① 历史上有关合成氨的研究成果曾3次获诺贝尔奖,下图是与氨气有关的反应微观示意图,请回答以下问题. (1
(1)化合反应(2)﹣3
(3)化学反应前后元素的种类不变,化学反应前后原子的个数不变. ② 哈伯不懈合成氨 完成氮的固定 19世纪中期,人们对植物生长的机理已经有了一定认识,越来越认识到氮元素对于生物的重要作用。氮是一切生物蛋白质组成中不可缺少的元素,因而它在自然界中对人类以及其他生物的生存有很重要的意义。自然界中氮的总含量约占地壳全部质量的0.04%,大部分是以游离状态存在于大气中,空气中含有约78%(体积分数)的氮气,是空气的主要组成部分。但是,不论是人还是其他生物(少数生物除外),都不能直接从空气中吸收这种游离状态的氮作为养料。植物只能靠根部从土壤中吸收含氮的化合物,转变成蛋白质;人和动物只能摄食各种植物和动物体内的蛋白质,补充需要。因此生物从自然界索取氮元素作为自身营养的问题最终归结为植物由土壤吸收含氮化合物的问题。 土壤中含氮化合物主要来源一是动物的排泄物或动植物的遗体进入土壤后转变形成;二是雷电促使空气中的氮气和氧气化合,形成氮的氧化物,溶于雨水中落进土壤;三是某些细菌,例如与豆科植物共生的根瘤菌,吸收空气中的氮气而生成一些含氮的化合物。但是这些来源远远不能满足大规模农业生产的需要,于是如何使大气中游离的氮转变成能为植物吸收的氮的化合物,也就是氮的固定,成为化学家们探索的课题。 这个课题在19世纪末首先取得突破。按发明时间先后,第一项是制取氰氨化钙(CaNCN)。1898年,德国夏洛登堡(Charlottenburg)工业学院教授弗兰克(Adolf Frank,1834-1916)和他的助手罗特(F.Rother)、卡罗(N.Caro)博士发现碳化钡在氮气中加热后生成氰化钡和氰氨化钡,接着发现碳化钙在氮气中加热到1000℃以上也能生成氰氨化钙: CaC+N2══CaNCN+C弗兰克于1900年发现以过热水蒸气水解氰氨化钙可产生氨: CaNCN+3H2O══CaCO3+2NH3↑这样,空气中游离的氮被固定成氰氨化钙和氨的含氮化合物,均可用作肥料。于是1904年在德国建立了第一个工业生产装置,1905年意大利也建起工厂,随后在美国、加拿大相继建厂。到1921年,氰氨化钙的世界产量达每年50万吨。但是从此以后停止建造新工厂,因为由氢和氮直接合成氨的工业兴起了。 第二项是氮气和氧气直接化合,生成氮的氧化物,溶于水后生成硝酸和亚硝酸,但也很快被合成氨的工业排挤。 第三项就是将氢气和氮气直接合成氨。 氨气,又称阿摩尼亚(ammonia)气。这个词来自古埃及太阳神Ammon(也拼写成Amon或Amen)。这是由于在古埃及Ammon神殿旁堆积着朝拜人骑的骆驼排泄的粪便和剩余的供品,经过长时间变化释放出来含氨的气体。在自然界中任何一种含氮有机物在没有空气的情况下分解时就产生氨。这种分解作用是由于受热或受细菌的作用发生的。在马厩里和下水道里可以检查到刺鼻臭味的氨。 1774年英国化学家普里斯特利(Joseph Piestley,1733-1804)加热氯化铵(NH4Cl)和氢氧化钙(Ca(OH)2)的混合物,利用排汞取气法,首先收集到氨气,称它为碱空气(alkalineair)。他已认识到氨气的水溶液具有碱性。由于氨易溶于水,所以采用排汞取气法收集。当时他把一切气体物质都称为“空气”。 1784年法国化学家贝托莱(Claude Louis Berthollet,1748-1822)分析了氨气,确定它是由氮和氢组成的。 