导航:首页 > 证书转让 > 美国基因研究成果

美国基因研究成果

发布时间:2021-09-19 11:28:27

1. 基因工程在国际方面有哪些成就

生命科学最大的基础工程

生物技术在过去的几十年风起云涌,70年代出现的重组DNA,使得人们有可能按照需求生产出基因工程的药物。到了80年代,转基因技术在农业方面的应用极大地提高了农作物、动物的产量和品质。90年代有代表性的进展就是克隆技术,使得重组生命成为可能,这是很伟大的进步。信息技术在很大程度上改变了社会,正如未来学家所说,信息技术使我们能够做的更多做得更快、更好。但是,生命科学、生物技术有可能改变人类自身,改变未来社会的发展,其影响更重大。从总体上看,生命科学无论从揭示未知领域的广度深度,从产业化的巨大前景,保证人类基本的物质生活的需求,强身健体的需要,还是推动整个人类的进步来说,都是非常重要的一个领域,因此说21世纪是生命科学的世纪是很有道理的。

人类基因组研究是目前生命科学领域里的一项最大的基础工程。生命活动在相当大的程度上是受遗传因素影响的,要理解生命,战胜疾病,提高健康,就必须对控制生命的遗传信息有所了解,而且不是支离破碎的了解,是整体化的了解。所谓基因组是生命遗传信息的总合,它不是个体基因的概念,它是所有基因在一起,再加上那些调控基因的遗传信息。这个项目的驱动因素也是双重性的,一个是科学家的好奇心,求知欲望,像任何其他基础科学一样;另外一个巨大的驱动力就是人类健康的一种需求。

生命科学要揭示的奥秘很多,整个框架搭起来的过程就是从具象到微象,从大到小,由表及里,但到达"里"以后发现,对个别的孤立的分子进行研究,恐怕不能揭示其中的规律,这样就从分析进入到综合。进入到人类基因组时代,生命科学全新形态,即大科学形态,系统科学形态,交叉科学形态。人类基因组揭示的信息量大概只有天文的数字可以与之相比。如果把生物的变异性考虑进去的话,这种海量信息的储存、分析、传输,收集,把信息从数据变成知识,这就要求信息技术、数学等加入进来,所以生物信息学产生了。要在同一时间研究所有的基因、所有的蛋白质的表达和相互作用,是一种系统科学的研究方法。为了进行这样的分析,新的平台就要发展,比如生物芯片,在一个指甲盖大小的面积上可以把人类的所有基因,将来可能发展到所有的蛋白,都放在这个小的平面上,用定型化来进行系统化的研究。当今的生命科学的大科学平台,为我们揭示生命的奥秘提供了可能。破译"天书"只为造福社会

经过全球科学家包括中国科学家的努力,2000年6月人类基因组计划完成了框架测序,大概再过两三年,到2003年就可以把人类基因组的精细的序列完成。中国科学家承担的的1%的任务完成得还是非常优秀的,在6个国家中最早地完成了自己应该承担的区域的精细测序。也就是说,第一份人类的遗传"天书"已经展现在我们眼前,但是我们还不怎么读得懂。现在提出功能基因组计划,就是要理解这个"天书"里说的是什么内容,"天书"上的信息是怎么表达的,这种表达又是如何控制的,这种表达、控制和环境又是如何相互作用的,这种相互作用在人类的健康和疾病当中又是怎么样变化的。

人的生老病死这些活动,实际上既有遗传因素,又有环境因素。人类基因组计划研究的意义最后还是体现在对人类的实际贡献上,尤其体现在对人类重大疾病的防治上来。这里又有一个医学基因组问题。基因组是有变异的,不是一成不变的,这就为遗传信息的变异奠定了基础。为什么在一些人群和家族中比较容易发生某些疾病,比如高血压、肥胖症等。据调查,目前中国人中有25%超重,少儿肥胖者达7-8%,而且增长速度很快。这里既有遗传因素又有其他因素,医学基因组学就是要搞清那些遗传疾病的原因及其防治办法。由于人的千差万别,对于疾病的易感性,对药物的反应性包括对疗效的反应性和对副作用的反应性,都跟遗传信息的变异有关,所以,不仅要"天书"读出来,而且要把人群、个体之间主要差异,就是把"天书"里的那些符号识别出来。

基因技术提供无限商机

基因技术对医药行业来说是提供了无限商机,一部分基因的蛋白质产物可以直接用来做药,大多数基因蛋白质的产物可以用来筛选药物。化学药物在身体里作用的靶点,主要是基因编码的蛋白质。以前是先有化合物,再来一点点识别这个化合物作用在哪些靶位上。现在反过来了,先知道那么多的靶点,再来筛选化合物,这样药物发现的速度就加快了。识别疾病基因就使疾病的诊断进入到基因诊断阶段,对异常的基因进行替代,就产生了基因治疗。

