导航:首页 > 证书转让 > 强子对撞机成果

强子对撞机成果

发布时间:2021-02-15 17:56:25

『壹』 强子对撞机的建设意义

大型强子对撞机将两束质子分别加速到14TeV(14万亿电子伏特)的极高能量状态,并使之对撞。其能量状态可与宇宙大爆炸后不久的状态相比。粒子物理学家将利用质子碰撞后的产物探索物理现象,例如,寻找标准模型预言的希格斯粒子、探索超对称、额外维等超出标准模型的新物理。
或许有人会认为,像高能物理学领域高深的理论研究与我们的日常生活没关系,花费数十亿美元有些不值得。100多年前,爱因斯坦发现了质能方程,那就是质量与能量可以互相转化。许多人也认为这个方程毫无用处。但是,以这种理论指导而研制出来的原子弹,让人们见识了高能物理的可怕之处。随后,核能用于发电,又让人们认识到质能方程真正改善了我们的生活。
LHC可以使人类的科学技术迈进一大步。例如,反物质的形成与合成将变得可能。寻找到反物质及其合成方法,将有可能解决我们的能源危机问题,并且成为太空旅行和星际旅行的首选燃料。反物质拥有难以置信的力量,仅仅是少量的反物质,其与物质湮灭所产生的能量就可以与几百万吨当量的核弹相提并论。(物质与反物质的湮灭质能转化率为100%,是核弹的几十倍。)将来有一天,不但人类可以乘坐反物质推动的飞船遨游太空,家里的电器使用的电能也将来自反物质发电厂。
此外,在建造这个大型实验装置的过程中,科学家已经获得了许多科研成果,已经改善了人们的生活。比如,人们今天常用的互联网最初就是欧洲核子研究中心的科学家为了解决数据传输问题而发明的。另外,强子对撞机还将带来一些意想不到的科研成果,譬如改进癌症治疗、摧毁核废料的方法以及帮助科学家研究气候变化等。现有的放射疗法可能会在杀死癌细胞的同时伤害周围的健康组织,对撞机产生的高能粒子束能够将这种伤害降到最低,因为它们能够穿过健康组织,只对肿瘤发挥作用。一些气象学家表示,如果发现高能粒子束促成了云的形成,人们将来可以通过控制宇宙射线来改变气候。

『贰』 粒子对撞机中撞出的美妙粒子轨迹,科学家是如何来分析轨迹的

我们的世界,如沙滩、人类、行星以及星系,仅由三种基本粒子组成。它们是电子、上夸克和下夸克。这三种粒子组成了原子、分子、化合物,以及宇宙的任何物质。

物理学家为了探索、发现和量化基本粒子,建立了一种将微观粒子加速对撞的高能物理实验装置,即粒子对撞机。其作用是在高能加速器中积累并加速粒子流,达到一定能量时使粒子对撞,产生科学家预期的效果。

例如设在瑞士的欧洲联合核子物理中心CERN(又称欧洲粒子物理实验室)。它的大型强子加速器LHC,是目前全球最大的、能量最高的粒子加速器。它的加速环形隧道位于地下,长度达27公里。

换句话说,每一种粒子都有自己独具特征的、可以辨别的轨迹。每当碰撞出一种新的、很明显有未识别的轨迹时,轨迹的偏转角度、长度、曲率等参数,就会给出这种粒子的质量和行为特征线索。科学家利用了这种分析方法,如果理论所预言的某种粒子一旦真的在加速器中产生出来,它很快就被“识别身份”。

比如,2012年在物理学界引起轰动的希格斯粒子的发现,被标榜为这个时代最伟大的发现之一,其成果正是在CERN取得的。物理学家希格斯(Peter Higgs)在55年前预言了希格斯粒子的存在,它是粒子物理标准模型的拱顶石。