最初的氨是来自炼焦工业副产的氨水,因为煤里面含有2%的氮,在炼焦过程中,一部分氮(约20%~25%)转变成氨,含在煤气中,用水把它洗出来,就是粗氨水,含氨不过1%,人们直接把含氨的煤气通入硫酸,制得硫酸铵((NH4)2SO4),作为肥料。 自从19世纪以来,很多化学家试图由氮气和氢气合成氨,采用催化剂、电弧、高温、高压等手段进行试验,一直未能成功,以致有人认为氮气和氢气合成氨是不可能实现的。这是因为氮气和氢气化合成氨是可逆反应: 直到19世纪,在化学热力学、化学动力学和催化剂等这些学科取得一定进展后,才使一些化学家在正确理论指导下,对合成氨的反应进行了有效的研究。 取得成功的是德国化学家哈伯(Fritz Haber,1868-1934)。他在1901-1911年间对氮气和氢气直接合成氨进行了不懈地研究,哈伯和他的学生勒罗西尼奥尔(R.Le Rossignol)以及同事们进行了两万多次实验。1904年,他曾在常压和1000℃条件下将氮气和氢气通过铁,获得0.012%(体积分数)的氨产物。尽管产物中氨的浓度太低,缺乏经济效益,但他却没有停止实验。接着根据荷兰化学家范特荷甫(Jacobus Henricus Van’t Hoff,1852-1911)制定的化学动力学方程,哈伯计算出合成氨反应在常压和1000℃时的平衡常数,并按法国物理学家勒夏特列(Henry Louis Le Chatelier,1850-1936)提出的质量作用定律,计算出常压和不同温度下氨的平衡浓度,1907年又测定了大量合成氨反应平衡的实验数据。他通过上述工作,认识到合成氨不可能达到像硫酸生产那样高的转化率,于是考虑采用反应气体在高压下循环加工的办法,并从这个循环中不断将生成的氨分离出去,再配合选用有效的催化剂以取得成功。1908年哈伯申请了最初的合成氨专利,首次提出对氨合成气进行循环的意见,还提出在高压气体循环中实现热能回收的措施。1909年他又申请用锇和铀—碳化铀的混合物作为催化剂的专利;1910年5月他终于在实验室取得可喜成果。最初用锇作催化剂,在175千克力/厘米2压强和550℃温度下,在氮气和氢气反应后的混合气体中得到8%的氨;以后又用铀—碳化铀作为催化剂,在125千克力/厘米2压强和500℃温度下获得10%的氨。1910年5月18日他在德国卡尔斯鲁厄(Karlsruhe)(他曾是这个城市工业学院的化学教授)自然科学讨论会上发表演讲,并展示高压合成氨实验装置,宣告合成氨新工业的前途已经开拓。 贺炳昌。哈伯及世界上第一座合成氨厂。化学通报,1984(9)。 哈伯把成功的实验运用到工业生产中,与德国闻名的巴迪舍苯胺和纯碱工厂(Badische Anilin and Soda Fabrik(BASF))的化学家博许(Carl Bosch,1874-1940)、拉佩(F.Lappe)、米塔赫(Alwin.Mittash,1869-1953)等人进行合作。博许制成合成氨工业必需的高压设备;拉佩解决了高温、高压下机械方面的一系列难题;米塔赫研制成功用于工业合成氨的含少量三氧化二铝和钾碱助催化的铁催化剂。他们于1911年在德国路德维希港(Ludwig shafen)附近的奥堡(Oppau)建立起世界上第一座合成氨的工业装置,设置氨的年生产能力为9000吨,1913年9月9日开工,从此完成了氮的人工固定。哈伯因此荣获1918年诺贝尔化学奖,博许也荣获1931年诺贝尔化学奖。 哈伯虽然创造了挽救千百万饥饿生灵的方法,但却又设计了一种致人于死地的可怕武器。