A. 为什么要开展变形成果的整理工作
低应力无变形(LSND)焊接法是一种在薄板焊接时,利用特定的预置温度场积极控制焊接热应力应变发展过程的新技术。采用相应措施防止工件在焊接温度场共同作用下的瞬态失稳变形,以保证有效的“温差拉伸效应”跟随焊接热源,定量地控制焊缝纵向压缩塑性应变。改变焊后残余应力场使之重新分布,采用常规的焊接方法和焊接工艺参数,即可达到焊后低应力无变形的效果。
B. 变形观测的主要内容
变形观测主要包括沉降观测、位移观测、挠度观测、转动角观测和振动观测等。
此法的观测基准面由经纬仪的视准线和仪器竖轴建立。根据测定观测点偏离值的方法不同,视准线法又分为测小角法和活动觇牌法。20世纪60年代初,又采用了以激光束代替经纬仪视准线的激光经纬仪准直法和利用光干涉原理的波带板激光准直法。这些方法虽然大大提高了照准精度,但仍不能克服大气折射的影响。在某些特定条件(如水坝的廊道内)下,可采用引张线法,即用拉紧的钢丝作为基准线。近年来在激光准直法和引张线法中已采用光电传感技术,实现了观测的自动化。 挠度观测 测定建筑物受力后挠曲程度的工作。观测方法是测定建筑物在铅垂面内各不同高程点相对于底部的水平位移值。高层建筑物通常采用前方交会法测定。对内部有竖直通道的建筑物,挠度观测多采用垂线观测,即从建筑物顶部附近悬挂一根不锈钢丝,下挂重锤,直到建筑物底部。在建筑物不同高程上设置观测点,以坐标仪定期测出各点相对于垂线最低点的位移。比较不同周期的观测成果,即可求得建筑物的挠度值。如果采用电子传感设备,可将观测点相对于垂线的微小位移变换成电感输出,经放大后由电桥测定并显示各点的挠度值。 转动角观测 观测建筑物或机械设备倾斜度的变化,计算其转动角的工作。对某些建筑物,例如水坝,转动角的大小反映了它不均匀沉降的情况。同沉降观测一样,可用精密水准测量或液体静力水准测量方法测定。对一些精密机械设备,则需采用专门的转动角观测仪。这类仪器主要由一个高灵敏度的气泡水准和一套精密的测微仪器组成。当气泡居中时利用测微仪器进行读数,即得该处的倾斜度。比较不同周期的倾斜度,可以求得观测周期间机械设备的转动角。
C. 英语 成功 succeed 的几种变形
过去式 :succeeded 、现在分词 :succeeding 、第三人称单数 succeeds、形容词:successful
succeed
vi. 成功;继承;继任;兴旺。
vt. 继承;接替;继…之后。
(3)变形成果扩展阅读:
短语
1、succeed with 在方面取得成功 ; 在 ; 在…上获得成功
2、to succeed 成功 ; 继承 ; 争取成功 ; 打响
3、founder succeed 失败
4、succeed overnight 一夜成功
5、succeed phenomenally 惹人注目的继任
6、succeed credibly 值得称赞的成功
D. 建筑变形测量成果质量检查记录表怎么填
1、基础底板后,如有地下室二层的,就要施工好-2层时测一次,到-1层时测一次,主体结构施工过程中,每施工二层测一次, 如有10层就要测5次,内墙体完成测一次,外装饰完成测一次,竣工时测一次,前3年,一般每年测一次,3年后每二年测一次。2、房子在竣工以前由施工单位自己测量的,以后由甲方找相关单位继续测量。
E. 变形监测的成果表达式有哪些形式
1、简述变形监测的任务和目的。(P1)
任务:确定在外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。
目的:监测变形体的安全状态,验证有关工程设计的理论或地壳运动的假说,以及建立正确预报变形的理论和方法。
