导航:首页 > 证书转让 > 三角恒等变换研究性学习成果

三角恒等变换研究性学习成果

发布时间:2021-07-26 22:37:44

Ⅰ 李善兰的学术成就

李善兰在数学研究方面的成就,主要有尖锥术、垛积术和素数论三项。尖锥术理论主要见于《方圆阐幽》、《弧矢启秘》、《对数探源》三种著作,成书年代约为1845年,当时解析几何与微积分学尚未传入中国。李善兰创立的“尖锥”概念,是一种处理代数问题的几何模型,他对“尖锥曲线”的描述实质上相当于给出了直线、抛物线、立方抛物线等方程
创造的“尖锥求积术”。相当于幂函数的定积分公式和逐项积分法则。他用“分离元数法”独立地得出了二项平方根的幂级数展开式结合“尖锥求积术”,得到了π的无穷级数表达式。各种三角函数和反三角函数的展开式,以及对数函数的展开式。
在使用微积分方法处理数学问题方面取得了创造性的成就。垛积术理论主要见于《垛积比类》,写于1859~1867年间,这是有关高阶等差级数的著作。李善兰从研究中国传统的垛积问题入手,获得了一些相当于现代组合数学中的成果。例如,“三角垛有积求高开方廉隅表”和“乘方垛各廉表”实质上就是组合数学中著名的第一种斯特林数和欧拉数。驰名中外的“李善兰恒等式”。
自20世纪30年代以来,受到国际数学界的普遍关注和赞赏。可以认为,《垛积比类》是早期组合论的杰作。素数论主要见于《考数根法》,发表于1872年,这是中国素数论方面最早的著作。在判别一个自然数是否为素数时,李善兰证明了著名的费马素数定理,并指出了它的逆定理不真。
李善兰对经典力学在中国的传播作出卓越的贡献。他将英国人W.胡威立的《初等力学教程》(1833年第2版)笔译(经艾约瑟口述)为中文,1859年由上海墨海书馆以《重学》的书名出版,共20卷。这是第一本系统介绍力学的中译本。
李善兰在《重学》一书所写的序言中。特别强调了动力学的内容:“推其暂如飞炮击敌,动重学也;推其久如五星绕太阳、月绕地,动重学也。”“动重学之率凡三:曰力、曰质、曰速。力同,则质小者速大,质太者速小;质同,则力小者谜小,力大者速大。”“动重学所推者力生速。凡物不能自动,力加之而动,若动后不复加力,则以平速动;若动后恒加力,则以渐加速动。”“凡物旋动,必环重心,地动是也。二物相连而相绕,必环公重心,月地相摄而动是也。“李善兰与伟烈亚力合译英国天文学家J.F.赫歇耳(1792~1871)所著《天文学纲要》一书。中译本名为《谈天》,于1859年刊行。李善兰执笔时作了删略。该书不仅把近代天文学第一次系统地介绍到中国。而且引进了有关万有引力的学说和天体力学的内容。有些力学专门术语的中文译名,如摄动、章动等。最早见于《谈天》。此后,李善兰又着手翻译I.牛顿的《自然哲学的数学原理》,虽然书没译完,译稿后也遗失,但自李善兰把牛顿力学介绍到中国后,西方近代科学的思想体系、观点和方法,以及近代科学史上的若干成就才为中国学者所运新熟悉,同时也激起中国学者学习自然科学的热情。
李善兰在所著《火器真诀》中按照不计空气阻力抛射体在平面或斜面上射程的公式,提出弹道学的图解方法。这些结果虽然低于当时欧洲弹道学水平,但反映了自然科学由引进到消化的过程。

Ⅱ 求一篇 初一数学小论文

初一数学知识点归纳
第一单元 位置
1、能在具体的情景中,确定位置的方法,说出某一物体的位置。
2、用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y)。
3、“数对”表示位置,易错的是(x,0),(0,y)。
4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向。

