导航:首页 > 证书转让 > 生命科学研究成果

生命科学研究成果

发布时间:2021-08-06 15:18:41

A. 有哪些生物学家及主要研究成果

遗传学方面的孟德尔开辟了染色体的新领域,提出了自由组合规律等.
摩尔根提出了基因的专概念和连锁互换等经属典规律
美国人麦克林托克提出了“可移动的遗传基因”学说。
沃森和克里克提出了DNA分子结构是由双重螺旋构造组成的“沃森-克里克模型”。

距离可以看下,这个链接,很详细:
http://ke..com/view/67001.htm

B. 21世纪生命科学领域三大重大成就

人类基因组计划,干细胞研究,克隆技术的发展。

虽然人类基因组计划是20世纪提出的,但它是21世纪完成的。

(2)生命科学研究成果扩展阅读:

生命科学研究意义

生物与人类生活的许多方面都有着非常密切的关系。生物学作为一门基础科学,传统上一直是农学和医学的基础,涉及种植业、畜牧业、渔业、医疗、制药、卫生等等方面。随着生物学理论与方法的不断发展,它的应用领域不断扩大。生物学的影响已突破上述传统的领域,而扩展到食品、化工、环境保护、能源和冶金工业等等方面。如果考虑到仿生学,它还影响到电子技术和信息技术。

人口、食物、环境、能源问题是当前举世瞩目的全球性问题。世界人口每年的增长率约20%,大约每过35年,人口就会增加一倍。地球上的人口正以前所未有的速度激增着。人口问题是一个社会问题,也是一个生态学问题。人们必须对人类及环境的错综复杂的关系进行周密的定量的研究,才能对地球、对人类的命运有一个清醒的认识,从而学会自己控制自己,使人口数量维持在一个合理的数字上。在这方面生物学应该而且可能做出自己的贡献。内分泌学和生殖生物学的成就导致口服避孕药的发明,已促进了计划生育在世界范围内的推广。

在人口问题中,除了数量激增以外,遗传病也严重威胁人口质量。一些资料表明,新生儿中各种遗传病患者所占的比例在 3%~10.5%之间。在中国的部分山区,智力不全者占2%~3%,个别地区达10%以上。揭示产生遗传病的原因,找到控制和征服遗传病的途径无疑是生物学又一重要任务。进行家系分析以确定患者是否患有遗传病,对患者提出有益的遗传指导和劝告;通过对胎儿的脱屑细胞进行染色体分析和各种酶的生化分析,以诊断未来的婴儿是否有先天性遗传性疾病。

这些方法都能避免或减少患有遗传病婴儿的出生,以减轻家庭和社会的沉重负担。将基因工程应用于遗传病的治疗称为基因治疗,在实验动物上对几种遗传病的基因治疗已取得一些进展。随着基因工程技术的发展,基因治疗将为控制和治疗人类遗传病开辟广阔的前景。

C. 生命科学领域的 最新研究成果

对于一台摆钟又能说些什么呢?对于一台摆钟来说,室温实际上就等于零度。这就是它为什么是“动力学地”工作的理由。你如果把它冷却,它还是一样地继续进行工作(假如你已经洗清了所有的油渍)!可是,你如果把它加热,加热到室温之上,它就不再继续工作了,因为它最后将要熔化了。
看上去这似乎是无关紧要的,不过,我认为它确实是击中了要害。钟表装置是能够“动力学地”工作的,因为它是固体构成的,这些固体靠伦敦-海特勒力而保持着一定的形状,在常温下这种力足以避免热运动的无序趋向。

我认为现在有必要再讲几句话,来揭示钟表装置同有机体之间的相似点,简单而又唯一的相似点就是后者也是依靠一种固体--构成遗传物质的非周期性具体--而大大地摆脱了热运动的无序。可是,请不要指责我把染色体纤维称为“有机的机器的齿轮”--这个比喻,至少不是没有深奥的物理学理论作为依据的。

最明显的特点是:第一,齿轮在一个多细胞有机体里奇妙的分布,这点我在第64节中曾作了诗一般的描述;其次,这种单个的齿轮不是粗糙的人工制品,而是沿着上帝的量子力学的路线完成的最精美的杰作。