2、导致地表局部变形的原因有哪些?(P3,19-20);防止和减弱变形的措施有哪些?举2例。 原因:人类开发自然资源活动(抽取地下水、采油和采矿等)会引起局部地表变形,如在人口密集地区大量抽取地下水,造成地面沉降,地下采矿引起矿体上方岩层的移动,严重的会造成地面滑坡和塌方,危及人类生命财产安全。 措施:工程建筑物的三维变形监测 滑坡体滑动监测
地下开采引起地表沉陷监测
3、简述滑坡体滑动的主要因素。(P3,9-12)
内在因素:岩石介质的各向异性、岩石结构的高度非均匀性、地形地貌以及地应力的复杂性。 外在因素:地下水、降雨、温度等因素变化以及人类活动的影响等。 4、简述倒垂线法观测坝顶位移原理。(P11,10-15)
利用钻孔将垂线一端的链接锚块深埋到岩基中,从而提供了在基岩下一定深度的基准点,垂线另一端与一浮体箱连接,垂线在浮力作用下拉紧,始终静止于铅直的位置,形成一条铅直基准线。倒垂线的位置与工作基点相对应,利用安置在工作基点上的垂线坐标仪可测定工作基点相对于倒垂线的坐标,比较其不同观测周期的值,可求得工作基点的位移。 5、举例说明变形点的具体精度要求,举三例。(P23)
(1)对于有连续生产线的大型车间,通常要求观测工作能反映出2mm的沉陷量,因此,对于观测点高程的精度,应在1mm以内。
(2)地铁穿越隧道要控制地面沉降,可允许范围根据不同情况为5-20mm
(3)悬索桥的基础和锚碇的沉降变形只有几毫米,主梁的中跨、塔顶的位移则几厘米至几十厘米 (4)楼体最大沉降一般应小于16mm
(5)高速磁悬浮列车架空轨道挠度应小于1mm (6)滑坡变形监测的精度一般在10-50mm
(7)特种工程设备一般要求变形监测的精度高达0.1mm 6
7、建筑物变形主要包括哪些方面?P135
既包括地基沉降、回弹,也包括建筑物的裂缝、倾斜、位移及扭曲等。 8、简述砂土地基和粘土地基沉降特点。P135-136
(1)砂土地基:其沉降在施工期间已大部完成;可分4个阶段: 第1阶段是在施工期间,沉降速度较大,年沉降量达20-70mm;第2阶段,沉降速度显着减慢,年沉降量约20mm;第3阶段,为平稳下沉阶段,年沉降量约1-2mm;第4阶段,沉降曲线基本水平,即达到了沉降停止的阶段。
(2)粘土地基:沉降完成较慢,达到稳定时间较长,沉降在施工期间只完成了一部分。
9、在压缩性地基上建造建筑物时,其沉降原因有哪些因素?P136 (1)荷载影响 (2)地下水影响 (3)地震影响 (4)地下开采影响 (5)外界动力影响
(6)其它影响,如地基土的冻融、打桩、降水等。 10、建筑物变形监测内容有哪些。P137 (1)建筑物沉降监测 (2)建筑物水平位移监测 (3)建筑物倾斜位移监测 (4)建筑物裂缝监测 (5)建筑物挠度监测
11、建筑物变形监测周期一般是如何确定的?P137
(1)沉降监测周期应能反映出建筑物的沉降变形规律。如砂土层上的建筑物,沉降在施工期间已大部分完成。根据这种情况,沉降监测周期应是变化的。在施工过程中,频率应大些,一般有三天、七天、半月三种周期;到竣工使用时,频率可小些,一般有一个月、两个月、半年与一年等不同周期。
(2)在施工期间也可以按荷载增加的过程进行安排监测,即从监测点埋设稳定后进行第一次监测,当荷载增加25%时监测一次,以后每增加15%监测一次。
(3)建筑物使用阶段的观测次数,应视地基土类型和沉降速度而定。除有特殊要求外,一般情况下,可以在第1年监测4次,第2年2次,第3年后每年1次,直至稳定为止。
(4)观测期限一般不少于如下规定:砂土地基2年,膨胀土地基3年,黏土地基5年,软土地基10年。
12、建筑物是否进入稳定阶段的判别标准是什么?P137
沉降是否进入稳定阶段,应由沉降量与时间关系曲线判定。对重点监测和科研观测工程,若最后三个周期观测中,每周期沉降量不大于2倍测量中误差,可认为已经进入稳定阶段。一般观测工程若沉降速度小于0.01~0.04mm/d,可认为已经进入稳定阶段,具体取值宜根据各地区地基土的压缩性确定。当建筑物又出现变形或产生可能出现第二次沉降的原因时,应对他重新进行监测。
