❶ 彭加勒的数学研究成果有哪些
一位数学史权威评价彭加勒(1854—1912年)时说,他是“对于数学和它的应用具有全面知识人的最后一个人。”20世纪以来,数学进入了多学科、高难度的现代阶段,要想达到每个领域的最高成就已经不可能,但彭加勒确实是他那个时代的数学全才。
一般把数学划分为算术、代数、几何和分析四个领域,彭加勒对各个领域的研究成果,都是第一流的。他成功地解决了像太阳、地球、月亮间相互运动这一类的三体问题;他是现代物理的两大支住——相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代哲学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得过法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为30多个国家的科学院院士。
1912年6月26日,彭加勒病逝前20天作了最后一次讲演,他说:“人生就是持续斗争。”彭加勒的一生就是斗争的一生。他因为小时候得过病,语言不够流畅,写字画图都有困难;还留下了喉头麻痹身体虚弱的后遗症。不少人把他当作笨人。他成为数学家后,一位心理学家通过测验仍然认定他是“笨人”。彭加勒取得成就的关键是注意力高度集中。他一生最大的嗜好就是读书,读书速度快,记忆准确持久。因为视力不好,书写困难,他上课不记笔记,全神贯注于听讲、思索、理解,长期的磨练,使他具备了运用大脑完成复杂运算,构思长篇论文的能力。1871年,17岁的彭加勒报考高等工业学校,轻松地解决了主考官特意为他设计的难题,尽管他的几何作图得了零分,学校也破格录取。1879年,25岁的彭加勒获数学博士学位,32岁任数学和物理学教授,以后在科学园地里辛勒耕耘26年。
❷ 中国古代数学的成就
中国古代数学成就非常突出,有很多项世界之最:
中国是世界上最早采用了十进位制的国家,距今4000年左右的陕西、山东、上海的出土文物中除表示个位的数字外,已经有10、20、30这样的记号,比古埃及早1000多年。
殷商时已经有了四则运算,春秋战国时正整数乘法口诀“九九歌”已形成,从此“九九歌”成为普及数学知识的基础之一,一直延续至今。
在计算工具方面,殷商时就发明了“算筹”,算筹是圆形小竹棍,以后有了骨制、铁制的。以算筹表示数目,有纵、横两种形式,如“2”可表示为“=”或“Ⅱ”。
勾股定理相传是在商代由商高发现,比毕达哥拉斯早500多年。
公元前1世纪的《周髀算经》和东汉时期的《九章算术》是最著名的中国古代数学著作。
算盘的最早记载是公元190年。明清两代,算盘成为当时工商业贸易中不可缺少的工具。算盘携带方便,运算准确迅速,即便是现在,仍发挥着巨大作用。
三国时期,刘徽运用割圆术求圆周率π=3.1416。南北朝时期的数学家祖冲之又将圆周率进一步精确到3.1415926~3.1415927之间。
唐代僧一行创立了不等间距二次内插法,王孝通得到求解三次方程的方法;宋元时期得到关于高次方程组的求解法一次同余式解法。这些成果都处于当时的领先地位。
❸ 数学家的数学成果
中国古代算术的许多研究成果里面包含了一些后来西方数学的思想方法,近代也有一些数学研究成果是以华人数学家命名的。这里列举中国近现代数学家的一些重要的贡献。
李善兰在级数求和方面的研究成果,被命名为“李善兰恒等式” 。华罗庚关于完整三角和的研究成果被称为“华氏定理”;另外他与王元提出多重积分近似计算的方法被成为“华—王方法”。苏步青在仿射微分几何学方面的研究成果被命名为“苏氏锥面”。熊庆来关于整函数与无穷级的亚纯函数的研究成果被称为“熊氏无穷级”。陈省身关于示性类的研究成果被称为“陈示性类”。周炜良在代数几何学方面的研究成果被称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。吴文俊在拓扑学中的重要成就被命名为“吴氏公式”,其关于几何定理机器证明的方法被称为“吴氏方法”。王浩关于数理逻辑的一个命题被称为“王氏悖论”。柯召关于卡特兰问题的研究成果被称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”。