『叁』 强子对撞机是什么意思

在高能同步加速器基础上发展起来的一种装置,其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,便于测量。
用高能粒子轰击静止靶(粒子)时,只有质心系中的能量才是粒子相互作用的有效能量,它只占实验室系中粒子总能量的一部分。如果射到靶上的粒子能量为 E,则对靶中同种粒子作用的质心系能量约为 (E为粒子的静止能量)。可见,随着Eo的增高,用于相互作用的那部分能量所占的比例将越来越小,即被加速粒子能量的利用效率越来越低,但是,如果是两个能量为 E的相向运动的同种高能粒子束对撞,则质心系能量约为2E,即粒子全部能量均可用来进行相互作用。可见,为了得到相同的质心系能量,所需的加速器能量将比对撞机大得多。如果对撞机能量为 E,则相应的加速器能量应为2E2/E。例如,能量为2×300GeV的质子、质子对撞机,同一台能量o为 180000GeV的质子加速器相当,建造这样高能量的加速器。在目前的技术水平及经济条件仍然是不可及的。但建造上述能量或更高一些能量的对撞机是完全可行的,这就是近20年来对撞机得到广泛发展的原因之一。
对撞机的主要指标除能量外还有亮度。所谓对撞机的亮度是指该对撞机中所发生的相互作用反应率除以该相互作用的反应截面。显然亮度越高对撞机的性能就越好,1986年时对撞机达到的亮度约在1029~1032cm-2·s-1。
历史
20世纪50年代初,加速器的设计者就有过利用对撞束来获得更高质心系能量的设想,但是鉴于加速器中束流的强度太低,束流密度远低于靶的粒子密度,双束对撞引起的相互作用反应率将比束流轰击固定靶时发生的反应率低106倍,这样,很难进行最低限度的测量,这种设想就没有得到应有的重视,1956年人们开始懂得依靠积累技术,可以获得必要强度的束流,从而使对撞机的研究真正被提到日程上来。
正负电子对撞机的造价低,技术简单,因此它是首先研究的对象。最初的两台对撞机是1961年投入运行的,不久又相继出现了好几台低能量的电子对撞机。B.里希特就是在美国斯坦福直线加速器中心的正负电子对撞机SPEAR上发现著名的 J/ψ粒子的(同时在美国布鲁克海文国家实验室由丁肇中教授发现),为近代高能物理的发展作出了很大的贡献,正是由于这一成就为后来人们下决心建造更大的正负电子对撞机起了决定性的作用。
目前建成的质子对撞机如欧洲核子中心代号 ISR的交叉储存环,其能量为2×31GeV,它于1971年已投入运行。
由于电子冷却及随机冷却技术(见加速器技术和原理的发展)的成功,使反质子束的性能大大得到改善,而且束流可以积累到足够的强度,从而有可能在同一环中进行质子-反质子对撞。欧洲核子中心于1981年将一台能量为 400GeV的质子同步加速器(即SPS)改建成质子-反质子对撞机,并于1983年取得了极其重要的实验成果,发现了W±、Z0粒子。
对撞机特点
与同步加速器极为相似,对撞机呈环形,沿环安放着磁铁系统、高频系统、真空系统以及探测和校正系统等。此外,它沿圆环还有两个或两个以上专供对撞用的特殊长直线节,探测仪器就被安置在长直线节内的对撞点附近的空间中。使电荷相反,静止质量相同的两束粒子相碰比较简单,只要建立一个环就行了。如果是电荷相同的同种粒子相撞,就必须要建立两个环。两个环的外加磁场方向相反。这两个环可以建在同一平面中,使其在几个交叉的地方进行对撞;也可以建立在上下两个不同平面中,用特殊的电磁场使两种粒子在长直线节内相撞,此外,高能量的对撞机还需要用一台高能加速器(一般用同步加速器或直线加速器)作为注入器,先把粒子加速到一定能量,再注入到对撞机中去进行积累,进一步加速及对撞。