13、简述一般性高层建筑变形监测采用的等级及精度要求。P138
布设监测点时,应根据建筑物的大小、基础形式、结构特征及地质条件等因素确定。
(1)监测点应布置在建筑物沉降变化较显着的地方,并考虑到在施工期间和竣工后,能顺利进行监测的地方; (2)在建筑物的四周角点、中点及内部承重墙上均需埋设监测点,并应沿房屋周长每隔10~12m设置一个监测点,但工业厂房的每根柱子均应埋设监测点。
(3)由于相邻影响关系,在高层和低层建筑、新老建筑连接处,以及在相接触的两边都应布设监测点; (4)在人工加固地基与天然地基交接和基础砌深相差悬殊出以及在相接触的两边都应布设监测点;
(5)当基础形式不同时,需在情况变化处埋设监测点,地基土质不均匀,可压缩性土层的厚度变化不一等情况需适当埋设监测点;
(6)在振动中心基础上要布设监测点,对于烟囱、水塔等刚性整体基础上,应不少于3个监测点;
(7)当宽度大于15m的建筑物在设置内墙体监测标志时,应设在承重墙上,并且尽可能布置在建筑物的纵横轴线上,监测标志上方应有一定的空间,以保证测尺直立;
(8)重型设备基础的四周及邻近堆置重物之处,即有大面积堆荷的地方,也应布置监测点; (9)沉降监测点的埋设标高,一般在室外地坪+0.5m较为适宜,但在布置时应根据建筑物层高、管道标高、室内走廊、平顶标高等情况来综合考虑。同时还要注意所埋的监测点要让开柱间横隔墙、外墙上的雨水管等,以免所埋监测点无法检测而影响监测资料完整性; (10)在浇筑基础时,应根据沉降监测点的相应位置,埋设临时的基础监测点。 15、简述全站仪3维监测原理。P151-152
为了减少量测仪器高误差对成果的影响,提高高程测量精度,可采用无仪器高作业方法,其基本原理是,假设测站基准点高程为
,仪器高为,定向基准点高程为
F. 取得的进展和成果
1)建立了符合国际标准的数据质量筛选原则,对研究区主要块体如塔里木、准噶尔、西伯利亚显生宙以来的古地磁极数据进行了筛选,初步建立了研究区质量可靠的显生宙古地磁极数据库,并重点对研究区及邻区白垩纪古地磁极数据进行了筛选。
2)初步建立了塔里木块体显生宙古地磁视极移动曲线,并编制了塔里木块体显生宙古纬度变化图。 由此视极移曲线推测参考点(39°N,84°E)的古纬度和磁偏角可以看出,奥陶纪塔里木位于南半球低纬度区(16.7°S);至志留纪塔里木快速移到赤道以北的中低纬度地区(漂移量达3840 km),同时顺时针旋转了12.5°;志留纪至泥盆纪塔里木块体基本保持稳定;塔里木块体自泥盆纪至晚石炭世向北移动约13° (1400 km),并顺时针旋转了40°,这表明,塔里木块体可能正向北消减到哈萨克斯坦板块之下。 在晚石炭世和中侏罗世之间,塔里木块体北向移动已不存在,但在二叠纪仍发生了26°的顺时针旋转,表明塔里木块体在这一时期与哈萨克斯坦块体的碰撞可能已开始减速。 三叠纪—中侏罗世塔里木块体逆时针旋转了16°。
3)西伯利亚板块与塔里木块体的晚石炭世—二叠纪古纬度在95%置信范围已趋于一致,即两块体在二叠纪前对接缝合,形成天山造山带。
4)华北与塔里木两块体记录的磁偏角是在侏罗纪才比较相近,古地磁极也已在95%误差范围内(朱日祥等,1998),说明两块体间的对接与缝合是在侏罗纪完成的。
5)准噶尔块体石炭纪—二叠纪时已成为一整体连接到劳亚大陆(Laurasia),自石炭纪以后几乎未发生视极移(即南北向净漂移,Sharps et al.,1992)。
6)对白垩纪古地磁极数据进行了初步分析,给出了白垩纪研究区主要块体间的相对运动状态:
准噶尔、塔里木块体、华北块体、华南块体早、晚白垩世的古地磁极位置基本一致,这表明当时各块体相对于古磁极的相对运动或位移较小。对于整个欧亚视极移曲线(APWP)来说,这是个U形圈或稳态时期(Besse et al., 1991)。 因此,可以将早、晚白垩世数据平均来获取白垩纪的古磁极。
