1. 中国现代数学成果
中国是世界文明古国之一。16世纪(明代中叶)以前,在数学的许多分支领域里,我国一直处于遥遥领先的 地位。
只是后来在封建制度的束缚下,我国包括数学在内的整个科学技术领域都逐渐落后了。而欧洲则在经历了文艺复兴之后,很多学科一跃超过了东方。
"戊戌变法"后,国家废科举,一些有识之士兴学堂,开始传播西方的科学文化。到"五四"时期,一批学子把西方科学移植到中国,为今天中国的科学奠定了坚实的基础。
熊庆来便是其中杰出的一员。他于1921年从法国留学归来,即将近代数学引进中国,创建了中国第一个数学系(当时称算学系),培养了大量的数学人才。他是中国现代数学辛勤的开拓者。
周恩来总理于1955年视察云南大学时,还特别提到这位当时尚在国外的大数学家、大教育家。他说:"熊庆来培养了华罗庚,这些具有真才实学的人,我们要尊重他们。"
熊庆来,字迹之,1893年9月11日(农历)出生于云南省弥勒县朋普镇息宰村。这是一个只有七八十户人家的偏僻山村,熊庆来的启蒙教育就是在这里完成的。
1907年,婚后不满一个月,酷爱学习的熊庆来到昆明考入方言学堂,两年后,又升入云南英法文专修科,学习法语不到一年,他便能流畅地同法籍教师对话。
1913年,他以优异成绩考取云南省教育司主持的留学比利时的公费生,1914年第一次世界大战爆发,德军侵入了中立的比利时。熊庆来只好离开陷落的比利时,转经荷兰、英国,来到法国,由于战争,法国的矿业学校也关闭了,他便改学数学和物理学。
留学7载,他深受巴斯德、居里夫妇等科学伟人的性格、思想、情操等方面的巨大影响。他先后在巴黎大学、马赛大学等4所大学攻读,取得了高等数学、高等分析、力学、天文、高等普通物理学等证书,并获理科硕土学位。
1921年春,风尘仆仆的熊庆来从法国学成归来。怀着为桑梓服务的热望,他回到了故乡云南,任教于云南甲种工业学校和云南路政学校。
同年,才开办的国立东南大学(今南京大学前身)寄来聘书,请熊庆来去创办算学系。英雄有了用武之地,熊庆来带着妻子和8岁的儿子秉信来到了龙盘虎踞的南京,一展宏图。
年仅28岁的熊庆来不仅被聘为教授,还被任为系主任,他工作负责、授课认真,当时能讲授高深数学理论的仅他一人,故他同时担任了《微分方程》、《高等分析》、《球面三角》、《微积分》等多门课程的数学工作。
5年中他编写了《高等算"学分析》等十多种讲义,他患严重痔疮不能坐,就伏在床上写。过度的劳累又使他患了胸膜炎,但他仍废寝忘食,不顾病痛地工作。
他非常爱惜人才,经常接济穷苦学生。为了培养国家人才,他呕心沥血,不辞劳苦。誉满当代中国科坛的严济慈(全国人大副委员长)、胡坤陛等都曾得到熊老的帮助。
熊庆来常常寄钱给在法国学习的严济慈。有一次,校方因故不发工资,他让妻子去典当皮袍子,寄钱给严济慈。严济慈在法勤奋学习,成绩优异,此前,法国是不承认中国大学毕业文凭效力的。从严济慈起,法国才开始承认中国的大学毕业文凭与法国大学毕业文凭具有同等效力。
1926年,清华学校改办大学,又聘请熊庆来去创办算学系。他在任清华算学系系主任的9年间,又辛勤培养了一大批在国内外享有盛誉的优秀人才。有人说:"中国的数学家约有一半出自清华算学系。
华罗庚就是其中的佼佼者。初中学历的他通过自学,于1930年发表《苏家驹之代数的五次方程式不能成立的理由》这篇论文后,熊庆来慧眼识人才,便把当事务员的他从江苏金坛中学请到清华。 熊庆来重才华轻学历,在很讲究学历的清华力排众议,破例地留下华罗庚并以"助理"名义安排工作,让他有时间、有条件学习。
华罗庚得到熊庆来的直接指导,并可随意听教授们的课,又有条件潜心钻研,可谓"如鱼得水",得以迅速成长,一年之后他被任为助教,再一年后升为讲师,又两年后成为文化基金会研究员。
1936年,经熊庆来和理学院长叶企苏的推荐,华罗庚登上北去的列车,横穿西伯利亚,跨越英吉利海峡,前往英国剑桥大学做访问学者。后来,华罗庚在数论及分析领域取得卓越的研究成果,成为驰名中外的大数学家。
著名的物理学家钱三强、赵九章、彭恒武都是熊庆来在清华任教时的学生。我国第一颗原子弹爆炸后,法国《世界报》载文评述,谈起钱三强的贡献时,还特别指出他是熊庆来的学生。
1930年,熊庆来在代理清华学院院长时,创建了我国第一个数学研究机构--清华算学系研究部,他是指导老师之一。萤声当代数学界的美籍大数学家陈省身,就是当时该部的研究生。
1931年,熊庆来代表中国出席在瑞土苏黎世召开的世界数学会议。这是中国代表第一次出席国际数学会议。世界数学界的先进行列中,从此有了中国人!