积累、加速及对撞是对撞机的三大机能,所谓积累是设法把高能加速器在不同时间加速出来的脉冲粒子束团积累在对撞机环形真空室(称为储存环)中。一般需要积累几十或上千个束团,才能达到对撞所需的强度。电子同步加速器的束流团的积累是依靠同步辐射来完成的,同步辐射虽然使同步加速器的能量难于进一步提高,但却使得电子束的横向及纵向的尺寸在加速过程中大大收缩,即密度大大提高,利用这一特性就可以积累一股很强的电子束流。质子却没有这种特性,这就需要用动量积累过程来得到强流质子束。积累以后,对撞机还可以将注入其中的高能粒子进一步加速到更高的能量,对撞机的这一作用与普通的同步加速器完全一样,粒子的能量是由安置在圆环上的高频加速腔供给的,在整个加速过程中,对撞机的磁场逐渐上升,高频腔的频率也被严格控制得与被加速粒子的回旋频率一样或成整数倍,从而使粒子不断地被加速到更高能量。当粒子被加速到预定能量后,对撞机的磁场就被维持在相应的恒定值上,粒子束就在环形真空室中不断地回旋,两束并在对撞区域内某点发生对撞。这时布置在对撞区周围的测量仪器,就可对碰撞时发生的事例不断地进行测量,剩下的没有起反应的粒子将继续在环里回旋运动,等到下一次到达对撞区时再度发生对撞。一直到束流的强度降低到不能再作物理实验为止,这时两股束流的寿命也就中止了。束流的寿命一般可达几小时或几十小时,所以作为注入器的高能加速器只有在积累过程中才把粒子束流提供给对撞机,而在对撞的过程中,还可供轰击静止靶的物理实验用。为了增加对撞的几率(即提高对撞机的亮度),70年代初期,出现了在对撞区中插入一种特殊的称为低包络插入节的聚焦结构,使束流在对撞点的横截面受到强烈的压缩,从而使对撞点的束流密度大大增加。由于采用了这种结构,使70年代建造的对撞机的亮度比以前提高了一两个数量级。另外,为了尽可能的延长束流的寿命,对撞机环内的真空度平均不得低于 10-8~10-9 Torr,尤其是在对撞区附近。为了减少物理实验的本底,即为了保证使束流与束流发生对撞的几率大大超过束流与残余气体相撞的几率,真空度应维持在10-10~10-11Torr左右。所以大体积高真空这一技术也随着对撞机的发展而发展起来了。
对撞机的类型
1、电子-正电子对撞机 又称正负电子对撞机,由于正负电子的电荷相反,所以这种对撞机只要建立一个环就可以了。相应的造价就比较低,目前世界上已建成的对撞机大部分是属于这一类的。
但是,由于电子回旋时引起的同步辐射损失,使这种对撞机能量的进一步提高发生了困难,因为同步辐射功率与电子的能量二次方成正比,且与回旋半径的平方成反比,为了减少辐射损失,一般高能量的电子对撞机均采用大半径方案,即采用只有几千高斯的低磁场来控制电子的运动,即使如此,目前电子对撞机的最高能量仍然受到很大的限制,例如,10GeV的电子在曲率半径为100m的对撞机中运动时,每圈的辐射损失约为10MeV,如果对撞机中的回旋电流为1A,要补偿这束电子流的辐射损失,就需要平均功率为10MW的高频功率。假如正电子流也为1A,则总的平均功率为20MW,由此可见,对撞机中高加速频系统的功率绝大部分是用来补偿这一同步辐射损失的。
辐射特性虽然给电子能量的进一步提高带来了困难,但也有一定的好处,这是因为电子或正电子注入对撞机后,由于电子的辐射损失,使电子截面受到强烈的压缩,电子很快集中到一个很小的区域中,其余的空间可以用来容纳再一次注入的电子,这样使积累过程简化,而且允许采用较低能量的注入器,通常采用直线加速器,也有采用电子同步加速器的。
