1. 学大数据的都需要考哪些证书
大讲台大数据培训为你解答:
简而言之,从大数据中提取大价值的挖掘技术。专业的说,就是根据特定目标,从数据收集与存储,数据筛选,算法分析与预测,数据分析结果展示,以辅助作出最正确的抉择,其数据级别通常在PB以上,复杂程度前所未有。
关键作用是什么?
挖掘出各个行业的关键路径,帮助决策,提升社会(或企业)运作效率。
最初是在怎样的场景下提出?
在基础学科经历信息快速发展之后,就诞生了“大数据”的说法。但其实是随着数据指数级的增长,尤其是互联网商业化和传感器移动化之后,从大数据中挖掘出某个事件现在和未来的趋势才真正意义上被大众所接触。
大数据技术包含的内容概述?
非结构化数据收集架构,数据分布式存储集群,数据清洗筛选架构,数据并行分析模拟架构,高级统计预测算法,数据可视化工具。
大数据技术学习路线指南:
大数据技术的具体内容?
分布式存储计算架构(强烈推荐:Hadoop)
分布式程序设计(包含:ApachePig或者Hive)
分布式文件系统(比如:GoogleGFS)
多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo,DynamoDB等)
数据收集架构(比如:Kinesis,Kafla)
集成开发环境(比如:R-Studio)
程序开发辅助工具(比如:大量的第三方开发辅助工具)
调度协调架构工具(比如:ApacheAurora)
机器学习(常用的有ApacheMahout或H2O)
托管管理(比如:ApacheHadoopBenchmarking)
安全管理(常用的有Gateway)
大数据系统部署(可以看下ApacheAmbari)
搜索引擎架构(学习或者企业都建议使用Lucene搜索引擎)
多种数据库的演变(MySQL/Memcached)
商业智能(大力推荐:Jaspersoft)
数据可视化(这个工具就很多了,可以根据实际需要来选择)
大数据处理算法(10大经典算法)
大数据中常用的分析技术?
A/B测试、关联规则挖掘、数据聚类、
数据融合和集成、遗传算法、自然语言处理、
神经网络、神经分析、优化、模式识别、
预测模型、回归、情绪分析、信号处理、
空间分析、统计、模拟、时间序列分析
2. 我想请问怎么考大数据分析师资格证书
懂业务:
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
懂管理:
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
懂分析:
指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
懂工具:
指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
懂设计:
懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
大数据分析师可以使企业清晰的了解到企业现状与竞争环境,风险评判与决策支持,能够充分利用大数据带来的价值,在进行数据挖据与展现后,呈现给企业决策者的将是一份清晰、准确且有数据支撑的报告。所以,大数据分析师已经不是简单的IT工作人员,而是可以参与到企业决策发展制定中的核心人物。
数据分析可谓由来已久,帐房先生在某种意义上讲也可以称之为数据分析师,分析着往来帐务、应收、支出等,但这不是大数据分析,只是基于自身数据的统计而已,所以,清楚大数据分析师的职责必须要明白数据分析与大数据分析师的区别。
3. 如何考大数据分析师
大数据分析师报考要求如下:
1、初级数据分析师:
(1)具有大专以上学历,或从事统计工作的人员;
(2)通过初级笔试、上机考试、报告考核,成绩全部合格。
2、中级数据分析师:
(1)具有本科及以上学历,或初级数据分析师证书,或从事相关工作一年以上;
(2)通过中级笔试、上机考试,成绩全部合格;
(3)通过中级实践应用能力考核。
3、高级数据分析师:
(1)研究生以上学历,或从事相关工作五年以上;
(2)获得中级数据分析师证书。
(3)通过高级笔试、报告考核后,获取准高级数据分析师证书;
(4)考生在获得准高级证书后,在专业领域工作五年,并撰写一篇专业数据分析论文,经答辩合格,获取高级数据分析师合格证书。
(3)大数据证书怎么考扩展阅读
技能要求
1、懂业务
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
4. 大数据工程师证书考试要学哪些内容
一、认识大数据大数据本质其实也是数据,不过也包括了些新的特征,数据来源广;数据格式多样化(结构化数据、非结构化数据、Excel文件等);数据量大(最少也是TB级别的、甚至可能是PB级别);数据增长速度快。
二、大数据所需技能要求Python语言:编写一些脚本时会用到。
Scala语言:编写Spark程序的最佳语言,当然也可以选择用Python。
Ozzie,azkaban:定时任务调度的工具。
Hue,Zepplin:图形化任务执行管理,结果查看工具。
Allluxio,Kylin等:通过对存储的数据进行预处理,加快运算速度的工具。
必须掌握的技能:、 HBase(、 Kafka、Storm/JStorm、Scala、Python、Spark (Core+sparksql+Spark streaming ) 、辅助小工具(Sqoop/Flume/Oozie/Hue等)。
5. 学大数据要考什么证
其实现在没有任何证书能对你找工作,跳槽,升职加薪有直接的帮助。如果觉得目前学习还有余力,想通过考证提升一下自己的话,有两类证书可以考虑一下:
1,数据分析间接相关的证书。虽然未必和数据分析直接相关,但将来工作很可能会用到,而且可以拓宽自己的知识面,加深对行业的了解。
2,其他行业的证书。开阔视野,多开辟一条路,有助于将来成为复合型人才。