会议结束后,熊庆来利用清华规定的五年一次的例假,前往巴黎专攻函数论,于1933年获得法国国家理科博土学位,他定义的无穷级被国际上称为"熊氏无穷级",载人了世界数学史册。
1934年,他返回清华,仍任算学系主任。翌年,他聘请法国数学家H·阿达玛和美国数学家、控制论的奠基人N·魏纳到清华讲学。为高年级学生和研究生开拓视野,帮助他们提高研究能力。
当时的研究生陈省身、吴大猷、庄圻泰、施样林、段学复等人,后来都成为著名学者。熊庆来在晚年曾谦虚地回顾说:"平生引以为幸者,每得与当时英才聚于一堂,因之我的教学工作颇受其鼓舞。"
1936年,在熊庆来和其他数学界前辈的倡议下,创办了中国数学会会刊,熊庆来任编辑委员。这个会刊即是现今的《数学学报》的前身,可称是中国的第一张数学学报。
1937年,应云南省政府之请,熊庆来回到阔别16年的家乡,担任云南大学校长。当时的云南,经济、文化都极为落后,办学条件万分艰苦。然而,熊庆来内心却澎湃着一股为桑梓服务,发展云南教育的热情,一心要"把云大办成小清华"并于1938年7月争取到将云南大学从省立改为国立。
熊庆来认为办好学校的首要关键是精选教师。他凭借自己在学术界的声望,聘请了许多知名学者到云大任教。人们称赞他"有蔡元培兼收并容的风度"。当时云大师资阵容之强大,毫不逊色于一些老牌大学。
他信任人,也善于用人。他给予各学院院长和系主任在很多问题上的自决权,尊重他们的决定。只要拿得出成绩。把系、把学院搞得好的,他总是放手让你干。
他没有校长的架子,一贯平易近人,和蔼可亲,关心别人,逢年过节,他常把单身教员请到家里吃饭。
他勤俭办学。事必躬亲。为了聘到好的教授,他提出给外省来的教授以高薪,他自己和云南籍教员,则只领取规定的工资。
在他的表率作用和严格要求下,学校机构精干,工作效率颇高。注册组、庶务组人少事杂,却把诸事管理得井井有条,并以热情周到的接待让新来的教师觉得云大"是个可以安身立业的地方。"
熊庆来还强调要树立好的校纪校风。他认为必须对学生严格要求,杜绝考试作弊;课堂教学、实验、习题等环节一环也不能放松。如此严格要求的结果,使云大毕业生的质量可与一些老牌大学媲美。
熊庆来任校长的12年中,云大从原有的3个学院发展到5个学院,共18个系,另附专修班和先修科各3个,为国家和民族培养了大批有用之才,为改变云南文化落后的状况作出了重要贡献。
1949年云南学生运动蓬勃开展。6月,熊庆来接到教育部通知,要他立即前往巴黎参加联合国教科文组织会议,就在他登上飞机出发之际,教育部宣布解散云南大学,并撤销其校长职务。
联合国会议结束后,他便暂留巴黎,想在晚年再研究数学问题,以补前12年行政事务缠身而疏离学术研究之憾。
1956年,法国要出一套数学丛书。经法国数学界的推举,其中关于函数论的专著,光荣地落到了一个中国人--熊庆来的身上。于是,他不顾半身不遂之苦,奋力完成了这部专著,深为国际数学界所称道。
然而,祖国在他心中一直是个神圣的字眼。熊庆来在完成了为法国数学丛书写作的那本函数论专著后,毅然带病归国。
熊老回国后,任数学研究所研究员,并担任了所常务委员、学术委员会委员和函数论研究室主任。他在归国欢迎会上诚恳表示:"我愿将我的一点心得献给下一代同志,我愿在社会主义的光芒中,尽瘁于祖国的学术建设事业。"
他一面自己加紧研究,一面积极推动我国数学研究的发展。他于1960年、1961年、1964年几次在全国和北京地区的函数讨论会上作了学术报告,为函数论的研究指明了方向。从1961年起,他倡导举办的函数讨论班,每两周在他家聚会一次,除庄科、庄圻泰、范会国、赵进义等老教授外,还有北京高校的一些中青年教师、研究生,可谓数学上的"四世同堂"。