这种对撞机中所需的正电子是由能量为几十兆电子伏以上的电子打靶后产生的,为了得到尽可能强的正电子束,往往需要建造一台低能量的强流电子直线加速器。另外产生出来的正电子束尚需再度注入到注入器中,与电子一起加速到必要的能量,再注入到对撞机中去。由于正电子束的强度只及电子束的千分之一到万分之一,所以需要几分甚至几十分钟的积累,才能达到足够的强度。
2、质子-质子对撞机 这种对撞机需要建造两个环,分别储存两束相反方向回旋的质子束,才能实行质子与质子的对撞。由于质子作回旋运动时,其同步辐射要比电子小得多,在目前质子达到的能量范围内,可以略去不计,因此为缩小这类对撞机的规模,尽量采用强磁场,这就需要采用超导磁体。另外,质子束的积累也不如电子对撞机那样方便,它必须依靠动量空间的积累来实现。为此,必须首先在高能同步加速器中,将质子加速到高能(一般为几十吉电子伏),依靠绝热压缩,将质子束的动量散度压缩上百倍,再注入到对撞机中去进行积累,质子对撞机中的高频加速系统主要是用来进行动量空间的积累及积累完毕后的进一步加速,因此所需要的高频功率也比电子对撞机小得多。由于上述原因,质子-质子对撞机的规模要比电子-正电子对撞机大,投资也较高。
3、质子-反质子对撞机 质子与反质子的质量相同,电荷相反,也只需要造一个环就能进行对撞。这种对撞机发展得较晚,主要原因在于由高能质子束打靶产生的反质子束强度既弱,性能又差,无法积累到足够的强度与质子对撞。70年代后期,“冷却”技术的成功,给予这种对撞机巨大的生命力(见加速器技术和原理的发展)。
由于冷却技术的成功,使得现有的高能质子同步加速器,只要它的磁铁性能及真空度够好的话,均有可能可以改成质子-反质子对撞机。今后再建的超高能质子同步加速器,均考虑了同时进行质子-反质子对撞的可能,由此可见,这一技术成功的意义是何等重要。
实现质子-反质子对撞虽然比质子-质子对撞能节省一个大环,但也有一定的弱点,主要是由于尽管经过冷却及积累,反质子的强度仍然比质子的低得多,这样使得质子-反质子对撞机的亮度比质子-质子对撞机低得多,前者最大为1029~1030cm-2·s-1, 后者则为1032cm-2·s-1。
4、电子-质子对撞机 这种对撞机的主要困难在于电子束的横截面很小,线度约为几分之一毫米,而质子的横截面较大,线度约为一厘米左右。前者束流较密集,后者较疏松,两者相撞时作用几率很小,目前正在研究中,实现这种对撞需建立两个环,一个是低磁场的常规磁铁环,以储存及加速电子;另一个是高场的超导磁体环,以储存并加速质子,两个环的半径相同并放在同一隧道中,所以电子的能量通常是几十吉电子伏,质子的能量为几百吉电子伏。随着加速器技术的提高,为了节约投资,新建的巨型加速器,往往在一个隧道中建造三个环,以便可能进行多种粒子对撞,例如质子质子、质子-反质子,电子-正电子、质子-电子对撞。
5、电子直线对撞机 为避免电子作回旋运动时同步辐射损失引起的困难,早在1965年已有人指出,在电子能量高于上百吉电子伏时,应采用直线型来进行对撞,就是说,应采用两台电子直线加速器加速两股运动方向相反的电子束(或正负电子束)待达到预定能量后,两股电子束被引出并在某点相碰。碰撞一次后的电子束即被遗弃,不再重复利用。当然,只有当这些被遗弃的电子束单位时间所带走的能量小于环形对撞机中同步辐射的损失功率,这种方案才会被考虑。另外,由于电子直线加速功率的限制,每秒能提供的电子束脉冲数是有限的,所以单位时间内发生的碰撞次数也比环形对撞机少得多,为了保证直线对撞机与环形对撞机有相同的亮度,要求在碰撞点的横截面进一步压缩,约比环形对撞机中的碰撞截面小几十到几百倍,十多年来技术上的进展,使这种对撞机受到重视,有关的各种问题正在解决中。