陈景润在哥德巴赫猜想研究中提出的命题被称为“陈氏定理”。杨乐和张广厚在函数论方面的研究成果被称为“杨—张定理”。陆启铿关于常曲率流形的研究成果被称为“陆氏猜想”。夏道行在泛函积分和不变测度论方面的研究成果被称为“夏氏不等式”。姜伯驹关于尼尔森数计算的研究成果被称为“姜氏空间”;另外还有以他命名的“姜氏子群”。王戌堂关于点集拓扑学的研究成果被称为“王氏定理”。侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”。

❹ 中国古代数学有哪些成就
最牛的当然是《九章算术》了
刘 徽
刘徽(生于公元250年左右),南北朝时期数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
❺ 陈景润的重大数学成果是啥
证明了2+1=3,离
哥德巴赫猜想
又近了一步
❻ 中国在数学上的伟大成就
(一)《周髀算经》简介
在中国古代算书中,《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算机》等10部算书,被称为“算经十书”。其中阐明“盖天说”的《周髀算经》,被人们认为是流传下来的中国最古老的既谈天体又谈数学的天文历算著作。它大约产生于公元前2世纪,但它所包含的史料,却有比这更早的。其中提到的大禹治水时所应用的数学知识,成为现存文献中提到最早使用勾股定理的例子。
(二)勾股定理
现在流传的《周髀算经》,都不是原来的著作,都经后人修改和补充过。《周髀算经》的本文,是周公与商高的问答部分;接下去的荣方与陈子问答部分,是《周髀算经》的续文。
据《周髀算经》记载:“故折矩以为句广三,股 四,径隅五。既方其外,半之一矩,环而共盘,得三、四、五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所 由生也。”
这段话的意思是:将矩的两直角边加以折算成一定的比例,
短直角边长(句)3,长直角边长(股)4,弦就等于5,
得成3、4、5(如右图)。句(即勾)、股平方之和为25,这称为积矩。大禹所用的治天下(指治水)的方法,就是从这些数学知识发展出来的。
在世界数学史上,一般把勾股定理归功于公元前5世纪左右发现它的古希腊数学家毕达哥拉斯,因为他提出了定理的一般形式的叙述和证明,我国则稍晚。但实际上,商高关于勾股定理的认识,要比毕达哥拉斯早得多。《周髀算经》成书于公元前2世纪左右,所记载的周公与商高问答的事是在公元前11世纪左右。这个事实证明我国古代数学家独立地发现并应用了勾股定理的一般情形,要比外国早得多。
(三)(测高、深、远的方法)测量太阳高度
陈子是周代的天文算学家,荣方是当时天文算学家的爱好者。在陈子教给荣方的各种数据计算的具体方法中,我们可以发现在二千六七百年前,我国对勾股定理的应用已达到十分熟练的程度。
陈子测量太阳高度的方法可叙述为:当夏至太阳直射北回归线时,
在北方立一8尺高的标竿,观其影长为6尺。然后,测量者向难移动标
竿,每移动1000里,标竿的影长就减少1寸。据此可设想,当标竿的
日影减少六尺,则标竿就向南移动了60000里,而此时标竿恰在太阳的
正下方。据勾股定理和相似形原理可算得:测量者与太阳的距离为10万里。
据记载,古希腊第一个自然哲学家泰勒斯也曾利用日影测出金字塔的高。他的方法是由一根立竿的影长和同时测得的金字塔的影长算出了金字塔的高度。泰勒斯被称为西方的“测量之祖”。泰勒斯的这一工作与陈子的工作大致在相同的时期,然而陈子的方法要比泰勒斯的方法水平高得多,泰勒斯只利用到相似三角形的知识,而陈子除了能利用相似三角形的性质外,还能熟练地运用勾股定理。
❼ 中国现代数学成果
中国是世界文明古国之一。16世纪(明代中叶)以前,在数学的许多分支领域里,我国一直处于遥遥领先的 地位。
只是后来在封建制度的束缚下,我国包括数学在内的整个科学技术领域都逐渐落后了。而欧洲则在经历了文艺复兴之后,很多学科一跃超过了东方。