熊老除积极推动研究工作外,还指导青年研究人员和招收研究生,孜孜不倦地培养青年一代。现在为国际数学界所称道的青年科学家杨乐、张广厚便是他70高龄时最后带的两个研究生。
杨乐、张广厚在函数值分布论研究中关于"亏值"与"奇异方向"间的具体联系的研究成果,还被国际上誉称为"杨张定理"。80年代,这两位青年数学家多次应邀赴欧美国家讲学,为祖国赢得了荣誉。杨乐曾深情地说:"如果我从北大毕业后,没有得到熊老的培养,没有科学院这样一个环境,那是绝对做不出这样的成绩来的!"
可是,令人万分痛心的是,这样一位贡献巨大的学者,在"十年浩劫"中竞被打成"反动学术权威"和"熊华(罗庚)黑线"人物,受着无休无止的批斗和摧残。
1969年2月3日的深夜,熊老在凛冽的寒风中与世长辞了,桌上还摊着上床前没有写完的"交代",一代数学泰斗就如此凄凉地离开了人间……
然而,历史却不会忘记这位为中国数学作出巨大贡献的人。1978年,他的冤案得到了平反。
"太华巍巍,拔海千寻;滇池森森,万山为襟;卓哉吾校,与其同高深。努力求新,以作我民;努力求真,文明允臻。"
今天,一所以他的名字命名的"庆来中学"已在他的家乡弥勒县建立起来,许多后来者正沿着熊庆来开辟的研究道路,奋力前进。
2. 我国近代数学家的成就
1.华罗庚
自学成材的天才数学家,中国近代数学的开创人!!
在众多数学家里华罗庚无疑是天分最为突出的一位!!
华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。在这些数学领域他或是创始人或是开拓者!
从某种意义上他也是位传奇数学家,一生最高文凭是初中,早年在美国取得巨大成就后,闻知新中国成立后,发出"粱园随好,非久居之处"呼吁在国外的科学家学成回去报效祖国,跟他同时代在闻讯回国的科学家,许多都为中国做出了巨大贡献,其中最著名的有:
dan之父钱学森:为中国火箭,dan做出贡献
两弹元勋邓稼先:为中国创立了\yuanzi dan qing dan等;
回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究所,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广"优选法"和"统筹法"!
由于华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。
另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。
中国最著名的五大数学家2:
2.陈省身
现代微分几何的开拓者,曾获数学界终身成就奖----沃尔夫奖!
他对整体微分几何的卓越贡献,影响着半个多世纪的数学发展。
他创办主持的三大数学研究所,造就了一批承前启后的数学家。
在微分几何领域有诸多贡献,如以他命名的"陈空间","陈示性类","陈纤维从"
一位数学家说道“陈省身就是现代微分几何。”这也许是对他的最好评价!!
中国最著名的五大数学家3:
3.苏步青
世界著名微分几何学家,射影微分几何学派的开拓者
早年对对仿射微分几何学和射影微分几何学做出了贡献,
四、五十年代开始研究一般空间微分几何学,
60年代又研究高维空间共轭网理论
70年代以来在中国开创了新的研究方向——计算几何!!
为中国数学走向现代化做出巨大贡献!!
中国最著名的五大数学家4:
4.陈景润
华罗庚的学生!数论学家,歌德巴赫猜想专家!