1915年4月22日下年5时左右,第一次世界大战爆发,德国将装有氯气的近6000个钢瓶、约180吨氯气打开散向面向守卫在比利时伊普尔城防线的加拿大盟军和法裔阿尔及利亚军队,造成1.5万人伤亡,其中5000人死亡,这是有史以来第一次把化学武器用于军事进攻中,是哈伯策划的。他的妻子伊梅瓦尔(Clara Immerwahr)是一位化学博士,曾恳求他放弃这项工作,遭到丈夫拒绝后用哈伯的手枪自杀。为此,哈伯遭到后人的谴责和唾骂。 ③ 什么是合成氨 合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。 合成氨反应的机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。 (3)合成氨成果扩展阅读: 合成氨的主要初始原料有天然气、石脑油、重质油和煤(或焦炭)等。 1、天然气制氨 天然气先经脱硫,通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.10.3体积,经甲烷化作用除去后,制的氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。 2、重质油制氨 重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。 3、煤(焦炭)制氨 以煤(焦炭)为原料制取氨的方式在世界上已很少采用。中国能源结构上存在多煤缺油少气的特点,煤炭成为主要的合成氨原料,天然气制氨工艺则受到严格限制。 ④ 关于合成氨 20世纪初发展出来,由大气中氮制氨的化学方法。是化学方法方面最重要的发明之一,因为它使大气中氮的固定成为可能,从而还能由将转化为硝酸来生产肥料(和炸药)所需的硝酸盐。哈伯(F.Haber)在理论的实验上证明,如何维持来自空气的氮和来自水中的氢在适当的温度和压力,并在有催化剂的情况下反应。博施(C.Bosch)还证明如何在工业规模上实现这种方法。总反应是3H2+n2=2NH3 ⑤ 哈柏对合成氨技术的贡献是什么 2.哈柏功不可没 从BASF公司的所在地路易港溯莱茵河而上,有一个地方叫卡尔斯鲁厄,此处有一所著名的大学叫卡尔斯鲁厄工程学院。该学院的化学教授弗里茨·哈柏,此时也因深受克鲁克斯警告的影响,开始致力于氨合成的研究工作。 1902年初,为了研究合成氨理论,哈柏去美国进行科学考察,他专程参观和访问了设在尼亚加拉的一座模仿自然界雷雨放电的生产固定氮的工厂。通过参观,使他对固定氮为氮氧化物和氨的研究产生了浓厚的兴趣。返回德国后,他便一头钻进了实验室,开始了这一划时代的研究工作。 1904年,维也纳的两位化工企业家——马古利斯兄弟,意识到这项工作的伟大意义,慕名来到卡尔斯鲁厄工程学院,正式与哈柏签订了研究氮氢元素合成氨的合同。从此,哈柏与其学生和助手全力以赴地投入了氨合成的试验研究。 哈柏研究氨的合成理论,是从可逆反应的平衡条件方面入手的。哈柏认为,仅有催化剂的知识是不够的,需要有对化学反应的新的理解——化学平衡理论,这个理论的核心就是:原料物质一般不会全部成为生成物质,同时,生成物质也会发生逆反应。在一定的反应条件下,即浓度、温度、压力之下,这种正逆反应是平衡的。 哈柏认识到,若根据这种思想调整反应条件,从前认为不可能的氨合成也许是可能的。哈柏首先想到,也许高温会进行这个反应。