"戊戌变法"后,国家废科举,一些有识之士兴学堂,开始传播西方的科学文化。到"五四"时期,一批学子把西方科学移植到中国,为今天中国的科学奠定了坚实的基础。
熊庆来便是其中杰出的一员。他于1921年从法国留学归来,即将近代数学引进中国,创建了中国第一个数学系(当时称算学系),培养了大量的数学人才。他是中国现代数学辛勤的开拓者。
周恩来总理于1955年视察云南大学时,还特别提到这位当时尚在国外的大数学家、大教育家。他说:"熊庆来培养了华罗庚,这些具有真才实学的人,我们要尊重他们。"
熊庆来,字迹之,1893年9月11日(农历)出生于云南省弥勒县朋普镇息宰村。这是一个只有七八十户人家的偏僻山村,熊庆来的启蒙教育就是在这里完成的。
1907年,婚后不满一个月,酷爱学习的熊庆来到昆明考入方言学堂,两年后,又升入云南英法文专修科,学习法语不到一年,他便能流畅地同法籍教师对话。
1913年,他以优异成绩考取云南省教育司主持的留学比利时的公费生,1914年第一次世界大战爆发,德军侵入了中立的比利时。熊庆来只好离开陷落的比利时,转经荷兰、英国,来到法国,由于战争,法国的矿业学校也关闭了,他便改学数学和物理学。
留学7载,他深受巴斯德、居里夫妇等科学伟人的性格、思想、情操等方面的巨大影响。他先后在巴黎大学、马赛大学等4所大学攻读,取得了高等数学、高等分析、力学、天文、高等普通物理学等证书,并获理科硕土学位。
1921年春,风尘仆仆的熊庆来从法国学成归来。怀着为桑梓服务的热望,他回到了故乡云南,任教于云南甲种工业学校和云南路政学校。
同年,才开办的国立东南大学(今南京大学前身)寄来聘书,请熊庆来去创办算学系。英雄有了用武之地,熊庆来带着妻子和8岁的儿子秉信来到了龙盘虎踞的南京,一展宏图。
年仅28岁的熊庆来不仅被聘为教授,还被任为系主任,他工作负责、授课认真,当时能讲授高深数学理论的仅他一人,故他同时担任了《微分方程》、《高等分析》、《球面三角》、《微积分》等多门课程的数学工作。
5年中他编写了《高等算"学分析》等十多种讲义,他患严重痔疮不能坐,就伏在床上写。过度的劳累又使他患了胸膜炎,但他仍废寝忘食,不顾病痛地工作。
他非常爱惜人才,经常接济穷苦学生。为了培养国家人才,他呕心沥血,不辞劳苦。誉满当代中国科坛的严济慈(全国人大副委员长)、胡坤陛等都曾得到熊老的帮助。
熊庆来常常寄钱给在法国学习的严济慈。有一次,校方因故不发工资,他让妻子去典当皮袍子,寄钱给严济慈。严济慈在法勤奋学习,成绩优异,此前,法国是不承认中国大学毕业文凭效力的。从严济慈起,法国才开始承认中国的大学毕业文凭与法国大学毕业文凭具有同等效力。
1926年,清华学校改办大学,又聘请熊庆来去创办算学系。他在任清华算学系系主任的9年间,又辛勤培养了一大批在国内外享有盛誉的优秀人才。有人说:"中国的数学家约有一半出自清华算学系。
华罗庚就是其中的佼佼者。初中学历的他通过自学,于1930年发表《苏家驹之代数的五次方程式不能成立的理由》这篇论文后,熊庆来慧眼识人才,便把当事务员的他从江苏金坛中学请到清华。 熊庆来重才华轻学历,在很讲究学历的清华力排众议,破例地留下华罗庚并以"助理"名义安排工作,让他有时间、有条件学习。
华罗庚得到熊庆来的直接指导,并可随意听教授们的课,又有条件潜心钻研,可谓"如鱼得水",得以迅速成长,一年之后他被任为助教,再一年后升为讲师,又两年后成为文化基金会研究员。
1936年,经熊庆来和理学院长叶企苏的推荐,华罗庚登上北去的列车,横穿西伯利亚,跨越英吉利海峡,前往英国剑桥大学做访问学者。后来,华罗庚在数论及分析领域取得卓越的研究成果,成为驰名中外的大数学家。
著名的物理学家钱三强、赵九章、彭恒武都是熊庆来在清华任教时的学生。我国第一颗原子弹爆炸后,法国《世界报》载文评述,谈起钱三强的贡献时,还特别指出他是熊庆来的学生。
1930年,熊庆来在代理清华学院院长时,创建了我国第一个数学研究机构--清华算学系研究部,他是指导老师之一。萤声当代数学界的美籍大数学家陈省身,就是当时该部的研究生。
1931年,熊庆来代表中国出席在瑞土苏黎世召开的世界数学会议。这是中国代表第一次出席国际数学会议。世界数学界的先进行列中,从此有了中国人!