离解决歌德巴赫猜想即"1+1"问题,最近的人,证明了"1+2"
陈是一生只做一件事的人,那就是歌德巴赫猜想,他也一直只专注于这个领域而取得了举世瞩目的成就!!
陈为世人所知是由于报告文学家徐迟的<<歌德巴赫猜想>>报告文学,当年很多人热血学子因为这篇文章而走上数学道路!!
趋今为止,歌德巴赫猜想依然是世界级难题!!!众多数学家认为用现有数学理论系统无法解决这一问题,除非出现新的数学观念,新的数学理论系统!!!
注:
"1+1":任何大于2的偶数都能分成两个素数之和.
"1+2":任何大于2的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。这是目前陈景润证明得到的距歌德巴赫猜"1+1"最近的结果!
数学家证明歌德巴赫猜想的道路也是非常有趣的,人们是从"m+n"去逼近"1+1"的,"m+n"即每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。
当时各国数学家不断努力,最终解决了"3+3","2+3","1+3",在这一逼近过程中,在华罗庚带领下也写下了许多中国数学家名字如王元,潘承桐等,最终陈景润解决了"1+2"!!
中国最著名的五大数学家5:
5.丘成桐
陈省身的学生,因解决微分几何的许多重大难题而获得数学界菲尔奖!
丘成桐的第一项重要研究成果是解决了微分几何的著名难题—卡拉比猜想,从此名声鹊起。他把微分方程应用于复变函数、代数几何等领域取得了非凡成果,比如解决了高维闵考夫斯基问题,证明了塞凡利猜想等。这一系列的出色工作终于使他成为菲尔兹奖得主。
3. 近30年来,中国数学研究取得哪些成就
朱棣文 (2004-02-06) 朱棣文院士於民国卅七年二月二八日生,籍贯为 江苏省太仓县。专习物理应用物理(原子物理); 1970年毕业于罗彻斯特大学,获数学学士和物理 学学士;1976年获加州大学伯克利分校物理学博 士。博士论文是〃原子铊的禁戒M1跃迁 62P1/2- 72P1/2 的测量〃,博士指导老师是康明斯教授。 目前现职於美国史丹福大学物理学和应用物理教 授授。 得奖作品 发展利用雷射冷却与捕捉原子方法 对科学研究之影响 用类似的技术,还可以用来研究DNA或者其他聚合链的机械性质。当年他还在贝尔实验室时就发明了一种「光学镊子」(optical tweezer),这有点像星际大战中的拖曳光束,可以用雷射来操纵微小物质,包过细菌、DNA等等。他们也研究过号称为「分子马达」(molecular motor) 的肌蛋白细胞的收缩。此技术当然也可以在不破坏细胞膜的情况下,操控细胞内的物质,或在密闭容器内处理稀有元素或者放射性元素了。 丁肇中 (2004-02-06) 丁肇中祖籍山东日照县;1936年出生於美国密西根州安阿堡(Ann Arbor);父亲是丁观海,母亲是王隽英,他在台北读中学,在密西根大学读大学本科与研究院,於1962年获博士学位;自1967年起执教於麻省理工学院。丁教授在粒子物理学中有许多卓著的贡献,最有名的是1974年J粒子的发现,这项发现导致粒子物理学走入了新的方向,也因此而获得1976年诺具尔物理奖。 此外,他对量子电动力学之精确性、轻子的性质、矢量粒子的性质、胶子喷注现象,Z-γ之干涉等问题的研究都是十分重要的贡献。 近年来丁教授组成并领导一实验组,积极建造L3探测器,将於1988年起在西欧中心(CERN)的LEP加速器上做实验,这是一项极大的计划,动员了世界各国四百多名实验物理学者,探测器建造费用将超过一亿美元。丁教授是当代最杰出的实验物理学家之一。他的工作特徵是方向明确果断,计划周详严谨。 得奖作品 发现新的重基本粒子:J/Ψ粒子(现称J粒子) 杨振宁 (2004-02-06) 安徽省合肥县人,民国十一年八月二十二日出生。一九二八年就读厦门国小、一九三三年就读北平崇德中学、一九三八年插班昆明昆万中学高中二年级、并以高二的同等学历,考取当时由清华、北大、南开三个大学合并的西南联大的化学系,后来改念物理系。