3,数据分析间接相关的证书。数据分析的基础是数学和计算机,数学的话国内没有什么有分量的证书,所以只能考计算机的。扎实的计算机基础对从事数据分析的帮助还是非常大的。
4、计算机的证书主要分两类:基础类和专业类基础类主要是国际计算机等级考试和软考优点是通用性强,可以加深基础,万一将来从事体制内工作,搞不好还能升职加薪。缺点是通用性太强,多理论少实际,考过也不知道自己会了什么。
6. 大数据需要考什么证
1、专业人员分析认证-INFORMS
CAP认证是一个严格的通用分析认证。它证明了对分析过程的端到端理解,从构建业务和分析问题到获取数据,方法,模型构建,部署和模型生命周期管理。它需要完成CAP考试(这个考试可以在100多个国家的700多个计算机的测试中心进行)和遵守CAP的道德规范。
2、数据科学专业成就认证-Columbia University
这个数据科学认证是由TheFU基金会工程与应用科学学院和哥伦比亚大学艺术与科学研究生院联合提供的。该计划包括四个课程:数据科学算法(CS/IEOR),概率与统计(STATS),机器学习数据科学(CS)和探索性数据分析和可视化(STATS)。
3、工程方面分析和优化(CPEE)证书–INSOFE
这个密集的18周课程,其中包括10个课程(讲座和实验室)为学习者分析的各个方面,包括使用大数据使用Hadoop。它专注于R和Hadoop技能,以及统计建模,数据分析,机器学习,文本挖掘和优化技能。学习者将在一个真实世界的顶点项目中实施一系列的测试评估。
4、挖掘大规模数据集研究生证书-Stanford University
为软件工程师,统计学家,预测建模师,市场研究人员,分析专业人员,以及数据挖掘者设计,此认证需要四个课程,并演示掌握高效和强大的技术和算法,从大型数据集,如Web,社交,网络图和大型文档存储库等。这个证书通常需要一到两年的时间才能获得。
5、分析证书:优化大数据-University of Delaware
主要面向商业,营销和运营经理,数据分析师和专业人士,金融业专业人士和小企业主本科课程。该计划汇集了统计,分析,书面和口头沟通技巧。它向学习者介绍了分析大数据集所需的工具,涵盖了将数据导入分析软件包,探索性图形和数据分析,构建分析模型,找到最佳模型以解释变量之间的相关性等主题。
6、EMC数据科学家助理(EMCDSA))-EMC
EMCDSA认证表明个人作为数据科学团队成员参与和贡献大数据项目的能力。它的内容:部署数据分析生命周期,将业务挑战重构为分析挑战,应用分析技术和工具来分析大数据并创建统计模型,选择适当的数据可视化等。
7. 华为大数据认证考什么
华为大数据认证有HCIA、HCIP、HCIE这三个等级的认证,不同等级认证的考试内容不同,下面是华为大数据HCIA、HCIP、HCIE认证的考试内容。
HCIA-Big Data
考试内容
HCIA-Big Data V3.0考试覆盖:
(1)大数据行业的发展趋势,大数据特点以及华为鲲鹏大数据等;
(2)常用且重要大数据组件基础技术原理(包括HBase, Hive, Loader, MapRece, YARN, HDFS, Spark, Flume, Kafka, ElasticSearch,ZooKeeper, Flink,Redis);
(3)华为大数据解决方案、功能特性及华为在大数据行业的成功案例。
HCIP-Big Data Developer
考试内容
HCIP-Big Data Developer V2.0 大数据场景化解决方案总览、大数据场景化解决方案:离线批处理、实时检索、实时流处理等内容。
HCIE-Big Data-Data Mining(笔试)
考试内容
华为认证HCIE-Big Data-Data Mining V2.0考试覆盖:数据挖掘介绍、预备知识(数学基础知识、Python基础知识)、数据预处理、特征选择与降维、有监督学习、无监督学习、模型评估与优化、数据挖掘综合应用、Spark MLlib数据挖掘、华为云机器学习服务MLS、FusionInsight Miner、大数据架构和大数据治理、大数据挖掘。
HCIE-Big Data-Data Mining(实验)
考试内容
华为认证HCIE-Big Data-Data Mining V2.0考试覆盖:数据挖掘介绍、预备知识(数学基础知识、Python基础知识)、数据预处理、特征选择与降维、有监督学习、无监督学习、模型评估与优化、数据挖掘综合应用、Spark MLlib数据挖掘、华为云机器学习服务MLS、FusionInsight Miner、大数据架构和大数据治理、大数据挖掘。
HCIE-Big Data-Data Mining(面试)
考试内容
华为认证HCIE-Big Data-Data Mining V2.0考试覆盖:数据挖掘介绍、预备知识(数学基础知识、Python基础知识)、数据预处理、特征选择与降维、有监督学习、无监督学习、模型评估与优化、数据挖掘综合应用、Spark MLlib数据挖掘、华为云机器学习服务MLS、FusionInsight Miner、大数据架构和大数据治理、大数据挖掘。
8. 大数据专业需要考什么证
大数据开发可以进行大数据工程师认证,数据分析类则可以进行数据分析师认证。这些证书的认证都是在你已经掌握课程的基础上进行。如果零基础可以先进行大数据相关课程学习,自学或者进行大数据培训都行,最好是先去提供认证的机构进行咨询,看看需要掌握哪些技能。
其实,不管是大数据工程师证书,数据分析师证书,每个职业的相关技能认证,其实都是一种锦上添花的作用,毕竟技术类的工作都是要看你的实际操作水平的。
如果有人正在寻找一个方法来获得一个优势,无论你是工作,狩猎,钓鱼或只是想要有形的技能,都需要第三方证明,而获得大数据认证则是一个明智的选择。证书的作用简单来说有几点:
1、使你的简历更加丰富,含金量更高,可能在众多简历中脱颖而出。
2、企业录用时一个参考,或者因此PK掉你的竞争者。
3、谈工资的一种资本,或者能因此要到一份不错的offer。