他按照他的思路开始进行实验,但是,结果却出乎意料,当温度升高到1000℃时,氨的产量才不过是原料体积的0.012%,这还不如低温度时的产量。但是,降低反应温度时,反应却又变得十分缓慢。哈柏认为,为了使化学反应加快,需要有适当的催化剂。 从1904年4月至1905年7月,这一年多时间里,虽然哈柏他们夜以继日地坚持在实验室里做着各种枯燥的试验,但几乎每次试验的结果都令人失望。于是,马古利斯兄弟见无利可图,便取消了对这个项目的资金支持,这样,哈柏就陷入了极度窘迫的境地。 与此同时,在柏林大学研究化学平衡理论的瓦尔特·赫尔曼·能斯特教授,也已投入了合成氨理论的研究,他亲自制造高压釜,进行高温、高压实验。经过实验,他发现哈柏的实验结果有问题,数字过大,实际上仅0.0032%,还要再小一个数量级,这就证明了哈柏的实验结果是不可行的。 瓦尔特·赫尔曼·能斯特为了使它的研究能够实现工业化,请求某个有名的化学公司制造设备,虽然它的压力并不算太高,但是,这个公司还是难以制出能耐住这样高温、高压的设备,于是,他犯了一个极大的错误,打消了实现工业化的念头,而埋头于实验室研究。 哈柏虽然在计算上有错,但在与能斯特的这场争论中,弄清了要使产量进一步提高就要对原料气——氮气和氢气施以高压、降低温度,并使用催化剂。 能斯特灰心了,哈柏却没有灰心,他从瓦尔特·赫尔曼·能斯特终止的地方开始了新的实验。此时,他不仅已经熟悉这个实验的理论,而且具备了成功的基础。 哈柏等人在化学平衡理论的指导下,开始一点一点地、耐心地进行试验,他们实验在什么样的压力和温度下产量能达到百分之几。他们还下大力气寻找最佳的催化剂,曾把能够禁受数百个大气压的反应容器镶嵌在枪弹壳里,用阿乌埃尔社团的瓦斯灯公司提供的铂、钨、铀等稀有金属,竭力寻找新的催化剂。 哈柏就是在这样的困境下,冒着高温、高压的危险继续试验。正当哈柏的试验研究屡遭失败而一筹莫展的关键时候,法国科学院院刊上报道了法国化学家采用高温、高压合成氨,而使反应器发生爆炸事故的消息。哈柏知道后深受启发,他果断地改变了试验条件,特别是提高了反应压力,并改进了工艺,终于取得了令人振奋的进展,合成氨的产量显著增加了。 1907年,哈柏等人选择锇或铀为催化剂,在约550℃和150至250个大气压的不寻常的高压条件下,成功地得到了8.25%的氨,第一次成功地制取了0.1公斤的合成氨,从而使合成氨有可能迈出实验室阶段。这无疑是一个具有实用价值的突破。而在此时,能斯特以50个大气压、685℃,以铂粉或细铁粉、锰做催化剂,却只取得了产量为0.96%的氨。哈柏的实验比能斯特的实验几乎高出8倍。 这一胜利极大地鼓舞了哈柏和他的助手们,他们预感到合成氨的试验研究已进入了实用化阶段,于是,又加紧对高温、高压合成氨工艺的研究。经过艰苦卓绝的试验研究,他们取得了一系列第一手的实验数据,大大加快了试验研究的步伐,不断取得令人振奋的新进展。 哈柏的科研成果极大地震动了欧洲化学界,化工实业界人士纷纷购买他的合成氨专利,独具慧眼的德国巴登苯胺纯碱公司捷足先登,抢先付给哈柏2500美元预订费,并答应购买他以后的全部研究成果。但公司中很多工程师,对钢制反应容器的赤热程度表示不安,对如此高压更感吃惊,因而对它的工业化持有怀疑。他们想起法国所发生的反应器爆炸的消息,担忧地说:“昨天爆炸的高压釜只有7个大气压。”言外之意,哈柏的高压实验条件也可能引起爆炸。 1909年,哈柏又提出了“循环”的新概念。所谓“循环”,就是让没有发生化学反应的氮气和氢气重新返回到反应器中去,把已反应的氨通过冷凝分离出来,这样,周而复始,以提高合成氨的获得率,使流程实用化。