人类基因组发展到今天,主要就是从整理天书到真正的生物学功能,然后应用于人类的治疗疾病、健康和医药上。人类基因组计划也推动了对其他生命基因组的研究,推而广之,还包括了对简单生命体的基因组,比如大肠杆菌一直到植物,比如水稻再到动物的研究。仅仅看到人类基因天书,很难理解为什么是人类,什么让我们区别于其他动物。把生命天书拿出来,从最简单的生命体到最复杂的人类生命进化过程中,不同阶段的生命体的遗传特性,拿出来进行比较,就可以发现在基因组水平进化的规律,了解基因组的结构和功能怎么样从简单到复杂,由低级到高级发展的。这个计划的带动对解析生命科学的最复杂问题如进化、发育、脑功能等,都有巨大作用。

中国的生命科学研究过去几十年来走过了一条艰难曲折的道路。直到20世纪80年代末期,基因组科学在很落后的情况下,争取一个很快的发展。因为基因学科是带动学科,中国的科学发生了前所未有的整合、发展,促进了生命科学的发展。应该说,人类基因组的参与,开始是跟踪,后来是参与,后来是人类疾病的研究,如果说人类疾病组的研究我们还只是补充、跟踪、参与,那么,水稻基因组的研究,我们就是主角。目前,多个课题研究进展顺利,预计2002年这些成果都可能以长篇论文的方式,在国际上最著名的重要专业刊物上发表。基因工程是生命科学的重要组成部分,比如说,分子生物学跟基因组的工作就有千丝万缕的联系。在前沿学科,我们有了比较大的进展,从耳聋的基因到血压基因、指趾基因,从白血病、肝癌到肌体瘤、鼻咽癌等等。实际上,在肿瘤基因方面,中国是国际上最早涉及的国家之一。基因研究的成果,在医学科学上起子一个很大的带动作用。

在前沿生物高科技领域,中国科学家能产生任何一种已知的生物药品。我们已经掌握了20多种生物克隆的核心技术,新近的克隆羊、克隆牛,已有成功的报道。转基因已走进生产领域,国内的基因棉花,可以和国外的转基因棉花一决雌雄。生物信息学平台已初步建立起来,而且形成一些自己的特色,在其它墓因组的研究中都已得到很好的发挥。 把知识变成经济竞争力

虽然中国的生物科学研究成果非常喜人,但离国家的要求差距还很大。加入WTO就暴露出我们的差距非常之大。在生命科学领域,我觉得有两个重要课题:一是如何提高农业的品质,另一个如何把国家的制药工业搞上去。

中国农业的效率、效益不高,竞争力不够,农民富不起来,科学界有责任啊!如何让农产品不仅是数量上,而且是质量上提高,同时不要以牺牲环境、资源为代价,只能靠科学技术。农民正眼巴巴地等着科技人员去解决农业生产上许多问题。农民富不起来,中国的现代化也是一句空话。这是吃饭的问题。

再看吃药的问题。现在中国虽然是药物生产大国,但是我们的技术创新能力很低,我们的研究能力、创新药物能力很低,90%以上都是仿制药物。我们在国际中药市场上只占3%的份额,严重落后于日本、韩国等国。当健康水平不断提高,医疗条件不断改善,总体上已经控制了大部分危性传染病,营养性(营养缺陷)的疾病也会逐步消失,将来退行性疾病会成为主要的危害。包括老年痴呆症、器官功能退化等。还有代谢性疾病,如心血管、脑血管疾病,脚颤,糖尿病等等。生老病死,由盛到衰,衰就是人体在衰老过程中的器官功能的减退,并由此引起的疾病。此外,还有外伤、器官损伤等等,进行组织和器官的再造,由此产生一个重大需求。面对这些疾病成为人类健康的障碍时,就提出了一种医学,叫"再生医学",包括减缓衰老和替代人体衰老的器官。完全由非生命材料造成的人工器官,还存在很大的局限性,所以,器官再造就成为很引人注目的生物技术发展的新潮流。在这一过程中,干细胞技术、克隆技术提供了一个条件,带来了医学新的曙光。

现在的一个重要问题是,如何把我们基础研究所积累起来的知识,要变成产品,变成市场,变成经济上的竞争力。这里首先需要科研人员转变观念,需要进行技术创新。
参考资料:http://www.chinamtcm.com/html/2282.htm
回答者:tianzhu345 - 门吏 三级 6-12 19:38
评价已经被关闭 目前有 2 个人评价

100% (2) 不好
0% (0)