『肆』 大型强子对撞机的建设意义

大型强子对撞机将两束质子分别加速到14TeV(14万亿电子伏特)的极高能量状态,并使之对撞。其能量状态可与宇宙大爆炸后不久的状态相比。粒子物理学家将利用质子碰撞后的产物探索物理现象,例如,寻找标准模型预言的希格斯粒子、探索超对称、额外维等超出标准模型的新物理。
或许有人会认为,像高能物理学领域高深的理论研究与我们的日常生活没关系,花费数十亿美元有些不值得。100多年前,爱因斯坦发现了质能方程,那就是质量与能量可以互相转化。许多人也认为这个方程毫无用处。但是,以这种理论指导而研制出来的原子弹,让人们见识了高能物理的可怕之处。随后,核能用于发电,又让人们认识到质能方程真正改善了我们的生活。
LHC可以使人类的科学技术迈进一大步。例如,反物质的形成与合成将变得可能。寻找到反物质及其合成方法,将有可能解决我们的能源危机问题,并且成为太空旅行和星际旅行的首选燃料。反物质拥有难以置信的力量,仅仅是少量的反物质,其与物质湮灭所产生的能量就可以与几百万吨当量的核弹相提并论。(物质与反物质的湮灭质能转化率为100%,是核弹的几十倍。)将来有一天,不但人类可以乘坐反物质推动的飞船遨游太空,家里的电器使用的电能也将来自反物质发电厂。
此外,在建造这个大型实验装置的过程中,科学家已经获得了许多科研成果,已经改善了我们的生活。比如,我们今天常用的互联网最初就是欧洲核子研究中心的科学家为了解决数据传输问题而发明的。另外,强子对撞机还将带来一些意想不到的科研成果,譬如改进癌症治疗、摧毁核废料的方法以及帮助科学家研究气候变化等。现有的放射疗法可能会在杀死癌细胞的同时伤害周围的健康组织,对撞机产生的高能粒子束能够将这种伤害降到最低,因为它们能够穿过健康组织,只对肿瘤发挥作用。一些气象学家表示,如果发现高能粒子束促成了云的形成,人们将来可以通过控制宇宙射线来改变气候。

『伍』 电子对撞机得实验结果是什么

电子对撞机得实验结果是:
1999年,北京谱仪在2-5GeV能区的R值精确测量取得重要成果,得到国际高能物理界的高度评价。5GeV以下的R值是标准模型计算不确定性的重要部分,北京谱仪国际合作组充分把握了国际高能物理发展的最新动态,选定了这一在理论上有全局性重大意义、在实验上极富挑战性的课题,精心设计了全能区的实验方案。此项实验对加速器和探测器的性能及运行水平,对实验技术和数据分析方法以及理论模型等都是严峻的挑战。经过可行性研究,国际合作组把测量能区定为2-5GeV,精度目标定在7%左右,该指标对北京正负电子对撞机运行能量和北京谱仪测量精度的要求已经接近极限。为了完成R值精确测量实验,北京正负电子对撞机发挥了运行以来的最高水平,在如此宽的能量范围内长时间保持了长束流寿命和高亮度的稳定运行,这在国际高能物理实验研究中也属领先水平。北京谱仪在2-5GeV能区的近百个能量点上进行能量扫描测量,并在数据分析中,发展和应用了多项创新方法和理论模型,使测量的系统误差大大降低,平均测量精度达到6.6%,比国际上原有的实验结果提高了2-3倍。
北京正负电子对撞机(BEPC)是世界八大高能加速器中心之一, 是我国第一台高能加速器,也是高能物理研究的重大科技基础设施;由长202米的直线加速器、输运线、周长240米的圆型加速器(也称储存环)、高6米重500吨的北京谱仪和围绕储存环的同步辐射实验装置等几部分组成,外型象一只硕大的羽毛球拍。北京正负电子对撞机是当时世界上唯一在τ轻子和粲粒子产生阈附近研究τ-粲物理的大型正负电子对撞实验装置,也是该能区迄今为止亮度最高的对撞机。

