① 李文静的代表性研究成果
《经济下行复期如何实施裁员降薪》制,中国劳动,2009年2月,
《“劳动合同法”实施背景下如何提高招聘有效性》,中国劳动,2009年7月;
《基于心理契约管理的核心员工忠诚度维护策略》,技术与创新管理,2009年3月;
《中层管理者职业倦怠成因及干预对策》,中国人力资源开发,2008年9月;
《物流模式对零售企业物流绩效评价的影响机理研究》,商业经济与管理(人大复印资料《物流管理》2009年2期全文转载),2008年11月;
《中外零售商中国市场互动关系的演化博弈分析》,数学的实践与认识,2010年3月。 教育部人文社会科学研究课题:流通企业物流绩效评价研究
辽宁省教育厅高等学校科研项目:高校教师职业倦怠对工作绩效的影响及干预对策研究
辽宁省社会科学界联合会项目:辽宁流通企业物流模式创新研究 《绩效管理》,东北财经大学出版社,2008年5月第1版;
《人力资源管理》,经济科学出版社,2009年9月第1版。 大连世联市场调查有限公司研究总监
② 静力触探测试法的成果整理
依据建标(CECS 04:88)《静力触探技术标准》和铁道部的TBJ37-93规则的有关规定编写。静力触探资料整理,通常包括:①单孔原始资料的整理;②绘图及分层;③确定场地分层触探指标;④提交勘察报告书。
一、单孔原始资料整理
对原始记录出现下列现象时,宜分别进行处理:①记录数据或记录上出现的零点漂移超过满量程的±1%时,可按线性内插法校正;②记录曲线上出现脱节现象,应以停机前记录为准,并与开机后贯入10cm深度的记录连成圆滑的曲线;③记录深度与实际深度的误差超过±1%时,应查明原因。一般可在出现误差的深度范围内,等距离调整;④当有漏读、漏记而造成的差错时,应在遗漏处予以补全。当使用装有测斜仪的触探头时,测得的孔斜大于8°,应作深度校正。
1.电阻应变仪量测的原始资料的整理
(1)初读数控正:前已述及,初读数的变化主要是由于温度变化引起的。为消除其影响,外业工作中已每隔一定深度测记一次初读数。对于这种测记了初读数变化情况的原始记录,应变仪读数按下式校正:
ε=ε1-ε0 (3-15)
式中:ε为应变量;ε1为应变仪读数;ε0为应变仪初读数。
应变量的正、负,视空心桩的受力条件而定:受拉型,ε为正;受压型,ε则为负。
(2)贯入阻力的计算:各贯入阻力指标按下式计算:
土体原位测试与工程勘察
式中:ps为单桥探头的比贯入阻力;qc为双桥探头的锥头阻力;fs为侧壁摩擦力;Kp、Kq、Kf分别为ps、qc、fs传感器的标定系数(kPa/με或kPa/mV);εp、εq、εf分别为ps、qc、fs传感器的应变量(με)或输出电压值(mV);
(3)摩阻比Rf:是同一深度的侧摩阻力fs与锥尖阻力qc之比,以百分数表示:
土体原位测试与工程勘察
摩阻比通常可表示成某层平均的fs与平均的qc之比(详见图3-20右图所示)。
2.自动记录仪量测的原始资科整理
(1)零漂校正:当观察到零漂变化不太大时,可按线性内插法予以校正。即:把曲线上测出归零变化情况的各点连线作为零位线(图3-17),将剖面图或柱状图上铅直的纵坐标线(初始零位线),一段一段地对准原始记录曲线上的折线型零位线,描下曲线并把开口部分圆滑地连接起来,这种作法会使曲线有些失真,但不会太大。
(2)曲线形状修正:对于非连续贯入触探仪,往往会发现每一行程结束和新的行程开始时,曲线出现台阶状或喇叭口状,如图3-18所示。上述现象的出现,可能是由于停机后探头周围土的应力状态有了改变而引起的;也可能是由于开机有动应力作用或仪器的灵敏度差而引起的,原因比较复杂。对这种情况,一般以停机的曲线位置为准,顺应曲线变化趋势将曲线较圆滑地连接起来就可以了,如图3-18中虚线所示。
图3-17 零漂校正
图3-18 曲线形状修正
图3-19 变换拱桥电压的曲线脱节修正
(3)深度修正:实际贯入深度按下式计算:
D=nl+h-Δl (3-18)
式中:D为探头实际贯入深度(m);n为贯入土中的探杆根数;l为探杆长度(m);h为从锥底全断面处起算的探头长度(m);Δl为未入土的探杆余长(m)。
(4)变换供桥电压而引起曲线脱节的校正:在正常情况下,贯入过程中是不应该变换供桥电压的。但如果事先对地层情况了解不够,采用了大的桥压贯入,指针达到了满量程(非障碍物引起)但还能继续贯入,这就需要减小桥压,因而就出现了曲线脱节现象。处理这类问题,可依据输出电压与供桥电压之间的近似线性关系,将下段曲线按深度每隔20cm比例放大,再将放大后的各点圆滑连接起来(图3-19)。这种处理方法不甚精确,但也是个实用的变通方法。