2. 《美国人类遗传学杂志》发表了上海交大医学院科学家成功定位多发性骨性连接综合征(SYNS)的发病基因的研

(1)分析遗传系谱图可知,Ⅱ-1和Ⅱ-2患SYNS遗传病,其女儿Ⅲ-1不患该病,说明SYNS的遗传方式是常染色体显性遗传;假设SYNS遗传病由A基因控制,色盲基因是b,分析遗传系谱图可知,Ⅲ-4患有SYNS遗传病,但是其父亲正常,因此对于SYNS遗传病来说,Ⅲ-4的基因型为Aa,其双亲不患色盲,但是有一个患色盲的弟弟,因此其母亲是色盲致病基因的携带者,Ⅲ-4的基因型为XBXB或XBXb,各占

1
2
,与一个正常男性(aaXBY)婚配,男孩的患两种病的概率是
1
2
×
1
2
×
1
2
1
8

(2)根据题意,FGF9含有208个氨基酸,基因转录、翻译过程形成蛋白质时基因中碱基数:mRNA中碱基数:蛋白质中的氨基酸数=6:3:1,因此FGF9基因至少含有的碱基数目为208×6=1248个.
(3)由题意知,丝氨酸的遗传密码子与天冬氨酸的遗传密码子最少是2个碱基不同,因此,FGF9的第99位氨基酸由正常的丝氨酸突变成了天冬氨酸,则FGF9基因中至少有
2个碱基对发生替换.
(4)由题意知,在自然人群中SYNS病发病率为19%,正常人aa 的概率是81%,则人群中正常基因的基因频率为90%,A的基因频率为10%,自然人群中仅患SYNS病的女性是杂合子的概率是2×90%×10%÷19%=
18
19
,Ⅲ-2杂合子的概率是
2
3
,其后代隐性纯合子的概率是
2
3
×
18
19
×
1
4
3
19
,由于该病是常染色体显性遗传病,因此患病的概率是1-
3
19
16
19