『陆』 正负电子对撞机的伟大贡献

文字实录
[主持人]:
刚才两位老师给我们介绍了一些应用。刚才张老师介绍了,中国也有我们自己的对撞机,叫北京正负电子对撞机。能不能介绍一下中国自己的对撞机的一些情况。
[张闯]:
我注意到在网上很多网友谈到欧洲强子对撞机的时候有很多评论。特别是说看了以后才知道这个东西非常微妙,也有的说看了以后才知道我们中国还有多大的差距,也有的网友很关心,说我们中国也参加了这个合作。有的说我们的贡献是不是太小了。还有的说,我敢肯定中国也有,而且将来一定会有更好的。我们知道网友对这个事情非常关心,中国在这方面到底是什么情况。
[张闯]:
我们也有一个对撞机,就是北京正负电子对撞机,我们说有两个,一个是原来的单环的北京正负电子对撞机,1984年破土动工,小平同志亲自为它奠基,到1988年正式对撞,工作了大概20年左右,21世纪初期我们进行了改造,建造了双环的北京正负电子对撞机,这个机器是我们所工作的园区叫套和颤物理园区,这在国际上占领先地位的,而且它建立了以北京谱仪为基础的国际合作,这是一个非常前沿的、先进的国际合作组,在这个领域中取得了很好的成果。
[张闯]:
我看到一个杂志上有一篇文章。他就讲到成千上百的美国科学家飞到北京来参加北京的试验,经过最近的改造,北京正负电子对撞机性能有了提高,成为国际领先的对撞机。我们国家经过这么多年的努力,在国际究领域里面占了很大的作用。
[陈国明]:
北京正负电子对撞机能量比较低,只有3.5金伏,和我们讲的LHC相差三个量级。但是它做的工作的物理意义很重要的,它和LHC的内容不一样。我们知道讲6个夸克,正反夸克强子下面一个分类,叫做介子,假如有三个夸克组成的叫做重子,也是强子里面的重。还有没有其他的物质形态?比如有四个夸克组成的、五个夸克组成的,有很多胶子组成的胶子球,基本的物质形态假如不是我刚才讲的介子和重子,那就是重大突破,就是我们物质世界新的物质形态,这对以后的应用也是无可估的。
[陈国明]:
北京的正负电子对撞机主要是想找这些东西,有没有这些新的物质形态,普通的物质是由质子、中子组成的,都是三个夸克组成,叫做重子。假如都是重子,5夸克、6夸克,就是胶子球的,这样的话,是完全不同物质形态不一样,就会造成其他的物质形态了,这就是非常重要的。
[主持人]:
这也是我们北京正负电子对撞机研究的目的。刚才张老师介绍了,北京的正负电子对撞机最早是从1984年开始动工,当时的情况,80年代初期,应该说,我们的科研环境,包括经费,可能经济环境还不是很好,包括您说小平同志都很重视破土的奠基仪式,为什么会得到国家这么大的重视?
[张闯]:
刚才主持人问到了,当初对撞机建立的时候也有这样的争论,中国这样一个发展中国家,想做加速器、对撞机是一个长远的目标,不能解决当前最紧迫的研究,到底应该放在什么样的地位,小平同志在对撞机建成以后,1988年视察了北京的正负电子对撞机,他作了一个很重要的讲话,这个讲话就是中国要在高科技领域占有一席之地。一开始小平同志举了一个例子。
[张闯]:
谈到对撞机,我先说一个故事,有一位欧洲的朋友,这个朋友就是我们强子对撞机的研究所所长,小平同志会见了他,他当时就问小平同志一个问题,就是说中国经济也不太发达,为什么要搞这个东西?小平同志回答说,这是为了将来,为了长远的发展。小平同志接着说,中国一定要发展高科技,要在国际高科技领域里面占有一席之地。回头看小平同志当时的讲话,确实非常有远见。

『柒』 欧洲大型强子对撞机的实验结果怎样

欧洲核子研究中心(CERN)3月30日宣布,跨越日内瓦市郊瑞士法国边界的大型强子对撞机(Large Hadron Collider,简称LHC)上,总能量为7万亿电子伏特的两个束流对撞,在发生两次故障后最终获得成功。这是世界上目前能量最高的对撞。

