1. 微小电流信号采样技术
这太简单了,让电流流过采样电阻,从采样电阻两端引出采样电压信号连接到A/D转换器的差分输入端即可。如下图——
追问
需要个更加细化的结构,你给的不错也不算对,要是有个复杂一点的电路就好了
回答
要更加细化的图,你的说明也需要详细些,比如被采样电流是多大、要求输出电压多大,等等。
2. 微小电流怎么取样
让微小电流,流经一电阻,取电阻上的电压,经放大,再按你的需要做后续处理。
具体安排要看你的“微小电流”小到什么程度。
3. 电流检测 小电流
小电流检测一般用电流表串联在电路中测量,交流电流用交流(AC)电流表,直流电流用直流(DC)电流表,
另:钳型表也是一个常用的交流(AC)电流测量工具,但是小一点的电流不好测量,这时可以把被测量的电线在钳表上绕上几圈,表上显示的数/绕的圈数=实际的电流。
4. 如果实验过程中加热电流发生了微小波动是否会影响测量的结果为什么
会,因为电流变化了,如果变化幅度不大,在可以接受的范围内就可以忽略。
5. 求一份<<电阻应变式传感器测微小形变>>的实验预习报告!实验报告也行
【实验简介】
电学测量方法具有灵敏度高,响应速度快,便于自动控制与处理等特点。电学测量方法一般直接测量的是电学量,如电阻、电动势、电流、电容、电感等,因此,要用电学测量方法去测非电学量,就必须将非电学量转换成电学量,其转换器件称为传感器。本实验用电阻应变片作为传感器,将微小的形变转换成电阻的变化来测量悬臂梁的主应变。通过本实验了解电阻应变片(传感器)的结构及工作原理,掌握电桥测电阻的方法,理解灵敏度对测量的影响,用电桥测量应变片电阻的微小变化,进而测定悬臂梁的应变。
【预习与操作要点】
1.电桥测电阻原理
电桥分直流电桥和交流电桥两大类。本实验所用的自搭式单臂电桥亦即惠斯通电桥,主要用于测量1~106W范围内的中值电阻。和伏安法比较,由于其不用电表,避免了电表内阻以及精度不够高等因素造成的误差,因此成为准确测量电阻的常用方法之一。
惠斯通电桥由电源、桥臂、桥路三部分组成,其原理如4-20-1所示,未知电阻Rx与另外三个已知电阻R1、R2、R3构成了电桥的四个桥臂,电桥的一个对角线AC上接直流电源E,而另一对角线BD即桥路接灵敏电流计G。改变R1、R2、R3的阻值,可以改变B、D两点之间的电位差,当R1、R2、R3的阻值被调节成某一组合时,可以使B、D之间的电位差为零,此时电流计的指针就准确地指在零位,电桥处于平衡状态此时有
即有
将两式相比,得到
即
上式称为电桥平衡条件。
由电桥平衡条件可得
综上所述,利用电桥测量电阻的过程,就是调节R1、R2、R3使电桥达到平衡条件的过程,而平衡与否由电流计来判断。一旦电桥平衡,就可以根据(3-9-3)式,求出待测电阻Rx。
在直流电桥中,R3是标准电阻箱,此臂称为比较臂,而电阻R1、R2的比值可按10的整数次方变化,通常称为电桥的比率。
在用电桥测电阻时,电桥系统的灵敏程度反映了测量的精确程度,对于等臂电桥,常用绝对电桥灵敏度,其定义为
(mm/欧姆)
它表示电桥平衡后,DRx所引起的Dd越大,电桥灵敏度S越高,所得平衡点越精确,测量误差越小。电桥灵敏度不仅与灵敏电流计有关,还与所加电压及各桥臂电阻值的大小和配置有关,灵敏电流计的灵敏度越高,电源电压越大,电桥的灵敏度越高。
2.测量应变
将电阻应变片粘贴在试件的表面,应变片内电阻丝的两端接入测量电路(电桥)。随着试件受力变形,应变片的电阻丝也获得相应的形变使电阻值发生变化。由应变片的工作原理可知,当应变沿应变片的主轴方向时,应变片的电阻变化率和试件(本实验为悬臂梁)的主应变成正比,即
式中K为应变片的灵敏系数(此值由应变片厂家给出);R是未加力时应变片阻值的初始值;DR是加力变形后应变片的电阻变化。所以只要测出应变片阻值的相对变化,便可得出被测试件的应变。本实验用平衡电桥测量应变片电阻的相对变化。实验装置及测量线路如图4-20-2和图4-20-3所示,