尽管仍存在较大的不确定性,华北和华南块体的古磁极与欧亚各块体的磁极是一致(Enkin et al., 1992),这表明,在古地磁数据的误差范围内,中国大陆各主要块体和西伯利亚块体在晚侏罗世时已处于其现今的相对位置。 欧亚、准噶尔、塔里木、青藏西部和印度各块体的白垩纪古磁极近似地沿一与中亚成NNE方向相交的大圆排列,这意味着这些块体在一级近似的情况下,沿NNE方向相互彼此靠近,具有较少的旋转量。
由北向南,欧亚块体与准噶尔块体古磁极间的角距离为6.2°±4.8° (Chen et al., 1991 ,1993),这相当于650±530km的南北向缩短(即古纬度差为5.9°±4.8°),同时准噶尔块体相对于西伯利亚(参考点位于44°N/86°E)逆时针旋转了2.4°±5.8°。
准噶尔块体和费尔干纳块体古磁极间的角度差异产生了可忽略的纬度差0.3°±6.9°和相对于费尔干纳附近参考点(40.5°N,72.5°E)15.7°±10.0°的旋转(Chen et al., 1993)。
准噶尔和塔里木块体古磁极间的角距(4.3°±5.5°)在95%的置信水平上是无意义的(Chen et al., 1991, 1993)。但是,塔里木块体与欧亚块体古磁极间的角距较之与准噶尔的系统偏大,这相当于420±605 km(古纬度差3.8°±5.5°) 的缩短和2.11°±6.3°的旋转(参考点位于40°N/77°E)。
塔里木块体与藏西古磁极间的角度差为8.5°±6.4°,但古纬度差并不大(5.7°±6.2°)。 这意味着两者间近南北向缩短量为630±680 km(即古纬度差为5.7°±6.2°),以及相对于参考点34°N/80°E具有较大的旋转量7.1±6.4° (Chen et al., 1993)。
吐鲁番盆地白垩纪平均视磁极与同一时期的准噶尔块体、欧亚大陆间的角度差分别为8.4°±6.7°和13.7°±5.5° (Cogne et al.,1995),表明准噶尔和吐鲁番之间可能发生了相对运动,存在径向运动(6.4°±6.7°),但并无明显的旋转(4.0°±6.7°)。
吐鲁番盆地白垩纪平均视磁极与同一时期塔里木的视磁极很相近,两者间的角度差为4.3°±6.2°(Cogne et al.,1995),在统计上无意义。 这表明吐鲁番与塔里木块体间自晚侏罗世以来未发生明显的相对运动,当时的塔里木已是刚性块体,其地理范畴已包括了吐鲁番盆地。
综上所述,据古地磁资料沿80°E方向初步估算各块体间的缩短量分别为650 km(西伯利亚和准噶尔块体之间,主要在阿尔泰)、420 km (准噶尔和塔里木块体之间,主要在天山)、630 km(塔里木和青藏块体之间,主要在昆仑山和阿尔金山)。 所有这些由古地磁资料获取的缩短量和旋转量可能反映了自印度与欧亚大陆碰撞以来的中亚整体变形状况。
7)选择新生代变形幅度相对较大的塔里木块体西缘喀什-阿图什地区和变形幅度较相对较小的北天山北缘玛纳斯地区作为野外重点采样区,对其新生代地层进行了初步的古地磁研究,完成了227个古地磁样品的测试及分析。 结果表明,北天山乌鲁木齐山前凹陷第三纪(古近纪、新近纪)沉积地层存在严重的重磁化现象,所获得的5个采点的平均剩磁方向较离散。 这说明各采点所在推覆体之间可能存在相对运动。 研究区第三纪(古近纪、新近纪)沉积地层实测磁倾角普遍存在浅化问题,即实测磁倾角比由欧亚大陆视极移曲线预测的磁倾角要浅(如在西南天山博古孜河要浅19°,这与该区第三纪(古近纪、新近纪)的古地理重建是不协调的)。 Thomas et al.(1994)在对塔吉克盆地第三系(古近纪、新近纪)红层进行古地磁研究时也报道了类似的现象。 造成这一现象的原因,目前说法不一。 因此,利用第三纪(古近纪、新近纪)沉积地层古磁倾角来研究该区新生代各块体间的纬向运动(即南北向缩短量)目前可能是不现实的,但利用第三纪(古近纪、新近纪)火成岩的古磁倾角有可能获得该区新生代各块体间的纬向运动状况。