这一概念的提出,可以说是合成氨迈向工业化进程中具有决定性意义的重大突破。德国政府极为重视,立即接受和采用了这个新设想。 当年7月2日,哈柏在实验室制成了一座小型的合成氨装置模型,这是世界上第一个氨合成装置的模型。博施同他的部下米塔希一起,作为巴登苯胺纯碱公司的代表,前来接收哈柏的实验技术和装置。哈柏当场演示了他的合成氨装置,这种装置魔术般地以每小时0.08公斤的速度合成着氨。博施亲眼看到了液氨滴落的情况。前来观看的专家们共同认为,用不了多长时间,它将成为日产几吨的设备,从而清楚地预见了它的工业化的前景。 巴登苯胺纯碱公司立即买下了哈柏合成氨的专利权,并将其全部研究成果接收下来,双方还签订了协议,其要点是:不管生产工艺如何改进,合成氨的售价如何下降,巴登苯胺纯碱公司每售出1吨氨,哈柏分享10马克,其收入永不改变。 1919年,瑞典科学院考虑到哈柏发明的合成氨已在经济中显示出巨大的作用,经过慎重考虑,正式决定为哈柏颁发1918年度的世界科学最高的荣誉和奖励——诺贝尔化学奖,以表彰他在合成氨研究方面的卓越贡献,从此,他跻身于世界著名化学家的行列。 ⑥ 合成氨是什么时候实现工业化生产的呢 3.实现工业化生产 1908年,在巴登苯胺纯碱公司工作的博施,已从一个无名之辈,跻身于世界著名化学家行列。当时,他正从事氮固定法工业化的研究。当他得到哈柏氨合成成功的消息后,就在巴登苯胺纯碱公司的大力支持下,开始把哈柏氨合成法发展为工业规模生产的工作。 此时,摆在博施面前主要有两项工作:一项是制造能经受住100至200个大气压和500℃左右高温的反应容器;另一个问题是找到适于大量生产的催化剂,因为锇和铀是稀有金属,尤其是它在500℃左右时变成气体状态,容器也许会爆炸,不适于工业化生产。 制造反应容器的工作是由博施本人承担的,他领导的实验室里有上千人的庞大科研队伍,他原来又是一位金属学专家,所以,他满怀信心。寻找催化剂的任务是由米塔希承担的,他是奥斯特瓦尔德的得意学生,加上BASF公司具有在工业上利用催化剂的丰富经验,早年从萘制造合成染料靛蓝的原料时,曾使用过水银催化剂。另外,该公司高纯度的硫酸也是用铂催化剂制造的。由于有这样一些优势,在博施和米塔希的面前,合成氨的工业化变得十分可能了。 这时,博施遇到的困难是制造耐高压反应塔的进展缓慢,若是实验室用的小型的反应器还比较容易,一旦制成工业用的大型反应塔,钢壁虽然厚达3厘米,但也仅仅使用3天就破裂了。 博施查看了破片后大为吃惊,他发现:由于在100~200个大气压下,氢气渗进钢里同其中的碳化物反应,生成了甲烷气而减弱了钢的内部组织,因而发生了破裂。博施现在更加惊叹高压的可怕了。 为了防止这一现象,就应改良反应塔内壁的结构,使高压氢气在那里缓和下来,找出使它不能渗入钢内部结构的办法。首先,博施在内壁衬上铜、青铜、纯银等各种金属进行试验,但立即就变成破破烂烂了,他提议用“熟铁”衬在里面再进行实验,也没有获得成功。研制工作陷入了僵局。 1911年2月的某一个晚上,博施在俱乐部里一边喝酒一边思考着解决的办法。因为熟铁是软的,由于高压的作用而使它紧贴在内壁上,就像通过口罩的氢气仍会使反应塔的强度削弱,怎样解决这个问题呢?在去往工厂的路上,他突然领悟到一个好的办法:在反应塔的壁上钻出许多小孔,让透过熟铁而进来的氢气跑掉。为此,反应塔制成双层结构就可以了。 熟铁衬里和在钢壁上开许多小孔,这是个很好的主意,这样,从前人们难以处理的耐高温、高压的反应塔——双层反应塔终于诞生了。