会议结束后,熊庆来利用清华规定的五年一次的例假,前往巴黎专攻函数论,于1933年获得法国国家理科博土学位,他定义的无穷级被国际上称为"熊氏无穷级",载人了世界数学史册。
1934年,他返回清华,仍任算学系主任。翌年,他聘请法国数学家H·阿达玛和美国数学家、控制论的奠基人N·魏纳到清华讲学。为高年级学生和研究生开拓视野,帮助他们提高研究能力。
当时的研究生陈省身、吴大猷、庄圻泰、施样林、段学复等人,后来都成为著名学者。熊庆来在晚年曾谦虚地回顾说:"平生引以为幸者,每得与当时英才聚于一堂,因之我的教学工作颇受其鼓舞。"
1936年,在熊庆来和其他数学界前辈的倡议下,创办了中国数学会会刊,熊庆来任编辑委员。这个会刊即是现今的《数学学报》的前身,可称是中国的第一张数学学报。
1937年,应云南省政府之请,熊庆来回到阔别16年的家乡,担任云南大学校长。当时的云南,经济、文化都极为落后,办学条件万分艰苦。然而,熊庆来内心却澎湃着一股为桑梓服务,发展云南教育的热情,一心要"把云大办成小清华"并于1938年7月争取到将云南大学从省立改为国立。
熊庆来认为办好学校的首要关键是精选教师。他凭借自己在学术界的声望,聘请了许多知名学者到云大任教。人们称赞他"有蔡元培兼收并容的风度"。当时云大师资阵容之强大,毫不逊色于一些老牌大学。
他信任人,也善于用人。他给予各学院院长和系主任在很多问题上的自决权,尊重他们的决定。只要拿得出成绩。把系、把学院搞得好的,他总是放手让你干。
他没有校长的架子,一贯平易近人,和蔼可亲,关心别人,逢年过节,他常把单身教员请到家里吃饭。
他勤俭办学。事必躬亲。为了聘到好的教授,他提出给外省来的教授以高薪,他自己和云南籍教员,则只领取规定的工资。
在他的表率作用和严格要求下,学校机构精干,工作效率颇高。注册组、庶务组人少事杂,却把诸事管理得井井有条,并以热情周到的接待让新来的教师觉得云大"是个可以安身立业的地方。"
熊庆来还强调要树立好的校纪校风。他认为必须对学生严格要求,杜绝考试作弊;课堂教学、实验、习题等环节一环也不能放松。如此严格要求的结果,使云大毕业生的质量可与一些老牌大学媲美。
熊庆来任校长的12年中,云大从原有的3个学院发展到5个学院,共18个系,另附专修班和先修科各3个,为国家和民族培养了大批有用之才,为改变云南文化落后的状况作出了重要贡献。
1949年云南学生运动蓬勃开展。6月,熊庆来接到教育部通知,要他立即前往巴黎参加联合国教科文组织会议,就在他登上飞机出发之际,教育部宣布解散云南大学,并撤销其校长职务。
联合国会议结束后,他便暂留巴黎,想在晚年再研究数学问题,以补前12年行政事务缠身而疏离学术研究之憾。
1956年,法国要出一套数学丛书。经法国数学界的推举,其中关于函数论的专著,光荣地落到了一个中国人--熊庆来的身上。于是,他不顾半身不遂之苦,奋力完成了这部专著,深为国际数学界所称道。
然而,祖国在他心中一直是个神圣的字眼。熊庆来在完成了为法国数学丛书写作的那本函数论专著后,毅然带病归国。
熊老回国后,任数学研究所研究员,并担任了所常务委员、学术委员会委员和函数论研究室主任。他在归国欢迎会上诚恳表示:"我愿将我的一点心得献给下一代同志,我愿在社会主义的光芒中,尽瘁于祖国的学术建设事业。"
他一面自己加紧研究,一面积极推动我国数学研究的发展。他于1960年、1961年、1964年几次在全国和北京地区的函数讨论会上作了学术报告,为函数论的研究指明了方向。从1961年起,他倡导举办的函数讨论班,每两周在他家聚会一次,除庄科、庄圻泰、范会国、赵进义等老教授外,还有北京高校的一些中青年教师、研究生,可谓数学上的"四世同堂"。
熊老除积极推动研究工作外,还指导青年研究人员和招收研究生,孜孜不倦地培养青年一代。现在为国际数学界所称道的青年科学家杨乐、张广厚便是他70高龄时最后带的两个研究生。