第二单元 分数乘法
一、分数乘整数
1、意义:表示几个相同分数相加。
2、计算方法:(1)、分母不变,分子和整数相乘。
(2)、当分母和整数可以约分时,要先约分。
二、分数乘分数
1、意义:就是一个分数的几分之几。
2、计算方法:(1)、分子乘分子,分母乘分母。。
(2)、分子和分母有能约分的要约分,再计算。
三、运算律的运用
1、整数乘法的运算律对于分数乘法同样适用。
2、应用运算律简便计算。
四、倒数
1、乘积是1的两个数互为倒数。
2、求法:把数的分子和分母的位置颠倒。
3、1的倒数就是1本身,0没有倒数。
五、解决问题
1、求一个数的几分之几。列式:标准量×几分之几
2、求一个数多(或少)几分之几。列式:标准量×(1±几分之几)
标准量土标准量×几分之几
3、求一个数占另一个数的几分之几。列式:几分之几
4、用画线段图分析分数乘法应用题的数量关系。

第三单元 分数除法
一、 类型
1、分数除以整数,表示把分数平均分成整数份。
2、分数除以分数,表示b/a中有多少个d/c。
3、整数除以分数,表示a中有多少个c/d。
二、计算方法:除以一个数等于乘这个数的倒数(0除外)。
三、分数除法的意义与整数除法相同,都是乘法的逆运算。
四、分数混合运算顺序,简便算法。
五、 解决问题
1、甲数是乙数的几分之几。列式:甲/乙。
2、乙数的几分之几等于甲数。列式:甲数=乙数×几分之几。
乙数=甲数÷几分之几。
3、甲数比乙数多(或少)几分之几。
列式:甲数=乙数×(1土几分之几)
甲数=乙数土乙数×几分之几。
标准量:“比”字后面的为标准量。
4、若求长方形的长是宽的几倍:就是求长和宽的比:长/宽。
若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽。
六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值。
1、在a:b中,a叫比的前项,b叫比的后项。
2、 比与除法和分数的关系。a:b=a÷b=a/b。
3、 求比值两项的单位名称要统一,比值是一个数,没有单位。
4、 比的基本性质 a:b=am:bm
a:b=a÷m:b÷m
5、 比化成最简整数比:
(1) 有分数,前项和后项都乘分母的最小公倍数。
(2) 无分数,前项和后项都除以最大公约数。
(3) 有小数,可先化为整数或分数。
6、解决问题 总量×被分份数/总份数=要求的量

第四单元 圆
一、 圆的认识,由曲线围成,外形美,易滚动。
1、 圆心,用o表示。
2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示。
3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示。
4、 半径和直径的关系。
5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线。
二、 圆的周长
1、 圆周率,是周长与直径的比,是无限不循环小数。
2、 公式:c=πd或c=2πr
3、 已知圆的周长求半径和直径。
三、 圆的面积
1、公式 S=πR2
2、已知圆的半径、直径或周长能分别求圆的面积。
3、环形面积公式 S=πR2-πr2
4、扇形、弧、圆心角。
5、在周长一定的情况下,圆的面积最大。
在面积一定的情况下,圆的周长最短。
6、 确定起跑线的位置。

第五单元 百分数
1、 百分数的写法。百分号“%”
2、 百分数的意义:表示一个数是另一个数的百分之几。
3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系。百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称。另外百分数的分子可以是小数和大于一百的数。
4、 百分数与分数、小数的互化。
百分数化为小数:去掉百分号,小数点向左移动两位;
小数化为百分数:小数点向右移动两位,添上百分号;
百分数化为分数:可先化为分母是一百的分数,能约分的要约分;
分数化为百分数:先把分数化为小数,再化为百分数。
5、解决问题
①、达标率,发芽率的公式。(甲占乙的百分之几。)
达标率=达标的人数/总人数×100%
发芽率=发芽的数量/种子的总数×100%
②、甲比乙少(或多)百分之几。确定单位“1”。
③、甲增加了百分之几是多少?增加了多少?
6、折扣,表示十分之几,也就是百分之几十。
折扣问题求实求一个数的百分之几是多少的问题。
7、纳税。
①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税
②、缴纳的税款叫做应纳税额。按一定的比率纳税叫做税率。
③、税率=应纳税款/各种收入×100%
应纳税款=税率×各种收入。
8、利率。
①、存款的好处。
②、利息=本金×利率×时间
③、取款=本金+利息-利息税(本金+税后利息)。

第六单元 统计
一、 扇形统计图
1、 能反映部分量同总量之间的关系
2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几。
3、 利用扇形统计图计算分析。
二、 合理存款
1、 教育储蓄。
2、 国债利率
3、 设计存款方案
4、 合理存款

第七单元 数学广角
鸡兔同笼问题
利用解方程的方法解决问题。

初中数学基本方法
1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于r,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

初中数学总结
初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们山东省济南市的中考中是这样的)。
代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的
几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。