将被测试件一端夹持在稳固的基座上,其主体悬空,构成一悬臂梁。在悬臂梁固定端A处贴一应变片,在悬臂梁变形端B处贴一同型号同规格的应变片,在C端挂一砝码托盘以备加载。将A处的应变片作为温度补偿片R1,B处的应变片Rx作为传感器测量应变,用多体电阻箱R2、Ra和微调电阻箱Rb以及R1、Rx组成一电桥,作为微小形变测量电路。当C处加载时,悬臂梁将向下弯曲,B处产生变形,贴在B处的应变片亦发生变形,其电阻值发生变化,此电阻值的变化可通过电桥测量出来,从而测定悬臂梁B处的形变。
3.实验方法
(1)选择合适的电桥灵敏度
通常,在具体的电桥线路中,为保证测量有足够的灵敏度,往往根据比较臂电阻的最小单位步进值来选择合适的电桥灵敏度。所谓合适的电桥灵敏度就是当电桥平衡后,将比较臂电阻改变最小单位步进值时,电流计指针有明显的“动静”。这里所谓“动静”,是指电流计指针偏转小于等于1/2mm,即半格。
通过对电桥灵敏度测量的实验结果表明:当电桥平衡时,若某一桥臂电阻改变了DR,则电桥不再平衡,桥路上有电流通过,电流计偏转了Dd mm。当Dd<10mm时,DR与Dd成线性关系;当Dd>10mm时,DR与Dd不成线性关系。由于电桥灵敏度是在电桥平衡点附近定义的,当用实验的方法通过改变比较臂电阻使电流计偏转小于10mm来测量电桥灵敏度,可以认为是在平衡点附近测量的。考虑到若Dd取值太小,导致读数误差加大,在具体测量时,通常选取DR使Dd =5mm较为合适。
(2)测量温度补偿片的电阻值
在图4-20-3的测量线路中,用多体电阻箱R3替代应变片Rx,并取R3=Ra+Rb=120W(应变片初值),改变滑线变阻器阻值或电源电压,使电桥工作电流不超过40mA,选择合适的电桥灵敏度。调节R2使电桥平衡。此时R2的示值即为温度补偿片的阻值。
(3)测量应变
保持R2不变,去掉电阻箱R3,接入应变片Rx。选择合适的电桥灵敏度,调Ra和Rb使电桥平衡,Ra+Rb的值即为应变片的初始值。然后加一个砝码,由于应变导致应变片阻值变化,电桥失去平衡。调Rb使电桥重新平衡,记下此时的Ra+Rb值,依次将5个砝码加完,此即上行(加砝码)测量。然后取下一个砝码,调电桥平衡,记下相应的Ra+Rb的读数,依次将5个砝码取完,此即下行(减砝码)测量。将上行测量所得数据与同数量砝码时的下行测量数据平均,得到六个数据R0、R1、R2、R3、R4、R5,将以上数据用逐差法处理,即可求出加载1牛顿力时应变片的阻值变化量DR,然后利用相应公式求出应变。
【实验仪器】
电阻箱三个,微调电阻箱,复射式灵敏电流计,毫安表,滑线变阻器,直流电源,开关,保护电阻开关,阻尼电键,相同质量的砝码五个,水平悬臂梁,应变片,温度补偿片。
【分析思考】
1.为什么在本实验的测量线路中要用温度补偿片?能否用普通电阻代替?在图4-20-3中,将补偿片与电阻箱R2互换,能否测量?
2.假设电路中任一条导线断路,试分析调节电桥平衡时,可能出现的现象。
3.设计用非平衡电桥测量微小形变的方法。
6. 测量微小电流有哪些方法
用万用表就可以实现,把表的档位旋至电流薇安档,两个表笔串联在电路里,红表笔接电路里的正极方向,黑表笔接负极方向。
另外也可以直接用一只表头串联在电路里测量。
7. 设计一微小电流测量仪,可将较小电流以数字的方式直观、准确的显示出来。被测信号是石英钟平均功耗电流
这东西不是那么好做的,不是打击你,就是有人给你发了一个电路图,没有经验的话也做不成功。
外界干扰太大,噪声对测量值的影像非常严重。建议你现在就放弃吧。
8. 如果实验过程中加热电流发生了微小变化是否会影响测量结果
是加热,然后影响了电流,问是不是会影响测量结果?
如果是这样的话,看温度变化有多大或者看你是不是研究的有关温度和电流、电阻的关系.
温度主要对电阻有影响,如果温度变化不是很大,可以忽略,实验都是有误差的!
如果要研究的是有关温度和电流,电阻的关系,就不可以忽略!
9. 如果实验过程中加热电流发生了微小变化是否会影响测量结果
实验总会有误差.不同的实验要求不同.即然是微小的变化,误差估计不会大,实难结束后对数进行误差分析.评估误差对实验的影响,再得出结论.