一九四二年西南联大毕业、一九四四年西南联大研究所毕业、一九四五年在西南联大附中教学后赴美、一九四八年夏完成芝加哥大学博士学位一九四九年秋天普林斯顿大学研究、一九五七年获诺贝尔物理奖、一九五八年当选中央研究院院士、一九六五年应纽约州立大学校长托尔邀请筹备创立石溪分校研究部门、一九六六年离普林斯顿赴纽约州立大学石溪分校主持物理研究所,担任教授至今。 一九五七年,和李政道合作推翻了爱因斯坦的「宇称守恒定律」,获得诺贝尔物理奖学金。他们这项贡献得到极高评价,被认为是物理学上的里程碑之一。尽管他们早已入了美籍,但也是「美籍华人」,消息传来,中国人无不引以为傲。杨氏也是以曾经接受中国文化的薰陶为自傲的,那年他们在接受诺贝尔奖金的时候,由他代表致辞,最后一段,他说:「我深深察觉到一桩事实,这就是:在广义上说,我是中华文化和西方文化的产物,既是双方和谐的产物,又是双方冲突的产物,我愿意说我既以我的中国传统为骄傲,同样的,我又专心致於现代科学。」 在教了十七年书之后,杨氏於一九六六年,离开普林斯顿大学,前往纽约州立大学石溪分校主持理论物理研究所的研究工作。他认为是自己「走出象牙塔」,重新出发,科学界人士对他再度获得诺贝尔奖的可能性,抱持期待与乐观。杨夫人杜致礼女士,出生名门,为杜聿明将军掌珠,专攻文学,中英文造诣均佳,曾在台湾教过英文,在美国纽约州立大学石溪分校教中文,言谈举止富书卷气,育子女三人,老大杨光诺电脑工程师,老二杨光宇,化学家,杨又礼,医生。 得奖作品 发现弱相互作用宇称不守恒原理:宇称守恒如在弱相互作用中不成立,宇称概念就不能用在θ和τ粒子的衰变过程中,因此可以认为θ和τ粒子是同一粒子。 对科学研究之影响 杨振宁和李政道的理论,推翻了物理学上屹立不移三十年之久的宇称守恒定律。这一发现,使瑞典皇家科学院立即将一九五七年 的诺贝尔物理奖,颁发给杨振宁和李政道两位博士,因为他们指正了过去科学家所犯的严重错误,更开启基本粒子「弱交换作用」一些规则的研究,使人类对物 质构造内层的认识迈进一大步。
4. 在中国建国60周年之际,中国作出了哪些数学方面的成就10月7日前高分悬赏!
华罗庚 中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主 任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。 曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解 析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积 分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之 一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。 陈景润 数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合数学》等著作。 中国现代数学家——苏步青 苏步青,浙江平阳人,出生于1902年9月,中国现代杰出的数学家。从小的时候起,苏步青就立下大志。中学毕业后赴日本深造。先入东京高等工业学校,后转入日本东北帝国大学数学系,1927年毕业之后进入该校研究生院,1931年获理学博士学位。 在日本东北帝国大学学习期间,苏步青在一般曲面研究中发现了四次(三阶)代数锥面,这是几何研究中的重大突破,在日本和国际数学界引起反响,被称为“苏锥面”。获得了博士学位之后的苏步青谢绝了亲友和导师的挽留,毅然回国,受聘于浙江大学数学系,开始他教书育人生涯。在大学任教时,苏步青尽管生活贫困,条件艰苦,但为祖国培养数学人才的信心始终没有动摇。解放后,苏步青以更大的热情投入到教学工作中去,并培养出了谷超豪、胡和生院士等一大批优秀数学人才。 在进行纯粹的理论研究的同时苏步青还非常的重视实践。他深刻地认识到必须加强应用科学的研究,重视基础科学的研究,使两者有机地结合起来。首创性地将这些理论和方法,应用造船、汽车、建筑、服装等行业。1972年,苏步青和他的两位学生到江南造船厂参加船体数学放样的研究,建立了厂校合作关系。