这个反应塔,用双壁管代替了哈柏的单壁反应器,就是一个管子套在另一个管子里面,外管用普通钢制成,内管用合金钢制成。博施通过用合金钢代替碳钢解决了高温、高压下钢材脆裂的问题,也解决了反应室不能经受这么高的压力的难题,避免了爆炸事故的发生。 “氨合成的整个发展,很大程度上是依靠这个简单的解决办法。”这是博施在20年后获得诺贝尔化学奖的受奖演说中所说的。至此,实现工业化的障碍已经全部排除了。 接着,博施又进行了大量的实验,寻找适合既经济又不对气体杂质的作用过于敏感的催化剂。此时,他的助手米塔希已进行了大量试验。米塔希认为工业用的催化剂就是铁,为此,他试验了各个地方的铁。他用比银的价钱还要贵的纯铁,搞成各种各样的混合物,一个一个地试验下去。人们有时看到,在他的实验室里,排列着25~30个可以自由取出和装进催化剂的高约503厘米的实验用高压釜。在不到半年的时间里,即到1910年1月初,米塔希和博施发现,在天然磁铁矿中掺入少量碱金属和其他金属就能得到优良的催化剂。后来,他们又发现了氧化铁与少量的氧化铝混合物更为优良。1913年,经过2万次的反复实验,博施和米塔希终于成功地改进了哈柏的高压合成氨的装置和催化方法。为此,他们对2500种样品进行了6500次试验。 在博施和米塔希寻找催化剂的同时,1911年,巴登苯胺纯碱公司正式开始在路易港郊外奥帕乌建造世界上第一座合成氨工厂。到1913年9月,博施终于建成了整个工厂,包括从制造煤气发生炉起直到从压缩机出来的成品的装运设备的连续装置。曾在哈柏实验室里看起来像玩具似的反应塔,此时已成为高达8米、甚至12米的双层反应塔。 1913年9月9日,巴登苯胺纯碱公司建成的第一个合成氨工厂开始投入生产,实现了合成氨工业化的生产,获得了年产3.6万吨硫酸铵的成果。人工合成的硫酸铵被运往期待收获的农村里,从而促进了农业的发展。由于哈柏的合成氨理论,以及博施把哈柏氨合成法发展成工业化,因此,后来把该种氨生产法称为“哈柏—博施”法。 ⑦ 历史上有关合成氨的研究成果曾3此或诺贝尔奖,如图是与氨气有关的反应微观示意图,请回答以下问题:(1)
⑧ 诺贝尔奖几次颁给与合成氨有关的化学家什么时候颁给谁
诺贝尔 ⑨ 新中国成立以来我国工业化取得的主要成就
新中国成立以来我国工业化取得的主要成就
⑩ 合成氨反应在铁催化剂表面进行时效率显著提高,就是埃尔特的研究成果,下列关于合成氨反应的叙述中正确 B项中,氨气是正反应的生成物。分离出氨气,使得生成物的浓度减小,可以加快正反应速率,是平衡向正反应方向移动。 与合成氨成果相关的资料
热点内容
工商局生态市建设工作总结
浏览:757
侵权责任法第87条的规定
浏览:553
招商地块南侧公共服务项目批前公示
浏览:208
盘锦公交投诉电话
浏览:607
马鞍山到宿迁汽车时间
浏览:215
公共卫生服务的工作目标
浏览:813
知识产权服务制度
浏览:726
警察管诈骗叫民事纠纷
浏览:650
马鞍山胡骏
浏览:110
推动基层公共服务一门式全覆盖试点工作调研
浏览:680
山东省基本公共卫生服务项目实施方案
浏览:349
投诉制凝
浏览:932
黑警投诉
浏览:95
国培预期研修成果
浏览:151
知识产权专利培训心得
浏览:974
工商登记需要提供什么资料
浏览:683
大连使用权房子办产权需要花多少钱
浏览:630
长春工商局投诉电话
浏览:519
湖北省基本公共卫生服务规范
浏览:393
国家歌曲版权限制
浏览:860
|