D. 我国最新在生命科学领域取得的成就

据新华社消息我国科学家在生命科学研究中又获一项重要成果:首次发现交感神经系统调控免疫系统的一把“钥匙”,即一个潜在的分子机制,从而揭示了交感神经系统和免疫系统细胞信号转导通路间关键的相互作用。这一创新成果的取得,为将来研究开发相关药物提供了可能的靶点和思路。
中科院上海生命科学研究院5月8日介绍,5月7日,在美国出版的国际权威杂志《分子细胞》上发表了这项研究的论文。上海生命科学研究院生化与细胞所裴钢院士和高华、孙悦博士经数年攻关完成的这一重要成果,得到国家973项目、国家自然科学基金优秀研究群体、中科院知识创新工程的支持。
细胞是生物活动的基本单位,细胞每时每刻都在接受来自细胞外的各种信号,并传导到细胞内以调控细胞中的一切重要的生命活动。在细胞信号传导中,有一种G蛋白偶联型的受体是细胞膜表面数量最大的受体家族,承担着大量的细胞信号传导功能,是最重要的药物靶点,目前世界上大约40%的畅销药物都是针对G蛋白偶联型受体的。
主持这项研究的裴钢院士说,科学研究已经表明,β2
肾上腺素受体是一种在体内广泛分布的G蛋白偶联型受体,是交感神经系统调控免疫系统的主要承担者。此前,交感神经系统对免疫系统调节的分子机制人们并不清楚。
裴钢、高华和孙悦等研究人员经过数年的不懈研究发现,β2
肾上腺素受体信号通路中的一个重要的信号分子———休止蛋白,直接抑制一种在免疫系统中掌管着许多基因表达的转录因子NF-κB的激活,并抑制NF-κB转录因子进入细胞核,因而无法启动基因表达。同时发现,β2
肾上腺素受体信号还会显著增强这种抑制作用。由于NF-κB这种转录因子在机体的免疫功能、应激反应、肿瘤发生、细胞的增殖和分化中发挥着中枢功能,因此,阐明交感神经系统如何调控免疫系统的分子机制,是具有十分重要的价值。
现实生活中工作压力大,心理负担重,以及情绪紧张的时候,人们往往容易生病,原因就是交感神经系统影响免疫系统的表现。因而,中国科学家这项研究成果的取得,为今后研究开发相关的药物不仅提供了针对性较强的靶点,而且也给出了一种新的思路。

E. 收集五条关于生命科学领域的最新科学研究成果

1.蛋白质泛素化
在最新一期的《自然》杂志上,来自华盛顿大学的华裔科研人员郑宁(Ning Zheng)助理教授又发表了一篇有关泛素蛋白连接酶结构生物学的新文章。自2000年以来,郑博士先后在Cell、Nature和Science等国际权威杂志上发表了多篇文章,并且有三篇文章成为杂志的封面故事进行推荐。
蛋白质泛素化作用是后翻译修饰的一种常见形式,该过程能够调节不同细胞途径中各式各样的蛋白质底物。通过一个三酶级联(E1-E2-E3),蛋白质的泛酸连接又E3泛素连接酶催化,这种酶是cullin-RING复合体超级家族的最佳代表。
在从酵母到人类的各级生物中都保守的DDB1-CUL4-ROC1复合体是最近确定出的cullin-RING泛素连接酶,这种酶调节DNA的修复、DNA复制和转录,它能被病毒所破坏。

由于缺少一个规则的SKP1类cullin连接器和一种确定的底物召集结构域,目前人们还不清楚DDB1-CUL4-ROC1 E3复合体如何被装配起来以对各种蛋白质底物进行泛素化。

在这项新的研究中,郑博士等人对人类DDB1-CUL4A-ROC1复合体被病毒劫持的形式进行了晶体结构分析。分析结果表明DDB1利用一个β-propeller结构域作为cullin骨架结合物,利用一种多变的、附着的独立双β-propeller折叠来进行底物的呈递。
通过对人类的DDB1和CUL4A复合体进行联系提纯,然后进行质谱分析,研究人员确定出了一种新颖的WD40-repeat蛋白家族,这类蛋白直接与DDB1的双propeller折叠结合并充当E3酶的底物募集模块。这些结构和蛋白质组学研究结果揭示出了cullin-RING E3复合体的一个新家族的装配和多功能型背后的结构机制和分子逻辑关系。

2.RNAi(RNA干扰)
过去在对生物体基因功能研究时,通常利用反义寡核苷酸、核酶[1]等抑制目的基因表达,而近年来发现了一种新的诱导基因沉默的技术,即RNA干扰(RNA interference,RNAi).与其它关闭基因工具不同,RNAi是一种由双链RNA介导的特异性抑制同源基因表达的技术.由于它具有高特异性和高效性,已经广泛应用于植物、真菌、蠕虫和低等脊椎动物以及哺乳动物的基因功能研究,并且在人类基因组功能研究和基因药物研制及基因治疗等方面,有很好的应用前景.