资料来源于: http://scitech.people.com.cn/GB/11264642.html 此次对撞实验首次向媒体开放48小时。中国科学院高能物理所CMS(紧凑缪子线圈)实验远程控制中心通过网络向媒体直播了对撞实验过程。

“此次对撞成功,标志着LHC的物理研究的开始,标志着一个激动人心的粒子物理新时代的到来。”中国科学院高能物理研究所粒子天体物理中心研究员陈国明说。

据悉,对撞的两个束流,每个束流带两个束团,每个束团由50亿个质子组成,每个质子的能量为3.5万亿电子伏特。质子的速度是光速的99.999995%(比光速慢亿分之五)。按计划,本次运行后4个月内,每个束团的质子数将上升到800亿个。

北京时间30日下午3点左右,正当记者们在高能所CMS实验远程控制中心聚精会神地观看对撞实验时,CERN传来消息:由于对撞机保护装置导致束流意外丢失,对撞未能如期实现。研究人员不得不继续对机器进行调试。

陈国明介绍,2008年的LHC实验失败,发生爆炸事故,在其后的一年多时间,CERN对LHC进行了检修和调整,并增加了保护装置。此次束流丢失正是此保护装置所致。

不过,CERN研究人员随即表示,这是他们意料之中的事情:“我们已经等了20年,可以再耐心等一会。”几个小时后,CERN研究人员想要再次进行对撞,又一次发生了故障。不过,功夫不负有心人,经过进一步调试后,北京时间30日晚上7点零6分,总能量为7万亿电子伏特的两个束流对撞成功。

“做科学实验,尤其是在能量这么高的机器上开展实验,是一件非常有挑战性的事情,不会像开party一样,客人一来就可以看到庆祝的时刻。”高能所所长陈和生向记者介绍,“LHC是世界上能量最高的机器,非常复杂,在调试过程中,由于束流丢失未能如期实现对撞,并不意味此次对撞实验失败。北京正负电子对撞机在调试过程中也经常出现束流丢失的情况,这是调试过程中碰见的正常状况。”

欧洲核子研究中心将连续运行LHC 18到24个月,以便为LHC上面的各个实验提供足够的数据来进行物理研究。这一阶段的运行过后,LHC将关机进行彻底修理,为14TeV对撞作准备。