经过4年多的努力,他们和江南造船厂的同志合作,解决了船体线型光顺问题,获得全国科学大会奖。 实际上,苏步青早在上个世纪五十年代就为世人所公认。1951年担任中国数学会理事(以后历任副理事长、名誉理事长)。1955年他就当选为中国科学院数理学部委员,兼任学术委员会常委。1956年被评为一级教授,任复旦大学副校长、复旦大学数学研究所所长,1978年被任命为校长。1979年后任《数学年刊》的主编(其实1935年就被推选为《中国数学学报》主编)。曾任上海市人大常委会副主任;第七、第八届全国政协副主席;全国人大常委会教科文卫专门委员会副主任;民盟中央副主席等职。
5. 中国现代成就最高的数学家是谁
李善兰在级数求和方面的研究成果,被命名为“李善兰恒等式”。华罗庚关于完整三角和的研究成果被称为“华氏定理”;另外他与王元提出多重积分近似计算的方法被成为“华—王方法”。苏步青在仿射微分几何学方面的研究成果被命名为“苏氏锥面”。熊庆来关于整函数与无穷级的亚纯函数的研究成果被称为“熊氏无穷级”。陈省身关于示性类的研究成果被称为“陈示性类”。周炜良在代数几何学方面的研究成果被称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。吴文俊在拓扑学中的重要成就被命名为“吴氏公式”,其关于几何定理机器证明的方法被称为“吴氏方法”。王浩关于数理逻辑的一个命题被称为“王氏悖论”。柯召关于卡特兰问题的研究成果被称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”。陈景润在哥德巴赫猜想研究中提出的命题被称为“陈氏定理”。杨乐和张广厚在函数论方面的研究成果被称为“杨—张定理”。陆启铿关于常曲率流形的研究成果被称为“陆氏猜想”。夏道行在泛函积分和不变测度论方面的研究成果被称为“夏氏不等式”。姜伯驹关于尼尔森数计算的研究成果被称为“姜氏空间”;另外还有以他命名的“姜氏子群”。王戌堂关于点集拓扑学的研究成果被称为“王氏定理”。
6. 简述数学发展史及近代数学的主要成就
第一部分 初等数学发展史
(一)课程内容
1、数学的起源与早期发展
(1)数与形概念的产生
(2)河谷文明与早期数学
2、古希腊数学
(1)论证数学的发端
(2)亚历山大学派
3、古代中国数学的鼎盛
(1)《周髀算经》与《九章算术》
(2)魏晋南北朝的数学
(3)宋元数学
4、印度与阿拉伯的数学
(1)古印度的数学
(2)阿拉伯在代数、三角学与几何学的成就
本部分重、难点:雅典时期的希腊数学、亚历山大学派的主要成绩、中国的《九章算术》、中国剩余定理、印度数学以及阿拉伯的代数、三角学与几何学的成就。
(二)考核知识点与考核要求
1.初等数学发展史部分,要求达到“了解”层次的。
(1)数与形概念的产生
(2)埃及数学、美索不大米数学
(3)亚历山大后期和希腊数学的衰落
(4)毕达哥拉斯学派
2.初等数学发展史部分,要求达到“理解、掌握”层次的。
(1)雅典时期的希腊数学
a. 三大几何问题
b. 无限性概念的早期探索
c. 逻辑演绎结构的倡导
(2)亚历山大学派的主要成就
a. 欧几里得的几何《原本》的主要成就
b. 阿基米德的数学成就
c. 阿波罗尼奥斯的《圆锥曲线论》
(3)古代中国数学的主要成就
a. 《周髀算经》与《九章算术》
b. 刘徽和祖冲之父子的主要成就
c. 中国剩余定理
(4)印度数学以及阿拉伯的数学
a. 古代《绳法经》
b. 零号数的发明
c. 阿拉伯的代数、三角学与几何学的成就。
主题: 第二部分 近代数学发展史重难点辅导
第二部分 近代数学发展史
(一)课程内容
1、近代数学的兴起
(1)向近代数学的过渡
a .代数学的出现
b.三角学的发展
c.从透视学到射影几何
d.计算技术与对数的诞生
(2)解析几何的诞生
2、微积分的创立
(1)半个世纪的酝酿
a.开普勒与旋转体体积
b.卡瓦列里不可分量原理
c.笛卡尔的圆法
d.费马求极大值与极小值的方法
e.巴罗的微分三角形
f.沃利斯的无穷算术
(2)牛顿的“流数术”