故答案为:
(1)常染色体显性遗传
1
8

(2)1248
(3)2
(4)
16
19

3. 美国劳伦斯伯克利国家实验室的研究成果

以下是劳伦斯伯克利国家实验室建立80年间的主要科研成就 :
¨发明了回旋加速器 - 欧内斯特·劳伦斯(.O. Lawrence)获得1939年诺贝尔物理奖的圆形加速器;
¨发现了锝 - 成为医学中最广泛应用锝放射性同位素的第一个人造元素;
¨建造了60英寸锝回旋加速器 - 诞生了克罗克辐射实验室和核医学;
¨发现了镎和钚 - 产生了第一个超铀元素,Edwin McMillan 和Glenn Seaborg获得1951年诺贝尔化学奖;
¨发现了碳14 - 称为测定人类史前古器物年代的原子钟;
¨建造了184英寸的同步回旋加速器 - 由加州大学伯克利分校校园移到伯克利山上的位置;
¨发明了第一台质子直线加速器 - 至今肿瘤门诊用于治疗癌症的一种类型的加速器;
¨发现了锫 - 一种放射性的稀土金属;
¨发明了Anger照相机 - Hal Anger研制出第一台组织中成像放射性同位素伽马射线照相机;
¨发明了液氢泡室 - 使Donald Glaser获得1960年诺贝尔物理奖;
¨建造了贝伐特朗质子加速器 - 加速器击碎10亿电子伏特质子(GeV)的障碍;
¨发现了反质子 - Emilio Segrè和Owen Chamberlain获得1959年诺贝尔物理奖;
¨发现了反中子 - 反物质或镜象物质扩大到包括电中性基本粒子;
¨确定了碳的光合作用路径 - Melvin Calvin获得1961年诺贝尔化学奖;
¨发现了铑 - 按LBNL创始人Ernest O. Lawrence 命名的放射性稀土金属;
¨88英寸回旋加速器开放 - 今天仍用于研究电离辐射对基于空间电子学的效应;
¨发明了化学激光器 - 成为最通用和广泛使用的科学工具之一;
¨发现了基本粒子中的“共振态”- Luis Alvarez获得1968年诺贝尔物理奖;
¨正电子断层照相(PET)获得突破 - 开发出世界上用于诊断研究分辨率最高的PET扫描仪
¨发现了j/psi粒子 - 包括粲夸克第一个证据的介子;
¨发现了106号元素Sg - 以LBNL诺贝尔奖获得者Glenn Seaborg 命名的放射性合成元素;
¨建造了贝伐拉克 - 超级重离子直线加速器和贝伐特朗质子加速器组合在一起将重离子加速到相对论的能量;
¨发明了时间投影室 - 时间投影室仍然是高能物理粒子探测器的重负荷设备;
¨超导磁铁打破特斯拉记录 - LBNL成为世界上超导电磁技术的领导者;
¨在斯坦福建造了正负电子对撞机 - 与SLAC国家加速器实验室联合建造的项目诞生了第一台物质反物质对撞机;
¨在帕克菲尔德(Parkfield)开始进行地震研究 - LBNL成为地下成像技术的领导者;
¨构思出10米望远镜 - 提出世界上最大光学望远镜中现在使用的分节反射镜;
¨发明了SQUIDs - 测量超微型磁场用的超导量子干涉设备(SQUIDs);
¨发明了智能窗 - 嵌入的电极能使窗户的玻璃对阳光的变化作出反应;
¨恐龙灭绝 - 铱在KT边界的异常使恐龙灭绝与小行星撞击地球联系在一起
¨国家电子显微术中心开放 - 世界上最强大的电子显微镜之家将产生第一批碳原子晶格图象;
¨创造了DOE-2程序 - 用于模拟加热、照明和空调费用的节能计算程序;
¨观测到了集体流 - 核物质可压缩到高温和密度的第一个直接证据推动寻找夸克胶子等离子体;
¨交叉分子束研究 - 李远哲赢得1988年诺贝尔化学奖;
¨发明了核磁共振魔角和双旋转 - 一系列新核技术中的第一种,使核磁共振技术从固体扩展到液体和气体;
¨确定了好的和坏的胆固醇 - 在胆固醇种发现了两种形式的脂蛋白,高密度和低密度,前者是好的,后者对心脏病是坏的;
¨固态荧光灯镇流器 - 高频电子镇流器导致商业开发出紧凑型荧光灯;
¨分子束外延(MBE)-4 惰性聚变能实验- 直线加速器加速并将平行的重离子束聚焦到1 MeV,提供了磁聚变能的一种替代物;
¨北极发现煤烟 - LBNL的黑碳仪揭示在北极辐射吸收黑色颗粒浓度大,说明污染是全球性的问题;
¨发明了随机涡方法 - 数学模型描述湍流,在宇宙中最常见的运动形式;
¨创造了下一代气凝胶 - LBNL研制96%是空气的材料,导致建立美国第一个商业气凝胶公司;
¨建立了正常人上皮细胞株 - 形成在培育中无限生活的细胞为癌症研究打开新的大门;
¨揭开了氡的危险 -发现氡气通过地下室进入家庭在美国某些地区构成重大辐射危险;
¨提出细胞外基质理论 - 突破性的理论将乳腺癌的发展与围绕乳腺细胞的微环境崩溃联系在一起;
¨人类基因组工程开始 -被指定能源部两个中心之一的LBNL进行绘制和对人类基因组进行排序,该项目于2003年成功完成;
¨发明了固体聚合物电池 - 新种类的聚合物阴极使新家族的轻型充电电池成为可能;
¨COBE卫星记录早期宇宙的萌芽 - LBNL搭载美国宇航局卫星的探测器揭示导致产生今天星系的宇宙微波背景的波动;