欧洲核子中心的所长Heuer说,两年的连续运行是一个离谱的要求,但这个努力是值得的,这可以补偿前次失败所失去的时间,使物理学家们可以有机会做出他们的成果。

『捌』 强子对撞机是什么_

参见网址http://ke..com/link?url=-6

『玖』 求欧洲强子对撞机的结构和原理

在高能同步加速器基础上发展起来的一种装置,其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,便于测量。
用高能粒子轰击静止靶(粒子)时,只有质心系中的能量才是粒子相互作用的有效能量,它只占实验室系中粒子总能量的一部分。如果射到靶上的粒子能量为 E,则对靶中同种粒子作用的质心系能量约为 (E为粒子的静止能量)。可见,随着Eo的增高,用于相互作用的那部分能量所占的比例将越来越小,即被加速粒子能量的利用效率越来越低,但是,如果是两个能量为 E的相向运动的同种高能粒子束对撞,则质心系能量约为2E,即粒子全部能量均可用来进行相互作用。可见,为了得到相同的质心系能量,所需的加速器能量将比对撞机大得多。如果对撞机能量为 E,则相应的加速器能量应为2E2/E。例如,能量为2×300GeV的质子、质子对撞机,同一台能量o为 180000GeV的质子加速器相当,建造这样高能量的加速器。在目前的技术水平及经济条件仍然是不可及的。但建造上述能量或更高一些能量的对撞机是完全可行的,这就是近20年来对撞机得到广泛发展的原因之一。
对撞机的主要指标除能量外还有亮度。所谓对撞机的亮度是指该对撞机中所发生的相互作用反应率除以该相互作用的反应截面。显然亮度越高对撞机的性能就越好,1986年时对撞机达到的亮度约在1029~1032cm-2·s-1。
历史
20世纪50年代初,加速器的设计者就有过利用对撞束来获得更高质心系能量的设想,但是鉴于加速器中束流的强度太低,束流密度远低于靶的粒子密度,双束对撞引起的相互作用反应率将比束流轰击固定靶时发生的反应率低106倍,这样,很难进行最低限度的测量,这种设想就没有得到应有的重视,1956年人们开始懂得依靠积累技术,可以获得必要强度的束流,从而使对撞机的研究真正被提到日程上来。
正负电子对撞机的造价低,技术简单,因此它是首先研究的对象。最初的两台对撞机是1961年投入运行的,不久又相继出现了好几台低能量的电子对撞机。B.里希特就是在美国斯坦福直线加速器中心的正负电子对撞机SPEAR上发现著名的 J/ψ粒子的(同时在美国布鲁克海文国家实验室由丁肇中教授发现),为近代高能物理的发展作出了很大的贡献,正是由于这一成就为后来人们下决心建造更大的正负电子对撞机起了决定性的作用。
目前建成的质子对撞机如欧洲核子中心代号 ISR的交叉储存环,其能量为2×31GeV,它于1971年已投入运行。
由于电子冷却及随机冷却技术(见加速器技术和原理的发展)的成功,使反质子束的性能大大得到改善,而且束流可以积累到足够的强度,从而有可能在同一环中进行质子-反质子对撞。欧洲核子中心于1981年将一台能量为 400GeV的质子同步加速器(即SPS)改建成质子-反质子对撞机,并于1983年取得了极其重要的实验成果,发现了W±、Z0粒子。
对撞机特点
与同步加速器极为相似,对撞机呈环形,沿环安放着磁铁系统、高频系统、真空系统以及探测和校正系统等。此外,它沿圆环还有两个或两个以上专供对撞用的特殊长直线节,探测仪器就被安置在长直线节内的对撞点附近的空间中。使电荷相反,静止质量相同的两束粒子相碰比较简单,只要建立一个环就行了。如果是电荷相同的同种粒子相撞,就必须要建立两个环。两个环的外加磁场方向相反。这两个环可以建在同一平面中,使其在几个交叉的地方进行对撞;也可以建立在上下两个不同平面中,用特殊的电磁场使两种粒子在长直线节内相撞,此外,高能量的对撞机还需要用一台高能加速器(一般用同步加速器或直线加速器)作为注入器,先把粒子加速到一定能量,再注入到对撞机中去进行积累,进一步加速及对撞。积累、加速及对撞是对撞机的三大机能,所谓积累是设法把高能加速器在不同时间加速出来的脉冲粒子束团积累在对撞机环形真空室(称为储存环)中。一般需要积累几十或上千个束团,才能达到对撞所需的强度。电子同步加速器的束流团的积累是依靠同步辐射来完成的,同步辐射虽然使同步加速器的能量难于进一步提高,但却使得电子束的横向及纵向的尺寸在加速过程中大大收缩,即密度大大提高,利用这一特性就可以积累一股很强的电子束流。质子却没有这种特性,这就需要用动量积累

阅读全文

与强子对撞机成果相关的资料

热点内容
沈阳盛唐雍景纠纷 浏览:973
工商局生态市建设工作总结 浏览:757
侵权责任法第87条的规定 浏览:553
招商地块南侧公共服务项目批前公示 浏览:208
盘锦公交投诉电话 浏览:607
马鞍山到宿迁汽车时间 浏览:215
公共卫生服务的工作目标 浏览:813
知识产权服务制度 浏览:726
警察管诈骗叫民事纠纷 浏览:650
马鞍山胡骏 浏览:110
推动基层公共服务一门式全覆盖试点工作调研 浏览:680
山东省基本公共卫生服务项目实施方案 浏览:349
投诉制凝 浏览:932
黑警投诉 浏览:95
国培预期研修成果 浏览:151
知识产权专利培训心得 浏览:974
工商登记需要提供什么资料 浏览:683
大连使用权房子办产权需要花多少钱 浏览:630
长春工商局投诉电话 浏览:519
湖北省基本公共卫生服务规范 浏览:393