Ⅲ (Ⅰ)某同学在一次研究性学习中发现,以下五个式子的值都等于一个常数.sin213°+cos217°-sin13°cos17

(Ⅰ)(1)sin213°+cos217°-sin13°cos17°=

1?cos26°
2
+
1+cos34°
2
-sin13°cos17°=1+
1
2
(cos34°-cos26°)-sin13°cos17°
=1+
1
2
(-2)sin30°sin4°-
1
2
(sin30°-sin4°)=
3
4

(2)将该同学的发现推广为三角恒等式为:sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4

证明:∵sin2α+cos2(30°-α)-sinαcos(30°-α)=
1?cos2α
2
+
1+cos(60°?2α)
2
-sinαcos(30°-α)
=1+
1
2
[cos(60°-2α)-cos2α]-sinαcos(30°-α)=1+
1
2
(-2)sin30°sin(30°-2α)-
1
2
[sin30°-sin(30°-2α)]=
3
4

∴sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4
成立.
(Ⅱ)设t=sinx+cosx=

Ⅳ 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin 2 13°+cos 2 17°-sin13°

解:(1)选择(2),计算如下:sin 2 15°+cos 2 15°-sin15°cos15°=1-


Ⅳ 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 2 13°+cos 2 17°-sin 13°

(1) (2)见解析

Ⅵ 求各种数学物理方面的定理、猜想、悖论,越多越好,只有名字也行,加上简单的介绍最好。谢谢。

买那本华东师范大学出版社的《高中数学竞赛多功能题典》,后面有重要的竞赛的定理,概念 。1.平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。

2.代数
周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*

3. 初等数论
同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题
圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。

悖论的话
希帕索斯悖论与第一次数学危机

希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最著名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面积割补给出它的第一种证明。

在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。

毕达哥拉斯

毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

欧多克索斯

二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。

贝克莱悖论与第二次数学危机

第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。

贝克莱主教

1734年,贝克莱以“渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取一个不为0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,后再被 Δx 除,得到 2x + Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。

数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。

牛顿与莱布尼兹

针对贝克莱的攻击,牛顿与莱布尼兹都曾试图通过完善自己的理论来解决,但都没有获得完全成功。这使数学家们陷入了尴尬境地。一方面微积分在应用中大获成功,另一方面其自身却存在着逻辑矛盾,即贝克莱悖论。这种情况下对微积分的取舍上到底何去何从呢?

“向前进,向前进,你就会获得信念!”达朗贝尔吹起奋勇向前的号角,在此号角的鼓舞下,十八世纪的数学家们开始不顾基础的不严格,论证的不严密,而是更多依赖于直观去开创新的数学领地。于是一套套新方法、新结论以及新分支纷纷涌现出来。经过一个多世纪的漫漫征程,几代数学家,包括达朗贝尔、拉格朗日、贝努力家族、拉普拉斯以及集众家之大成的欧拉等人的努力,数量惊人前所未有的处女地被开垦出来,微积分理论获得了空前丰富。18世纪有时甚至被称为“分析的世纪”。然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面,不谐和音的刺耳开始震动了数学家们的神经。下面仅举一无穷级数为例。

无穷级数S=1-1+1-1+1………到底等于什么?

当时人们认为一方面S=(1-1)+(1-1)+………=0;另一方面,S=1+(1-1)+(1-1)+………=1,那么岂非0=1?这一矛盾竟使傅立叶那样的数学家困惑不解,甚至连被后人称之为数学家之英雄的欧拉在此也犯下难以饶恕的错误。他在得到

1 + x + x2 + x3 + ..... = 1/(1- x)

后,令 x = -1,得出

S=1-1+1-1+1………=1/2!

由此一例,即不难看出当时数学中出现的混乱局面了。问题的严重性在于当时分析中任何一个比较细致的问题,如级数、积分的收敛性、微分积分的换序、高阶微分的使用以及微分方程解的存在性……都几乎无人过问。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样,消除不谐和音,把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。到十九世纪,批判、系统化和严密论证的必要时期降临了。

柯西

使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于1821年开始出版了几本具有划时代意义的书与论文。其中给出了分析学一系列基本概念的严格定义。如他开始用不等式来刻画极限,使无穷的运算化为一系列不等式的推导。这就是所谓极限概念的“算术化”。后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所使用的“ε-δ ”方法。另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。不过,在当时情况下,由于实数的严格理论未建立起来,所以柯西的极限理论还不可能完善。

柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系。魏尔斯特拉斯的理论可归结为递增有界数列极限存在原理;戴德金建立了有名的戴德金分割;康托尔提出用有理“基本序列”来定义无理数。1892年,另一个数学家创用“区间套原理”来建立实数理论。由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。

罗素悖论与第三次数学危机

十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”

康托尔

可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。

罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。

罗素

其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。

以上简单介绍了数学史上由于数学悖论而导致的三次数学危机与度过,从中我们不难看到数学悖论在推动数学发展中的巨大作用。有人说:“提出问题就是解决问题的一半”,而数学悖论提出的正是让数学家无法回避的问题。它对数学家说:“解决我,不然我将吞掉你的体系!”正如希尔伯特在《论无限》一文中所指出的那样:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。人们试想:在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”悖论的出现逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了:第一次数学危机促成了公理几何与逻辑的诞生;第二次数学危机促成了分析基础理论的完善与集合论的创立;第三次数学危机促成了数理逻辑的发展与一批现代数学的产生。数学由此获得了蓬勃发展,这或许就是数学悖论重要意义之所在吧。

悖论一览

1. 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?

如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。

2. 芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。

3. 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”

如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。

所以怎样也难以自圆其说,这就是著名的说谎者悖论。

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说!

说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”

又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。

4. 跟无限相关的悖论:

{1,2,3,4,5,…}是自然数集:

{1,4,9,16,25,…}是自然数平方的数集。

这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?

5. 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?

6. 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”

你能说出为什么这场考试无法进行吗?

7. 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”

这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?

8. 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?

9. 谷堆悖论:显然,1粒谷子不是堆;

如果1粒谷子不是堆,那么2粒谷子也不是堆;

如果2粒谷子不是堆,那么3粒谷子也不是堆;

……

如果99999粒谷子不是堆,那么100000粒谷子也不是堆;

……

10. 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢?

累死我拉!!
希望可以帮到你~~
新年快乐!!

Ⅶ 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:① ;② ;③ ;④ ;⑤ .(1)

(1) .

Ⅷ 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°-sin13°cos1

选择(2),计算如下:
sin215°+cos215°-sin15°cos15°=1-

1
2
sin30°=
3
4
,故 这个常数为
3
4

(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4

证明:(方法一)sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(

Ⅸ 要搞一个有关高中数学的课题

数学研究性学习课题

1、银行存款利息和利税的调查
2、气象学中的数学应用问题
3、如何开发解题智慧
4、多面体欧拉定理的发现
5、购房贷款决策问题
6、有关房子粉刷的预算
7、日常生活中的悖论问题
8、关于数学知识在物理上的应用探索
9、投资人寿保险和投资银行的分析比较
10、黄金数的广泛应用
11、编程中的优化算法问题
12、余弦定理在日常生活中的应用
13、证券投资中的数学
14、环境规划与数学
15、如何计算一份试卷的难度与区分度
16、数学的发展历史
17、以“养老金”问题谈起
18、中国体育彩票中的数学问题
19、“开放型题”及其思维对策
20、解答应用题的思维方法
21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类
22、高中数学的学习活动——解题后的反思——开发解题智慧
23、中国电脑福利彩票中的数学问题
24、各镇中学生生活情况
25、城镇/农村饮食构成及优化设计
26、如何安置军事侦察卫星
27、给人与人的关系(友情)评分
28、丈量成功大厦
29、寻找人的情绪变化规律
30、如何存款最合算
31、哪家超市最便宜
32、数学中的黄金分割
33、通讯网络收费调查统计
34、数学中的最优化问题
35、水库的来水量如何计算
36、计算器对运算能力影响
37、数学灵感的培养
38、如何提高数学课堂效率
39、二次函数图象特点应用
40、统计月降水量
41、如何合理抽税
42、市区车辆构成
43、出租车车费的合理定价
44、衣服的价格、质地、品牌,左右消费者观念多少?
45、购房贷款决策问题
研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)
《 立几部分 》

问题1
平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。

问题2
用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。

问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。

问题4
异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。

问题5
立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

问题6
作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。

问题7
等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。

问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。

《解几部分 》

问题9
对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。

问题10
我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。

问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。

问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。

问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。

问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。

问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。

问题16
解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。

问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。

问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。

问题19 求轨迹问题中,纯粹性的简捷判别。

问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。

问题21 对平移变换的解题功能进行综述。

问题22
与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。

《函数部分 》

问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。

问题24 整理求定义域的规则及类型(特别是复合函数的类型)。

问题25
求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。

问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。

问题27 利用条件最值的几何背景进行命题演变,与命题分类。

问题28
回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。

问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。

问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。

问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?