3.生物芯片-下个世纪的革命性技术
通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命科学和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。

4.让肿瘤细胞自行凋亡
美国伊利诺伊州立大学的科学家成功合成出一种可以让肿瘤细胞自行凋亡的分子。
在罹患肿瘤疾病期间,有缺陷细胞按程序凋亡的过程被破坏,癌变细胞能够对抗机体发出的凋亡信号,这样癌变细胞就可以毫无监控地分裂,并形成肿瘤。
根据科学家们掌握的证据,癌变细胞的这种能力与半胱天冬酶-3(caspase-3)的缺失有关,这种蛋白酶参与到细胞凋亡过程中。由于癌变细胞中半胱天冬酶-3酶原蛋白(procaspase-3)形成caspase-3的过程被破坏,所以这种蛋白酶的数量不足。
保罗·赫根罗德(Paul Hergenrother)领导的科学家团队研究了超过两万种化合物以寻找到能够促进半胱天冬酶-3酶原蛋白合成半胱天冬酶-3的物质。终于科学家们找到了这种化合物。合成分子PAC-1能够促进半胱天冬酶-3的形成。同时,它还激活了从小鼠和人类肿瘤中分离出来的癌变细胞的自然死亡的过程。
PAC-1主要是针对那些procaspase-3含量较高的细胞发挥作用。在肠、皮肤、肝脏等部位的肿瘤细胞及白血病细胞中这种蛋白的含量较高。同时,健康细胞对于PAC-1的作用并不敏感,因为健康细胞中procaspase-3的含量并不高。研究人员指出,通过对同一个肿瘤患者的正常细胞与肿瘤细胞进行化验表明,癌变细胞对PAC-1的敏感程度要高2000倍。
保罗·赫根罗德指出,“我们可以预测出像PAC-1这样的化合物的潜在能力。”他还补充说,他们将选择一些肿瘤细胞中procaspase-3的含量水平较高的患者进行治疗。
科学家计划在以后将要进行临床研究以评估PAC-1的安全性。科学家指出,在没有发现严重的副作用的情况下,原则上医生们将获得一种治疗肿瘤的新方法。

5.研究者首次绘制调节成人干细胞生长基因图谱
最近,美国肯塔基州大学(UK)的Gary Van Zant博士及其研究小组在国际权威科学杂志《自然遗传学》上发表了他们的一项重大成果。他们绘制了一个干细胞基因和它的蛋白产品Laxetin,并且在此工作基础上,进行了鉴定基因自身的调查研究。这是至今为止首次对干细胞基因进行的完全研究。
这一特殊基因由于能调节体内特别是骨髓内成人干细胞的数目而显得尤为重要。现在它已被鉴定,研究者希望该基因与它的蛋白产品Latexin能够应用于临床。比如,增加进行化疗或者骨髓移植病人的干细胞数量。化疗病人一个大难关是面临治疗后干细胞丧失。这就限制了化疗所能进行的剂量与类型。但是如果Latexin能够用于增加干细胞数量,病人就能够接受更大剂量化疗,并能更快速恢复。在骨髓移植中干细胞数量增加同样有用,在这里需要大量的干细胞来帮助病人从癌症恢复。另外一个Latexin可能的应用是帮助脐带血中干细胞数目,这同样用于血髓移植中移植健康干细胞。目前,脐带血中干细胞移植仅能用于儿童因为脐带血不含有移植给成人所需的足够干细胞数量。
目前仅在骨髓的干细胞群中检测了Latexin效果。Van Zant说,可能或者很可能在如肝,皮肤,胰腺或大脑组织中的干细胞群能受Latexin的类似影响。这为使用干细胞治疗如由肝病,糖尿病损伤或者中风造成的中枢神经损伤等其他疾病和状况开辟了新的治疗策略。
研究者同样看到了基因在如白血病和淋巴瘤中正常干细胞转化为癌变干细胞的可能作用。如果基因确实起作用,那么同样可能是新治疗方法的关键。这些发现对于干细胞调节分子机制的深入了解具有作用,这包括一些干细胞如何癌变。这些发现同样有助于科学家发展控制用于治疗的干细胞数目与功能的有效方法,同样为发生在干细胞中年龄相关变化提供了一个较好的解释。

F. 生命科学方面近年来取得的成就有哪些

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生

G. 生命科学方面近年来取得的成就有哪些

生命科学将成为21世纪自然科学的带头学科
20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化.分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因.人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因.将利用这些成果去为人类健康服务.