a.流数术的初建
b.流数术的发展
c.牛顿的《原理》与微积分
(3)莱布尼茨的微积分
a. 特征三角形
b. 分析微积分的建立
c. 莱布尼茨微积分的发展
3、分析时代
(1)微积分的进一步发展
a.积分技术与椭圆积分
b.微积分向多元函数的推广
c.无穷级数理论
d.函数概念的深化
e.微积分严格化的尝试
(2)微积分的应用与新分支的形成
a.常微分方程的形成
b.偏微分方程的产生
c.变分法的产生
(3)18世纪的几何与代数
a.微分几何的形成
b.方程论
c.数论进展
4、代数学的新生
(1) 代数方程的可解性与群的发现
(2) 从四元数到超复数
(3)布尔代数的形成
(4)代数数论的诞生
5、几何学的变革
(1)欧几里得几何平行公设
(2)非欧几里得几何的诞生
(3)非欧几里得几何的发展与确认
(4)射影几何的繁荣
(5)几何学的统一
6、分析的严格化
(1)柯西与分析基础
(2)分析的算术化
a. 维尔斯特拉斯的成就
b. 实数理论
c. 集合论的诞生
(3)分析的扩展
a. 复分析的建立
b. 解析数论的形成
c. 数学物理与微分方程
本部分的重、难点:代数学的出现、解析几何的诞生、开普勒与旋转体体积、卡瓦列里不可分量原理、笛卡尔的圆法、费马求极大值与极小值的方法、巴罗的微分三角形、沃利斯的无穷算术、牛顿的“流数术”、莱布尼茨的微积分、微积分向多元函数的推广、无穷级数理论、函数概念的深化、常微分方程的形成、偏微分方程的产生、微分几何的形成、数论进展、代数学的新生、非欧几里得几何的发展与确认和几何学的统一、分析的严格化等
(二)考核知识点与考核要求
1.近代数学发展史部分,要求达到“了解”层次的
(1)从透视学到射影几何
(2)计算技术与对数的诞生
(3)积分技术与椭圆积分
(4)函数概念的深化
(5)微积分严格化的尝试
(6)代数方程的可解性与群的发现
(7) 从四元数到超复数
(8) 分析的算术化
2.近代数学发展史部分,要求达到“理解、掌握”层次的
(1)代数学的出现、
(2)解析几何的诞生
(3)微积分的创立
a. 开普勒与旋转体体积
b. 卡瓦列里不可分量原理
c. 笛卡尔的圆法
d. 费马求极大值与极小值的方法
e. 巴罗的微分三角形
f. 沃利斯的无穷算术
g. 牛顿的“流数术”和莱布尼茨的微积分
(3)分析学时代
a. 微积分向多元函数的推广
b. 无穷级数理论
c. 函数概念的深化
d. 常微分方程的形成和偏微分方程的产生
e. 微分几何的形成
f. 数论进展
(4)代数学的新生
(5)非欧几里得几何的发展与确认和几何学的统一
(6)分析的严格化
a. 柯西与分析基础
b. 分析的扩展 (复分析的建立、解析数论的形成)
主题: 第三部分 现代数学发展概观重难点辅导
第三部分 现代数学发展概观重难点辅导
1、现代数学发展史部分,要求达到“了解”层次的
(1)数学向其他科学的渗透(数学物理、生物数学、数理经济学)
(2)计算机影响下的数学(计算数学的发展、纯粹数学研究与计算机、计算机科学种的数学)
(3)高斯-博内公式的推广
(4)米尔诺怪球
(5)四色问题
(6)费马大定理的证明
(7)数学与社会进步
2、现代数学发展史部分,要求达到“理解、掌握”层次的
(1)新世纪的序幕(希尔伯特的《数学问题》)
(2)更高的抽象( 勒贝格积分与实变函数论、泛函分析、抽象代数、拓扑学、公理化概率论)
(3)对基础的深入探讨(集合论悖论、三大学派(逻辑主义、直觉主义、形式主义)
(4)数理逻辑的发展(公理化集合论、证明论、模型论、递归论)
(5)应用数学的新时代
(6)独立的应用学科(数理统计、运筹学、控制论)
(7)数学的社会化(数学教育的社会化、数学专门期刊的创办、数学社团的建立、数学奖励)
(8)中国现代数学的开拓
7. 中国近代现代著名数学家以及其主要研究成果
1.华罗庚
自学成材的天才数学家,中国近代数学的开创人!!
在众多数学家里华罗庚无疑是天分最为突出的一位!!
华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学