问题32
对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。

问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。

《三角部分 》

问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。

问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。

问题36 整理三角代换的的类型,及其能解决的哪几类问题。

问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为
从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。

问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。

问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。

问题40
三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。

《不等式部分 》

问题41
一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。

问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。

问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。

问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。

问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。

问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。

问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。

问题48 探索绝对值不等式和物理模拟法

如果还有什么相关的课题,请各位同行提出

Ⅹ 求高中数学研究课题

高中数学研究性学习课题选题参考

作者:德化一中数学组

数学研究性学习课题

1、银行存款利息和利税的调查
2、气象学中的数学应用问题
3、如何开发解题智慧
4、多面体欧拉定理的发现
5、购房贷款决策问题
6、有关房子粉刷的预算
7、日常生活中的悖论问题
8、关于数学知识在物理上的应用探索
9、投资人寿保险和投资银行的分析比较
10、黄金数的广泛应用
11、编程中的优化算法问题
12、余弦定理在日常生活中的应用
13、证券投资中的数学
14、环境规划与数学
15、如何计算一份试卷的难度与区分度
16、数学的发展历史
17、以“养老金”问题谈起
18、中国体育彩票中的数学问题
19、“开放型题”及其思维对策
20、解答应用题的思维方法
21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类
22、高中数学的学习活动——解题后的反思——开发解题智慧
23、中国电脑福利彩票中的数学问题
24、各镇中学生生活情况
25、城镇/农村饮食构成及优化设计
26、如何安置军事侦察卫星
27、给人与人的关系(友情)评分
28、丈量成功大厦
29、寻找人的情绪变化规律
30、如何存款最合算
31、哪家超市最便宜
32、数学中的黄金分割
33、通讯网络收费调查统计
34、数学中的最优化问题
35、水库的来水量如何计算
36、计算器对运算能力影响
37、数学灵感的培养
38、如何提高数学课堂效率
39、二次函数图象特点应用
40、统计月降水量
41、如何合理抽税
42、市区车辆构成
43、出租车车费的合理定价
44、衣服的价格、质地、品牌,左右消费者观念多少?
45、购房贷款决策问题
研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)
《 立几部分 》

问题1
平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。

问题2
用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。

问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。

问题4
异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。

问题5
立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

问题6
作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。

问题7
等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。

问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。

《解几部分 》

问题9
对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。

问题10
我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。

问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。

问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。

问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。

问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。

问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。

问题16
解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。

问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。

问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。

问题19 求轨迹问题中,纯粹性的简捷判别。

问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。

问题21 对平移变换的解题功能进行综述。

问题22
与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。

《函数部分 》

问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。

问题24 整理求定义域的规则及类型(特别是复合函数的类型)。

问题25
求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。

问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。

问题27 利用条件最值的几何背景进行命题演变,与命题分类。

问题28
回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。

问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。

问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。

问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?

问题32
对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。

问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。

《三角部分 》

问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。

问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。

问题36 整理三角代换的的类型,及其能解决的哪几类问题。

问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为
从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。

问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。

问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。

问题40
三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。

《不等式部分 》

问题41
一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。

问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。

问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。

问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。

问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。

问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。

问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。

问题48 探索绝对值不等式和物理模拟法

如果还有什么相关的课题,请各位同行提出。

与三角恒等变换研究性学习成果相关的资料

热点内容
学校矛盾纠纷排查化解方案 浏览:752
卫生院公共卫生服务绩效考核总结 浏览:490
郴州学府世家纠纷 浏览:197
马鞍山ok论坛怎么删除帖子 浏览:242
马鞍山恒生阳光集团 浏览:235
麻城工商局领导成员 浏览:52
乡级公共卫生服务绩效考核方案 浏览:310
乐聚投诉 浏览:523
轮子什么时候发明 浏览:151
马鞍山陶世宏 浏览:16
马鞍山茂 浏览:5
通辽工商局咨询电话 浏览:304
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
© Arrange www.jhzxd.com 2006-2021
温馨提示:资料来源于互联网,仅供参考