¨先进光源ALS开放 - 产生世界上用于科学研究的最亮的软X射线和紫外光;
¨确定了心脏病的基因 - 新的证据将动脉硬化症与一个单个显性基因联系在一起;
¨超硬碳氮化合物 - 在理论模型基础上设计的新化合物比钻石更强硬;
¨第一次看到DNA双螺旋线 - 不变的DNA图像让科学家门首次看到双螺旋线;
¨凯斯特森(Kesterson)水库威胁揭密 - LBNL发现被农业径流硒污染野生动物庇护所暴露普遍的生态危害;
¨第一个飞秒X射线束流 - 先进光源ALS的束流脉冲长度被限定到仅一秒的十亿分之几秒;
¨发明了硫灯 - 实验室科学家们帮助分子发射器产生的能效比传统白炽灯泡高四倍和亮度高700倍;
¨国家能源研究科学计算中心移到LBNL - LBNL成为国家能源研究科学计算中心的东道主,该中心是美国能源部科学局的旗舰科学计算设施;
¨细胞衰老与癌症 - 生物测定帮助科学家们确定在活着的有机体中的生物衰老细胞,并发现与癌症的联系;
¨世界上最强大的伽马探测器(Gammasphere)亮相 - 世界上最敏感的伽马辐射探测器赋予好莱坞灵感,生产出好莱坞大片《绿巨人》;
¨构思出B工厂 - 与SLAC合作建造第一台不对称粒子对撞机,称为B工厂,它将继续显示CP破缺的第一个证据;
¨镰状细胞和转基因小鼠唐氏综合征 - 带有人类基因的小鼠模型模仿镰状细胞疾病和将DYRK(蛋白激酶)基因与智力低下症联系在一起;
¨传输控制协议/因特网互联协议(TCP / IP)的流量控制算法 - LBNL开发的算法大大减少网络的交通挤塞情况,并被广泛地与认为能够防止互联网发生不可避免的拥塞崩溃;
¨发现了顶夸克 - LBNL的科学家参加了在Tevatron上进行的两个历史性CDF和D0实验,找到预测的六个夸克中最后、也是最难以捉摸的顶夸克;
¨紫外线净水器防止霍乱暴发 - 紫外线光快速和廉价消毒偏远地区的水;
¨尤卡山的3维计算机模型- 水文地质模型显示核废料储存库选在内华达山是合理的;
¨发现了暗能量 - 超新星宇宙学项目揭示被称为“暗能量”的反引力导致宇宙加速膨胀;
¨微管蛋白的第一个三维原子尺度模型 - 图像揭示灵活蛋白质的结构,它启动生物细胞的有丝分裂和其他关键功能;
¨完成散裂中子源的前端系统 - LBNL完成为散裂中子源产生负氢离子并将其发送到田纳西州橡树岭国家实验室的加速器的工作。
¨来自加拿大中微子观测站(SNO)的初步结果表明中微子质量 - 来自SNO第一年的数据揭示了诡异亚原子粒子的微小质量;
¨开发了混合型太阳能电池 - 纳米技术与塑料电子学相结合,产生可以大量生产多种不同形状的光电设备;
¨南大洋和弗里奥(Frio)试验 - 实验室开始在南极海岸和得克萨斯州休斯敦附近的深部咸水含水层进行碳固存研究;
¨发明了小人激光器 - 紫外发光纳米线激光器测量100纳米的直径,或千分之一的人的头发
¨发明了伯克利灯 - 荧光台灯比传统台灯减少50%的能源费用;
¨合成生物学的突破 - 在主要研究所的第一个合成生物学部创造了抗疟疾和抗艾滋病的超级药物合成基因;
¨创造了世界上最小的合成电动机 - 由碳纳米管和金子制作的旋转电动机长度低于300纳米;
¨分子铸造厂开放 - 能源部国家用户设施,专门用于涉及、合成和表征纳米尺度材料。
¨将窗变成了节能器 - LBNL开发出阻止热夏天进入冬天热逃脱的窗口镀膜;
¨斜屋顶防全球变暖 - LBNL在分析和实现反射阳光、降低表面温度和大幅度消减冷却费用的冷屋顶材料中处于领先地位;
¨保存了不久以前的声音 - 实验室的科学家们研制出一种进行数字化改造过于脆弱无法播放的老化录音,如从19世纪后期爱迪生蜡盘的高科技方式。
¨使器具物尽其职 - LBNL的科学家们帮助拟定了各种器具的联邦政府能效标准;
¨创造了超小型DNA取样器 - 确定空气、水和土壤样品中微生物的工具,广泛用于公共卫生、医学和环境清除项目;
¨开发超强气候模型 - 在LBNL国家能源研究科学计算中心进行的气候模拟帮助使全球变暖称为餐桌上的交谈话题;
¨促成了中国的能源效率- 中国在制定能源标识和电器标准时,LBNL给予了相当大的支持,还帮助提高中国的住宅和商业楼宇以及工业部门如水泥制造业的能源效率;
¨使星星更近 - 二十世纪七十年代LBNL开发的革命性的望远镜技术能使科学家们一睹数十亿光年远的超新星。拼接镜面设计用于世界上的许多天文台;
-2014年8月24日,美国加利福尼亚州旧金山北部地区发生6.0级地震。此次地震为当地25年来最强烈的地震,造成至少170人受伤,旧金山地震发生10秒前,美国伯克利地震学实验室的一个地震警报系统成功探测到了这次地震,并向地震学家发出了预警。 尽管该实验室开发的这一实验地震警告系统还处于演示阶段,仅向一小部分测试用户推送信息,但该系统提前探测到了24日的地震,并向实验室人员发出警告。提前10秒钟发布地震预警,可以让人们有时间进行躲避,从而减少在地震中受伤或死亡的风险。科学界希望这一系统最多可在地震来临前50秒向民众发布地震预警。