杨乐、张广厚在函数值分布论研究中关于"亏值"与"奇异方向"间的具体联系的研究成果,还被国际上誉称为"杨张定理"。80年代,这两位青年数学家多次应邀赴欧美国家讲学,为祖国赢得了荣誉。杨乐曾深情地说:"如果我从北大毕业后,没有得到熊老的培养,没有科学院这样一个环境,那是绝对做不出这样的成绩来的!"
可是,令人万分痛心的是,这样一位贡献巨大的学者,在"十年浩劫"中竞被打成"反动学术权威"和"熊华(罗庚)黑线"人物,受着无休无止的批斗和摧残。
1969年2月3日的深夜,熊老在凛冽的寒风中与世长辞了,桌上还摊着上床前没有写完的"交代",一代数学泰斗就如此凄凉地离开了人间……
然而,历史却不会忘记这位为中国数学作出巨大贡献的人。1978年,他的冤案得到了平反。
"太华巍巍,拔海千寻;滇池森森,万山为襟;卓哉吾校,与其同高深。努力求新,以作我民;努力求真,文明允臻。"
今天,一所以他的名字命名的"庆来中学"已在他的家乡弥勒县建立起来,许多后来者正沿着熊庆来开辟的研究道路,奋力前进。
❽ 数学家有哪些发明了什么对世界有多大成就
1、牛顿:微积分的创建、万有引力。2、欧拉:无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为“分析学的化身”。另外,欧拉还创设了许多数学符号,一直使用至今,如π,i,e,sin,cos,tg,Δx,Σ,f(x)等。而哥德巴赫猜想也是在他与哥德巴赫的通信中首先提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论等等。4、伽罗瓦:首次引入了“群”的概念,(寄给大数学家柯西审阅,可惜柯西轻视该文,未认真审阅,致使该理论推迟了50年)18岁时,再次寄出,这次寄给大数学家傅立叶,可惜傅立叶病死,未能审阅。19岁时,第三次寄出,这次寄给了大数学家泊松,但是泊松最终给的批语是“完全无法理解”。这些失误致使“群伦”这一数学最重要的分支迟到了50年的时间。5、亨利·庞加莱,庞加莱一生发表的科学论文约500篇、科学著作约30部,几乎涉及到数学的所有领域以及理论物理、天体物理等的许多重要领域。6、希尔伯特。希尔伯特的研究涉及现代数学的许多领域,如不变量理论、代数数论、几何基础、积分方程和物理学的公理化、数学基础和数理逻辑等。希尔伯特是对二十世纪数学有深刻影响的数学家之一,对他提出的23个问题,似乎至今仍在促进现代数学的研究和发展。大数学家韦尔(H.Weyl)在希尔伯特去世时的悼词中曾说:“希尔伯特就像穿杂色衣服的风笛手,他那甜蜜的笛声诱惑了如此众多的老鼠,跟着他跳进了数学的深河。”7、陈省身:陈省身开创并领导着整体微分几何、纤维丛微分几何、“陈省身示性类”等领域的研究,他是有史以来唯一获得世界数学界最高荣誉“沃尔夫奖”的华人,被称为“当今最伟大的数学家”,被国际数学界尊为“微分几何之父”。
国际著名数学大师,沃尔夫数学奖得主,陈省身
1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人 华罗庚
华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。
3.仅次于哥德尔的逻辑数学大师,王浩
1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。
4.著名数学家力学家,美国科学院院士,林家翘
1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。
1.费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+ y^n =z^n 是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。