此外,可利用古磁偏角的变化来确定各块体绕垂直轴的相对旋转量。博古孜河剖面自N2以来逆时针旋转了18.9°,拜城逆时针旋转了17.8°;英吉莎自80 Ma以来顺时针旋转了21.0°±10.4°,这些结果与地质研究 (Chen Jie et al., 2000; Rumelhart et al., 1999; Burtmanet al., 1993)是一致的。
G. 建筑物变形观测有哪些内容
定建筑物及其地基在建筑物本身的荷载或受外力作用下,一定时间段内所产生的变形量及其数据的分析和处理工作。内容包括沉降、倾斜、位移、挠曲、风振等变形观测项目。其目的是监视建筑物在施工过程中和竣工后,投入使用中的安全情况;验证地质勘察资料和设计数据的可靠程度;研究变形的原因和规律,以改进设计理论和施工方法。
建筑物地基和基础变形观测 内容主要有:
基坑回弹测量 在基坑开挖前、中、后期,测出事先埋设在基底面上的观测点,由于基坑开挖引起的高程变化。开挖前和开挖后两次的高程差为基坑的总回弹量。
地基分层沉降测量 测出埋设在不同土层上的观测点因荷载增加而引起的高程变化,以求得各土层的沉降量和受压层的最大深度。
建筑物的沉降测量 测出建筑物或基础上的观测点,因时间推移或因地基发生变化所引起的高程差异,比较不同周期的观测值即得沉降量。
以上内容都属于以垂直位移为主的变形观测,其方法是首先按建筑场地地形、地质条件和对变形观测的精度要求,合理布设变形控制网点(见工程控制测量)。在建筑物附近比较稳固的位置埋设工作基点,直接用以测定建筑物上的观测点的位移,尽可能在变形影响以外的稳固位置埋设基准点(检查点),用以检核工作基点本身的稳固性(见地面沉降和水平位移观测)。工作基点与基准点一般都组成网形,用精密水准测量的方法来施测和检验。高程变化值的测定通常采用精密水准方法,也可用液体静力水准仪、气泡倾斜仪、电子水准器等进行测量。
建筑物上部变形观测 内容主要有:
倾斜观测 测定建筑物顶部由于地基有差异沉降或受外力作用而产生的垂直偏差。通常在顶部和墙基设置观测点,定期观测其相对位移值,也可直接观测顶部中心点相对于底部中心点的位移值,然后推算建筑物的倾斜度。
位移观测 测定建筑物因受侧向荷载的影响而产生的水平位移量,观测点的建立视工程情况和位移的方向而定。
裂缝观测 测出建筑物因基础有局部不均匀沉降而使墙体出现的裂缝。一般在裂缝两侧设置观测标志,定期观测其位置变化,以取得裂缝的大小和走向等资料。
挠度观测 测定建筑物受力后产生的挠曲程度。一般测定设置在建筑物垂直面内不同高度观测点相对于底点的水平位移值。
摆动和转动观测 测定高层建筑物和高耸构筑物在风振、地震、日照等外力作用下的摆动量和扭曲程度。
上述内容多属于以水平位移为主的变形观测,其方法除在稳定地区建立变形控制网,检验工作基点或基准点的稳固性外,通常使用测角前方交会法、经纬仪投影法、观测水平角法、激光准直法和垂线观测法等,来定期测定观测点的位置变化。对于特定方向的水平位移,还可用视准线法和引张线法进行观测。近年来,开始应用的近景摄影测量方法,对于测定地基基础与建筑物沉降、建筑物倾斜、测求裂缝参数、模型变形状态参数,以及建筑机械构件变形的检验等方面都有一定的效果。近景摄影测量通常使用摄影经纬仪、普通摄影机或高速摄影机,按正直、等偏、交向等摄影方式,可在一定时间段或瞬间连续记录建筑物和试验模型的大量点位变形信息。并使用立体坐标量测仪、电子计算机、精密立体测图仪或解析测图仪,按解析法或模拟解析法,测定观测点随时间所产生的二维或三维相对变形量。所摄得的像片,作为档案资料还可在其他任何时候进行检核量测。