4. 基因的研究成果

从孟德尔定律的发现到现在,一百多年来人们对基因的认识在不断地深化。
基因的分离定律
1866年,奥地利学者G.J.孟德尔在他的豌豆杂交实验论文中,用大写字母A、B等代表显性性状如圆粒、子叶黄色等,用小写字母a、b等代表隐性性状如皱粒、子叶绿色等。他并没有严格地区分所观察到的性状和控制这些性状的遗传因子。但是从他用这些符号所表示的杂交结果来看,这些符号正是在形式上代表着基因,而且至今在遗传学的分析中为了方便起见仍沿用它们来代表基因。 20世纪初孟德尔的工作被重新发现以后,他的定律又在许多动植物中得到验证。1909年丹麦学者W.L.约翰森提出了基因这一名词,用它来指任何一种生物中控制任何性状而其遗传规律又符合于孟德尔定律的遗传因子,并且提出基因型和表现型这样两个术语,前者是一个生物的基因成分,后者是这些基因所表现的性状。 1910年美国遗传学家兼胚胎学家T.H.摩尔根在果蝇中发现白色复眼 (white eye,W)突变型,首先说明基因可以发生突变,而且由此可以知道野生型基因W+具有使果蝇的复眼发育成为红色这一生理功能。1911年摩尔根又在果蝇的 X连锁基因白眼和短翅两品系的杂交子二代中,发现了白眼、短翅果蝇和正常的红眼长翅果蝇,首先指出位于同一染色体上的两个基因可以通过染色体交换而分处在两个同源染色体上。交换是一个普遍存在的遗传现象,不过直到40年代中期为止,还从来没有发现过交换发生在一个基因内部的现象。因此当时认为一个基因是一个功能单位,也是一个突变单位和一个交换单位。 40年代以前,对于基因的化学本质并不了解。直到1944年 O.T.埃弗里等证实肺炎双球菌的转化因子是DNA,才首次用实验证明了基因是由DNA构成。 1955年S.本泽用大肠杆菌T4噬菌体作材料,研究快速溶菌突变型rⅡ的基因精细结构,发现在一个基因内部的许多位点上可以发生突变,并且可以在这些位点之间发生交换,从而说明一个基因是一个功能单位,但并不是一个突变单位和交换单位,因为一个基因可以包括许多突变单位(突变子)和许多重组单位(重组子)(见互补作用)。 1969年J.夏皮罗等从大肠杆菌中分离到乳糖操纵子,并且使它在离体条件下进行转录,证实了一个基因可以离开染色体而独立地发挥作用,于是颗粒性的遗传概念更加确立。随着重组DNA技术和核酸的顺序分析技术的发展,对基因的认识又有了新的发展,主要是发现了重叠的基因、断裂的基因和可以移动位置的基因。
基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使生物可以在自然选择中被选择出最适合自然的个体。 含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体都在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。 在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。 基因在染色体上的位置称为座位,每个基因都有自己特定的座位。在同源染色体上占据相同座位的不同形态的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。 属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。

5. 在基因功能研究领域,近10年来有哪些新的研究成果

人类基因组计划引发的后基因组时代到来
高通量生物分析技术(如基因芯片,蛋白质组学等)
RNA科学的复兴:大量非编码RNA小分子的发现,对基因组的功能起到调控作用
干细胞技术
克隆技术

6. 生命科学近五年的科研成果有什么呀关于遗传基因方面的有么

下面列出的是Science杂志中列出的2008,09年几个生命科学方面研究热点。
1、IPS细胞。2008年十大科学进展之首的细胞重编程能把成人皮肤细胞重新编程为诱导多能干(inced pluripotent stem, 简称iPS)细胞,而iPS细胞可以被诱导发育为各种成熟细胞类型。细胞重编程有望迎来一个新的研究浪潮。研究人员采用这些方法可以从个体患者身上造出新的细胞、来检查这些细胞是否有生理和遗传异常,或用它们来试验可能的治疗方法。科学家已经从I型糖尿病、帕金森病和另外至少十几种疾病的患者身上造出了iPS细胞。随着越来越多的研究人员加入这个领域、并且取得新见解(如果他们运气好的话),2010年还会有更多种疾病的iPS细胞制造出来。

2、基因治疗指通过修复DNA来修复发生故障的细胞,它为治疗单个基因缺陷引起的疾病提供了一个精美的解决方案。在人类身上的研究始于1990年,但是该领域一直面临各种技术挑战和重重困难,比如一位志愿者在临床试验中死亡。但是随着研究人员报告的对几种破坏性疾病的成功治疗,基因疗法今年有了转机。这些成功案例包括:

先天性黑蒙症(Leber's congenital amaurosis, 简称LCA)。这是一种罕见的让患者在婴儿期失明的遗传疾病。美国和英国的研究人员给黑蒙症患者的一只眼睛注射一种携带外来基因的无害病毒,该基因编码是一种制造感光色素所必需的酶的编码。在第一批临床试验中,12名部分失明患者的感光能力都有改善。其中4个孩子重获视力,能进行体育运动,在学校也不再需要学习辅助器材。(另一个研究小组用类似的方法使先天红绿色盲的松树猴恢复了全色视觉。)

X连锁肾上腺脑白质营养不良(adrenoleukodystrophy, 简称ADL)。这是一种大脑疾病,通常会导致男童在青春期前死亡。此种疾病是编码制造维持神经髓鞘的蛋白质的基因有缺陷造成的。一个法国研究小组往两个患有此病的7岁男童的血细胞里注入一个纠正基因,有些细胞开始制造缺失的蛋白质并且看来转移到了他们的大脑。两年后,ADL典型的渐进性脑损伤已经停止。这次试验也是第一次用失效的HIV病毒把基因带入细胞,该病毒导致癌症的可能性比过去用的载体小。