2.四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图)
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。
不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。
肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。
11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。
高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。
他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。
“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。
不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。
3.史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:
一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。
这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。
我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
❾ 近期的数学研究成果有哪些
上年也算近期吧
庞加莱猜想被证明
❿ 简述数学发展史及近代数学的主要成就
第一部分 初等数学发展史
(一)课程内容
1、数学的起源与早期发展
(1)数与形概念的产生
(2)河谷文明与早期数学
2、古希腊数学
(1)论证数学的发端
(2)亚历山大学派
3、古代中国数学的鼎盛
(1)《周髀算经》与《九章算术》
(2)魏晋南北朝的数学
(3)宋元数学
4、印度与阿拉伯的数学
(1)古印度的数学
(2)阿拉伯在代数、三角学与几何学的成就
本部分重、难点:雅典时期的希腊数学、亚历山大学派的主要成绩、中国的《九章算术》、中国剩余定理、印度数学以及阿拉伯的代数、三角学与几何学的成就。
(二)考核知识点与考核要求
1.初等数学发展史部分,要求达到“了解”层次的。
(1)数与形概念的产生
(2)埃及数学、美索不大米数学
(3)亚历山大后期和希腊数学的衰落
(4)毕达哥拉斯学派
2.初等数学发展史部分,要求达到“理解、掌握”层次的。
(1)雅典时期的希腊数学
a. 三大几何问题
b. 无限性概念的早期探索
c. 逻辑演绎结构的倡导
(2)亚历山大学派的主要成就
a. 欧几里得的几何《原本》的主要成就
b. 阿基米德的数学成就
c. 阿波罗尼奥斯的《圆锥曲线论》
(3)古代中国数学的主要成就
a. 《周髀算经》与《九章算术》
b. 刘徽和祖冲之父子的主要成就
c. 中国剩余定理
(4)印度数学以及阿拉伯的数学
a. 古代《绳法经》
b. 零号数的发明
c. 阿拉伯的代数、三角学与几何学的成就。
主题: 第二部分 近代数学发展史重难点辅导
第二部分 近代数学发展史
(一)课程内容
1、近代数学的兴起
(1)向近代数学的过渡
a .代数学的出现
b.三角学的发展
c.从透视学到射影几何
d.计算技术与对数的诞生
(2)解析几何的诞生
2、微积分的创立
(1)半个世纪的酝酿
a.开普勒与旋转体体积
b.卡瓦列里不可分量原理
c.笛卡尔的圆法
d.费马求极大值与极小值的方法
e.巴罗的微分三角形