变形观测的数据处理与分析 首先,将观测成果进行初步整理,再以时间或荷载为横坐标,以累计变形量为纵坐标,绘制各种变形过程线,以便初步了解变形的幅度、趋势和建筑物的安全情况。其次,要对观测资料进行归纳和分析。通常采用回归分析的方法,先选择合适的拟合方法,再按最小二乘法与统计检验的原理求得回归方程,从而找出变形的规律性。由此方程即可根据各个自变量来推求所需因变量(即变形值),以推算、预报今后的变形情况,研究应采取的措施。对于基准点、工作基点和观测点稳固性的检验,在有固定的起算点时,用统计检验的方法,根据定期重复观测的结果,用最小二乘法计算各点的离差矢量,进行F(两个正态母体的方差是否相等)检验,以判断水准点高程的变化是由于水准点的升降还是由于观测的误差所引起。在没有固定的起算点时,采用秩亏自由网平差方法计算各点的位移值,根据定期重复观测成果,判断其稳定性。
随着高大建筑的增多和古建筑的维修,变形观测工作愈来愈受到人们的重视。变形控制网的布设,已在研究应用优化设计的理论和方法;观测方法除了沿用一些行之有效的传统观测仪器和方法外,将逐步应用全能激光测量仪、自动垂直仪、电子测斜仪、位移摄影探索器等光电、电子仪器和摄影测量技术,使测量过程日趋自动化;观测数据的处理,已广泛应用数理统计的方法来检验点位的稳定性,由单一变量统计分析发展到多变量动态的定性定量统计分析,对建筑物的安全将提供更可靠的
H. 取得的主要研究成果
研究期间,先后参阅了大量涉及区内的科研论文、相关的地质理论和基础的地质资料,在汲取前人资料中丰富营养的同时,通过大量野外地质调查研究、样品采集、剖面测制和室内研究工作,对研究区内所存在的重大的、基础性的科研问题,如各阶段的构造环境、构造变形及演化、岩浆岩的侵位机制等,进行了研究,尤其对研究区内东西向召河庙—四子王旗—大滩构造岩浆岩带的研究取得了如下几点认识:
第一,通过对比研究认为,原1∶20万区调在耳营地—大脑包山等地所划分的震旦纪地层的岩石组合特征、变质特征、变形特征等,可与发育于色尔腾山地区的色尔腾山岩群对比,自下而上构成了一套较完整的火山岩—沉积岩的沉积组合,经历了绿片岩—角闪岩相变质作用的改造,具有绿岩特征。
第二,首次在原1∶20万区调划分为海西期的花岗岩中识别出侵位于色尔腾山岩群的同构造期太古宙岩体,与研究区内新识别出的色尔腾山岩群共同经历了新太古代晚期—早元古代变形变质作用的改造,二者构成较典型的花岗岩-绿岩带。
第三,首次在伊和乌苏、大脑包山、大苏吉北发现了韧性剪切带。并将召河庙—四子王旗—大滩隆起带作为晚太古-早元古代构造岩浆岩带提出,认为构造带是早前寒武纪华北陆块北缘的增生带,经历了岛弧环境火山沉积、构造变形及构造隆升阶段,最终奠定了华北北缘早前寒武纪结晶基底的构造格局,并据地质体分布特征及剪切变形将其划分为北带、中带和南带。
I. success所有的变形有哪些
变形词:
复数:successes
形容词:successful成功的;一帆风顺的
副词:successfully成功地;顺利地
名词:successor继承者;后续的事物
不及物动词:succeed成功;继承;继任;兴旺
及物动词:succeed继承;接替;继…之后
success
读音:英[səkˈses]美[səkˈses]
翻译:成功,成就;胜利;大获成功的人或事物
短语:
Trimming Success飞短留长父子兵 ; 飞短流长父子兵 ; TVB飞短留长父子兵 ; 短留父子兵
achieve success获得成功 ; 承认
success rate成功率 ; 精品率 ; 成功率
(9)变形成果扩展阅读:
近义词:triumph
读音:英[ˈtraɪʌmf]美[ˈtraɪʌmf]
释义:
胜利,凯旋;欢欣
获得胜利,成功
短语:
Arch of Triumph凯旋门 ; 凯旋拱门
Triumph of the Will意志的胜利 ; 意志 ; 意志的凯旋
Triumph Palace凯旋宫