“泡泡男孩”病,又名严重联合免疫缺陷病(severe combined immunodeficiency,简称SCID)。这种病是由于缺乏一种叫腺苷脱氨酶的酶而引起的。今年1月,意大利研究人员公布了他们对儿童患者8年试验的最新结果。10名患者中有8名不再需要酶替代疗法,过上了正常人的生活;而且他们中没有发现基因疗法的严重副作用。(治疗一种相关疾病——X连锁SCID——的基因疗法恢复了19名婴儿的免疫系统,但是他们中有5名患上白血病,其中1名死亡。)

3、植物基因组学。2009年,黄瓜、高粱和两个玉米品种的基因组序列发表了,对木薯和油棕榈也进行了测序,并且对其它很多植物的测序也取得了进展。

4、研究人员在哺乳动物、酵母以及常见的果蝇身上都发现了物种形成基因,使这种基因的数目从2006年的5个激增到15个,当然这要看人们如何定义物种形成基因。研究人员还找到了包括涉及定义新物种的几个调控区在内的其它DNA,并在了解对物种形成的基因组范围影响上做了不少工作。

7. 我国基因研究的成果意义是什么

以破译人类基因组全部遗传信息为目的的科学研究,是当前国际生物医学界攻克的前沿课题之一。据介绍,这项研究中最受关注的是对人类疾病相关基因和具有重要生物学功能基因的克隆分离和鉴定,以此获得对相关疾病进行基因治疗的可能性和生产生物制品的权利。

人类基因项目是国家“863”高科技计划的重要组成部分。在医学上,人类基因与人类的疾病有相关性,一旦弄清某基因与某疾病的具体关系,人们就可以制造出该疾病的基因药物,对人类健康长寿产生巨大影响。据介绍,人类基因样本总数约10万条,现已找到并完成测序的约有8000条。

近些年我国对人类基因组研究十分关注,在国家自然科学基金、“863计划”以及地方政府等多渠道的经费资助下,已在北京、上海两地建立了具备先进科研条件的国家级基因研究中心。同时,科技人员紧跟世界新技术的发展,在基因工程研究的关键技术和成果产业化方面均有突破性的进展。我国人类基因组研究已走在世界先进行列,某些基因工程药物也开始进入应用阶段。目前,我国在蛋白基因的突变研究、血液病的基因治疗、食管癌研究、分子进化理论、白血病相关基因的结构研究等项目的基础性研究上,有的成果已处于国际领先水平,有的已形成了自己的技术体系。而乙肝疫苗、重组α型干扰素、重组人红细胞生成素,以及转基因动物的药物生产器等10多个基因工程药物,均已进入了产业化阶段。