f.沃利斯的无穷算术
(2)牛顿的“流数术”
a.流数术的初建
b.流数术的发展
c.牛顿的《原理》与微积分
(3)莱布尼茨的微积分
a. 特征三角形
b. 分析微积分的建立
c. 莱布尼茨微积分的发展
3、分析时代
(1)微积分的进一步发展
a.积分技术与椭圆积分
b.微积分向多元函数的推广
c.无穷级数理论
d.函数概念的深化
e.微积分严格化的尝试
(2)微积分的应用与新分支的形成
a.常微分方程的形成
b.偏微分方程的产生
c.变分法的产生
(3)18世纪的几何与代数
a.微分几何的形成
b.方程论
c.数论进展
4、代数学的新生
(1) 代数方程的可解性与群的发现
(2) 从四元数到超复数
(3)布尔代数的形成
(4)代数数论的诞生
5、几何学的变革
(1)欧几里得几何平行公设
(2)非欧几里得几何的诞生
(3)非欧几里得几何的发展与确认
(4)射影几何的繁荣
(5)几何学的统一
6、分析的严格化
(1)柯西与分析基础
(2)分析的算术化
a. 维尔斯特拉斯的成就
b. 实数理论
c. 集合论的诞生
(3)分析的扩展
a. 复分析的建立
b. 解析数论的形成
c. 数学物理与微分方程
本部分的重、难点:代数学的出现、解析几何的诞生、开普勒与旋转体体积、卡瓦列里不可分量原理、笛卡尔的圆法、费马求极大值与极小值的方法、巴罗的微分三角形、沃利斯的无穷算术、牛顿的“流数术”、莱布尼茨的微积分、微积分向多元函数的推广、无穷级数理论、函数概念的深化、常微分方程的形成、偏微分方程的产生、微分几何的形成、数论进展、代数学的新生、非欧几里得几何的发展与确认和几何学的统一、分析的严格化等
(二)考核知识点与考核要求
1.近代数学发展史部分,要求达到“了解”层次的
(1)从透视学到射影几何
(2)计算技术与对数的诞生
(3)积分技术与椭圆积分
(4)函数概念的深化
(5)微积分严格化的尝试
(6)代数方程的可解性与群的发现
(7) 从四元数到超复数
(8) 分析的算术化
2.近代数学发展史部分,要求达到“理解、掌握”层次的
(1)代数学的出现、
(2)解析几何的诞生
(3)微积分的创立
a. 开普勒与旋转体体积
b. 卡瓦列里不可分量原理
c. 笛卡尔的圆法
d. 费马求极大值与极小值的方法
e. 巴罗的微分三角形
f. 沃利斯的无穷算术
g. 牛顿的“流数术”和莱布尼茨的微积分
(3)分析学时代
a. 微积分向多元函数的推广
b. 无穷级数理论
c. 函数概念的深化
d. 常微分方程的形成和偏微分方程的产生
e. 微分几何的形成
f. 数论进展
(4)代数学的新生
(5)非欧几里得几何的发展与确认和几何学的统一
(6)分析的严格化
a. 柯西与分析基础
b. 分析的扩展 (复分析的建立、解析数论的形成)
主题: 第三部分 现代数学发展概观重难点辅导
第三部分 现代数学发展概观重难点辅导
1、现代数学发展史部分,要求达到“了解”层次的
(1)数学向其他科学的渗透(数学物理、生物数学、数理经济学)
(2)计算机影响下的数学(计算数学的发展、纯粹数学研究与计算机、计算机科学种的数学)
(3)高斯-博内公式的推广
(4)米尔诺怪球
(5)四色问题
(6)费马大定理的证明
(7)数学与社会进步
2、现代数学发展史部分,要求达到“理解、掌握”层次的
(1)新世纪的序幕(希尔伯特的《数学问题》)
(2)更高的抽象( 勒贝格积分与实变函数论、泛函分析、抽象代数、拓扑学、公理化概率论)
(3)对基础的深入探讨(集合论悖论、三大学派(逻辑主义、直觉主义、形式主义)
(4)数理逻辑的发展(公理化集合论、证明论、模型论、递归论)
(5)应用数学的新时代
(6)独立的应用学科(数理统计、运筹学、控制论)
(7)数学的社会化(数学教育的社会化、数学专门期刊的创办、数学社团的建立、数学奖励)
(8)中国现代数学的开拓