > 小雨兮兮 > 日誌 > 數學知識 2007-09-11 | 中國數學發展史概述 標簽: 數學 公元 九章算術 勾股定理 籌算
中國是世界文明古國之一,地處亞洲東部,瀕太平洋西岸。黃河流域和長江流域是中華民族文化的搖籃,大約在公元前2000年,在黃河中下游產生了第一個奴隸制國家——夏朝(前2033-前1562),共經歷十三世、十六王。其後又有奴隸制國家商(前562年—1066年,共歷十七世三十一王)和西周[前1027年—前771年,共歷約二百五十七年,傳十一世、十二王]。隨後出現了中國歷史上的第一次全國性大分裂形成的時期——春秋(前770年-前476年)戰國(前403年-前221年),春秋後期,中國文明進入封建時代,到公元前221年秦王贏政統一全國,出現了中國歷史上第一個封建帝制國家——秦朝(前221年—前206年),在以後的時間里,中國封建文明在秦帝國的封建體制的基礎不斷完善地持續發展,經歷了統一強盛的西漢(公元前206年—公元8年)帝國、東漢王朝(公元25年—公元220年)、戰亂頻仍與分裂的三國時期(公元208年-公元280年)、西晉(公元265年—公元316年)與東晉王朝(公元317年—公元420年)、漢民族以外的少數民族統治的南朝(公元420年—公元589年)與北朝(公元386年—公元518年)。到了公元581年,由隋再次統一了全國,建立了大一統的隋朝(公元581—618年),接著經歷了強大富庶文化繁榮的大唐王朝(公元618年—907年)、北方少數民族政權遼(公元916年-公元1125年)、經濟和文化發達的北宋(公元960年~公元1127年)與南宋(公元1127年-公元1279年)、蒙古族建立的控制范圍擴張至整個西亞地區的疆域最大的元朝(公元1271年-1368年)、元朝滅亡後,漢族人在華夏大地上重新建立起來的封建王朝——明朝(公元1368年-公元1644年),明王朝於17世紀中為少數民族女真族(滿族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中國最後一個封建帝制國家。自此之後,中國脫離了帝制而轉入了現代民主國家。
中國文明與古代埃及、美索不達米亞、印度文明一樣,都是古老的農耕文明,但與其他文明截然不同,它其持續發展兩千餘年之久,在世界文明史上是絕無僅有的。這種文明十分注重社會事務的管理,強調實際與經驗,關心人和自然的和諧與人倫社會的秩序,儒家思想作為調解社會矛盾、維系這一文明持續發展的重要思想基礎。
一、中國數學的起源與早期發展
據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:
表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間[法則是:一縱十橫,百立千僵,千、十相望,萬、百相當],並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。
籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理[西方稱勾股定理]的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
二、中國數學體系的形成與奠基
這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。
西漢末年[公元前一世紀]編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年[公元前一世紀]。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。
同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
三、中國數學教育制度的建立
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。
隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》[包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》],作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
四、中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀[宋、元兩代],籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》[11世紀中葉],劉益的《議古根源》[12世紀中葉],秦九韶的《數書九章》[1247],李冶的《測圓海鏡》[1248]和《益古演段》[1259],楊輝的《詳解九章演算法》[1261]、《日用演算法》[1262]和《楊輝演算法》[1274-1275],朱世傑的《算學啟蒙》[1299]和《四元玉鑒》[1303]等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:
公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)
公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。
公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。
五、中國數學的衰落與日用數學的發展
這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》[1592]問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。
六、西方初等數學的傳入與中西合璧
十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。
十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷[1607],其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》[2卷,1631]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷,1631]。在徐光啟主持編譯的《崇禎歷書》[137卷,1629-1633]中,介紹了有關圓椎曲線的數學知識。
入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》[53卷,1723],是一部比較全面的初等數學書,對當時的數學研究有一定影響。
七、傳統數學的整理與復興
乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》[約1859]中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷[1795-1810],開數學史研究之先河。
八、西方數學再次東進
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷[1857],使中國有了完整的《幾何原本》中譯本;《代數學》13卷[1859];《代微積拾級》18卷[1859]。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷[1872],《微積溯源》8卷[1874],《決疑數學》10卷[1880]等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。
九、中國現代數學的建立
這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來[1915年轉留法],1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學[今南京大學]和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵[1927]、陳省身[1934]、華羅庚[1936]、許寶騤[1936]等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素[1920],美國的伯克霍夫[1934]、奧斯古德[1934]、維納[1935],法國的阿達馬[1936]等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊[1952年改為《數學學報》],1951年10月《中國數學雜志》復刊[1953年改為《數學通報》]。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》[1953]、蘇步青的《射影曲線概論》[1954]、陳建功的《直角函數級數的和》[1954]和李儼的《中算史論叢》5集[1954-1955]等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
十、中國數學的特點
(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。
(2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。
(3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。
十一、中國數學對世界的影響
數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。
中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展
世界的在參考資料
⑼ 中國近代數學發展史
1919年五四運動以後,中國近代數學的研究才真正開始。 近現代數學發展時期 這一時期是從世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。 中國近3年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來(1915年轉留法),1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學(今南京大學)和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵(1927)、陳省身(1934)、華羅庚(1936)、許寶騄(1936)等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素(1920),美國的伯克霍夫(1934)、奧斯古德(1934)、維納(1935),法國的阿達馬(1936)等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年《中國數學會學報》和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騄在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。 1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊(1952年改為《數學學報》),1951年10月《中國數學雜志》復刊(1953年改為《數學通報》)。1951年8月中國數學會召開建國後第一次全國代表大會,討論了數學發展方向和各類學校數學教學改革問題。 建國後的數學研究取現代數學開始於清末民初的留學活動。較早出國學習數學的有:190得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》(1953)、蘇步青的《射影曲線概論》(1954)、陳建功的《直角函數級數的和》(1954)和李儼的《中算史論叢》(5輯,1954-1955)等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。 60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。 1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
⑽ 從猜想到舉例,驗證,得到結論這一過程在數學上叫什麼
求證發,舉出一個例子,去求證它的存在真實性,從而列出關系式,做出解答得到答案,