8. 美国对基因的研究到了哪一步

不好说啊。
基因(遗传因子)是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。

9. 美国顶尖科学家最新研究报告,转基因食品是否有毒

美国顶尖科学家最新研究报告,转基因食品是否有毒?
心路独舞

转基因食品的安全性一直是国内的热点话题,我就曾收到过很多读者的留言和询问,因此一直想找个美国相关专家做一个深度访谈。这次去波士顿培训的途中在耶鲁大学停留看一个朋友,恰好是该领域的专家级人物,问起这个话题他赶紧说不用采访我了,最新美国国家科学、工程和医学研究院最近公布了一个系统研究报告,我于是马上搜出来,以下是关于这个报告的主要内容。
转基因作物(缩写GMO),通常指的是科学家在实验室进行基因改良后得到的植物,因此“转基因”并不是一个正确的叫法,严格的名词应该是“基因工程”,美国最常见的转基因植物包括玉米、大豆和棉花,此外也有油菜籽、苜蓿、甜菜、木瓜和美式南瓜。自上世纪八十年代始,美国的生物学家就已经在使用基因工程技术取得或改善植物的一些特性,譬如延长水果的保质期、增加维生素含量或抗病灾等,然而目前取得广泛商业应用的只有那些能演变出能抗除草剂和对害虫有毒性庄稼的基因工程技术。
一、研究对象
最近,美国国家科学、工程和医学研究院(National Academies of Sciences, Engineering, and Medicine)的专家团队(具体名单列在最后),对目前已商业化的转基因植物和食品完成了一项系统的研究,他们使用了在过去二十多年里收集的证据,对900项基因工程技术相关的研究成果和论文进行了检验,其中包含关于玉米、大豆、棉花等几乎目前所有已商业化的基因工程植物的开发、使用和影响,甚至深入到基因工程和传统育种植物的具体数据,除此之外他们还在三个公开听证会、15个公共网络研讨会上听取了80个持各种不同观点演讲者的报告,同时研究分析了700多个公众评论,以全面了解围绕基因工程庄稼的各种不同看法。这项研究的目的是为解答公众越来越关注的转基因食品安全问题。
二、研究结论
研究结果显示,没有证据证实转基因和传统育种技术的庄稼之间有什么明显不同,基因工程和传统育种技术之间的差别已经越来越不明显,尽管其对健康和环境的长期、细微影响的研究和评估存在很大困难,但研究委员会发现,目前已商业化的基因工程食品对人体健康的影响并不比传统育种技术食品更有危害,也没有影响环境的证据,相反,庄稼对目前基因工程优点本身演变的抗拒性才是农业面临的最大问题。
1、对人类健康的影响
委员会调查了所有的研究成果,没发现任何食用基因工程食品直接危害人体健康的证据。动物和化学成分研究证实转基因食品并不比常规来源的食品更不安全,或对人体健康构成威胁。尽管缺少转基因食品的长期流行病学研究结果,但目前已有的研究数据证实,食用转基因食品并不导致任何疾病或长期的健康问题,相反却有证据表明,抗害虫庄稼反而对健康有利,因为减少了杀虫剂的使用。目前有些正在开发的一些基因工程植物甚至是专门为改善人类健康设计的,如增加胡萝卜素含量来减少发展中国家的维生素A缺乏症和眼盲等。
2、对环境的影响
研究发现,种植抗害虫或抗除草剂的基因工程庄稼并没有减少农场植物和昆虫的种类,有时还导致昆虫种类的增加,虽然基因会从基因工程植物向野生种类转移,但目前并没有发现任何对环境有负面影响的证据,对此的长期影响研究将是一个很难进行的课题,也很难得出确定性的结论。
3、对农业的影响
现有的证据表明,种植基因工程的大豆、棉花和玉米有更好的经济效益,尤其是小型农场在沿用基因工程品种的最初几年内,那些能得到机构资助和帮助的农场主收益最大。在产量增加上,理论上抗害虫基因工程庄稼会减少因害虫造成的损失,从而应该提高增产的幅度,但委员会评估了在引入基因工程大豆、棉花和玉米前后各十年产量的数据,并不能证实基因工程能够增加庄稼的产量,委员会认为未来的基因工程技术或许会增加产量提高的速度,但需要进一步广泛研究才能确定。
三、委员会提议
委员会认为,不管是基因工程还是传统育种技术,目的都是改善植物的基因,从而增加食物的安全性,因此立法不应该苛求采用的手段,而是最终得到什么样的产品,立法应该集中在新植物的新特性和其危害上,为确定一个新物种是否应该进行安全性测试,立法者不应该追究它是基因工程来的还是传统育种来的,而是应集中确定在植物中能引入(不管是有意还是无意)什么样的特点、引入多少会对人体健康和环境造成危害、危害的可能程度和人体能接受的程度等。目前的新 “-omics”分析技术已能够测出植物性质的微小变化,因此能够测出新庄稼种类里不希望出现的一些变化。
类似观点在以前其他机构的研究报告中也提到过,因为目前美国农业部(USDA)和环境保护署(EPA)对新植物种类的评估和批准主要取决于生产工艺,但这已越来越被证实并不科学,也落后与基因编辑和合成生物学的飞速发展。目前,传统育种和基因工程技术之间的差别已经越来越不明显,例如基因编辑技术CRISPR/Cas9可用取代一个
记得采纳哦
我是EEI

10. 方舟子为什么要怒怼“基因皇后”陈晓宁,称其科研成果在美国很便宜

他的工作就是打假,方舟子其人方舟子,原名方是民,1990年毕业于中国科技大学生物系,毕业后到美国留学,获得生物化学博士学位。在进行了一段时间的博士后研究之后,他放弃了科学研究,成了定居美国的自由职业者。

打假结果:方舟子接受央视采访时称,他的揭露对基因皇后来说毫发无损,因为她实际上是回国来办公司,又回美国去了,但是她那个公司本来是要拉很大一笔资金,有三亿元的资金,被揭露以后,投资方不投了。

阅读全文

与美国基因研究成果相关的资料

热点内容
全椒到马鞍山汽车时刻表 浏览:899
logo可用字体版权 浏览:861
马鞍山中豪 浏览:929
tefl证书在哪里考 浏览:564
小陆离与成果 浏览:654
迷你世界冒险转化创造 浏览:680
2014纳税申报期限 浏览:274
lol2016猴年限定皮肤 浏览:48
陕西房地产估价师证书领取地点 浏览:140
证书小知识 浏览:431
马鞍山何兵 浏览:376
设计创作版权合作合同范本 浏览:482
省知识产权局侯社教 浏览:51
道闸3C证书 浏览:820
土地使用权期满地上建筑物 浏览:455
武汉圆通快递投诉电话 浏览:33
马鞍山到开原 浏览:797
版权标记放在哪里 浏览:441
创造与魔法陪配方 浏览:724
领悟人生真谛创造人生价值感悟 浏览:944