H. 生命科学近五年的科研成果有什么呀关于遗传基因方面的有么

下面列出的是Science杂志中列出的2008,09年几个生命科学方面研究热点。
1、IPS细胞。2008年十大科学进展之首的细胞重编程能把成人皮肤细胞重新编程为诱导多能干(inced pluripotent stem, 简称iPS)细胞,而iPS细胞可以被诱导发育为各种成熟细胞类型。细胞重编程有望迎来一个新的研究浪潮。研究人员采用这些方法可以从个体患者身上造出新的细胞、来检查这些细胞是否有生理和遗传异常,或用它们来试验可能的治疗方法。科学家已经从I型糖尿病、帕金森病和另外至少十几种疾病的患者身上造出了iPS细胞。随着越来越多的研究人员加入这个领域、并且取得新见解(如果他们运气好的话),2010年还会有更多种疾病的iPS细胞制造出来。

2、基因治疗指通过修复DNA来修复发生故障的细胞,它为治疗单个基因缺陷引起的疾病提供了一个精美的解决方案。在人类身上的研究始于1990年,但是该领域一直面临各种技术挑战和重重困难,比如一位志愿者在临床试验中死亡。但是随着研究人员报告的对几种破坏性疾病的成功治疗,基因疗法今年有了转机。这些成功案例包括:

先天性黑蒙症(Leber's congenital amaurosis, 简称LCA)。这是一种罕见的让患者在婴儿期失明的遗传疾病。美国和英国的研究人员给黑蒙症患者的一只眼睛注射一种携带外来基因的无害病毒,该基因编码是一种制造感光色素所必需的酶的编码。在第一批临床试验中,12名部分失明患者的感光能力都有改善。其中4个孩子重获视力,能进行体育运动,在学校也不再需要学习辅助器材。(另一个研究小组用类似的方法使先天红绿色盲的松树猴恢复了全色视觉。)

X连锁肾上腺脑白质营养不良(adrenoleukodystrophy, 简称ADL)。这是一种大脑疾病,通常会导致男童在青春期前死亡。此种疾病是编码制造维持神经髓鞘的蛋白质的基因有缺陷造成的。一个法国研究小组往两个患有此病的7岁男童的血细胞里注入一个纠正基因,有些细胞开始制造缺失的蛋白质并且看来转移到了他们的大脑。两年后,ADL典型的渐进性脑损伤已经停止。这次试验也是第一次用失效的HIV病毒把基因带入细胞,该病毒导致癌症的可能性比过去用的载体小。

“泡泡男孩”病,又名严重联合免疫缺陷病(severe combined immunodeficiency,简称SCID)。这种病是由于缺乏一种叫腺苷脱氨酶的酶而引起的。今年1月,意大利研究人员公布了他们对儿童患者8年试验的最新结果。10名患者中有8名不再需要酶替代疗法,过上了正常人的生活;而且他们中没有发现基因疗法的严重副作用。(治疗一种相关疾病——X连锁SCID——的基因疗法恢复了19名婴儿的免疫系统,但是他们中有5名患上白血病,其中1名死亡。)

3、植物基因组学。2009年,黄瓜、高粱和两个玉米品种的基因组序列发表了,对木薯和油棕榈也进行了测序,并且对其它很多植物的测序也取得了进展。

4、研究人员在哺乳动物、酵母以及常见的果蝇身上都发现了物种形成基因,使这种基因的数目从2006年的5个激增到15个,当然这要看人们如何定义物种形成基因。研究人员还找到了包括涉及定义新物种的几个调控区在内的其它DNA,并在了解对物种形成的基因组范围影响上做了不少工作。

阅读全文

与生命科学研究成果相关的资料

热点内容
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532
基层公共卫生服务技术题库 浏览:497
中国城市老年体育公共服务体系的反思与重构 浏览:932
网络著作权的法定许可 浏览:640
工商局党风廉政建设工作总结 浏览:325
公共服务平台建设可行性研究报告 浏览:428
投诉华尔街英语 浏览:202
榆次区公共卫生服务中心 浏览:990