二、绘图及分层
当有特别必要或场地只有一个触探孔时,可画单孔触探曲线图(图3-20),一般工程只画剖面图就可以了。
图3-20 单孔静力触探曲线
作剖面图时,先将剖面线上各触探孔(及钻孔)按孔口高程、孔深和孔距画在透明纸上,以深度为纵坐标,以比贯入阻力ps或锥尖阻力qc和侧摩阻力fs(及摩阻比Rf)为横坐标,绘出ps—H、qc—H、fs—H(或Rf-H)关系曲线,进行力学分层和连线,计算分层贯入阻力。这样就成了张静力触探剖面图(图3-21)。现将作图中的问题说明如下。
图3-21 静力触探剖面图
1.触探曲线坐标的比例
采用电阻应变仪和数字测力仪量测时,由于记录的是数字,所以绘制触探曲线时纵、横坐标的比例,可按表3-6选用。
表3-6 比例选用表
侧壁摩擦力和锥头阻力的比例,可匹配成1:100。
(1)采用自动记录仪时,由于记录本身就是触探曲线,所以绘图时的纵坐标就采用记录纸的比例(一般采用1:100);至于横坐标则取决于探头的标定方法和标定系数。
(2)若采用标定供桥电压法标定探头,那么由上表可见,只要选定一个探头系数,横坐标1cm长度所代表的贯入阻力值就是固定的。
(3)若采用固定桥压法,那么横坐标1cm长度所代表的贯入阻力值就需要另外换算。如一单探头的Kp=1.25MPa/mV,输出电压1mV,在记录纸带上的宽度为1.2cm,则横坐标1cm所代表的ps=1.25/1.2=1.04MPa,等等。
2.分层方法
根据触探曲线划分土层,其划分的详细程度应满足工程建设的需要。对与地基强度、变形或场地稳定性有重大影响的土层应详细划分。当采用单桥探头测试时,应以比贯入阻力与深度的变化曲线进行力学分层;当采用双桥探头测试时,应以锥头阻力与深度变化曲线为主,再结合侧壁摩擦力和摩阻比随深度的变化曲线进行力学分层。进行力学分层时,每层中最大贯入阻力与最小贯入阻力之比,不应大于下表3-7中的规定。
表3-7 力学分层按贯入阻力变化幅度的分层标准
应用上述公式求每层触探参数平均值时,应注意以下几点:
(1)当分层厚度大于1m,且土质比较均匀时,应扣除其上部滞后深度和下部超前深度范围的触探参数值。
(2)对于分层厚度不足1m的均质土层,应取其最小值为分层平均值层;如为软层,应取其大值平均值(最大值上、下各20cm范围内的大值平均值)。
(3)分层曲线中,如遇特殊大值,应予剔除,不参与平均计算。
3.分层界线
划分分层界线时,应考虑贯入阻力曲线中的超前和滞后现象,一般以超前和滞后的中点作为分界点。触探结合钻探时,触探分层应与钻探记录综合考虑。
静力触探由软层进入硬层或由硬层进入软层时,曲线会出现一过渡段,此即所谓的“超前”和“滞后”问题(图3-22)。产生这种现象的原因可以是在变层附近探头所受的应力有所变化;也可以是由于变层附近土的性质(如含水量、粒度成分等)的渐变等因素而引起的。一般过渡段代表的土层厚度有10~30cm,分层界线可选在曲线过渡段的中点。如果过渡段较厚,由软变硬分层界线选在过渡段的中下方;由硬变软时则选在中上方;或考虑单独分层问题。具体方法:
图3-22 地层变化时的分层线
图3-23 临界深度示意图
(1)根据贯入曲线特征和参数值大小,结合下述土类划分的具体标准进行下一步工程地质分层,对每层土进行定名。
(2)用临界深度概念准确确定各土层分界面:探头前后一定范围内的土层性质,均对触探参数值有影响。因此,各参数是探头上下一定厚度土层的综合贯入阻力值。模型试验及实测表明:地表厚层均质土的贯入阻力,自地面向下是逐渐增大的,当超过一定深度后,阻值才趋于近似常数值。
这个土层表面下的“一定深度”,称为临界深度(Hcr)。如下层土硬,阻值随探头贯入深度增大而继续增大;如下层土软,则变小。这一变化称为滞后段。同样下层也有一个变化段,称为超前段,可统称为层面影响段。
因此,每一层的阻值曲线都有超前段、近似常数段及滞后段。显然,近似常数段的平均阻值,才是该层土的真实阻力值。土层分界面应基本位于层面影响段(滞后段和超前段曲线)的中间位置(图3-23)。
经过以上两步,即可按力学分层将各触探孔连成土层剖面。在有测试经验地区,精度也相当高;在无测试经验地区,或为慎重起见,应以少量钻孔取样,做室内试验进行验证。
4.单孔分层贯入阻力
在划定分层界线后,便可计算单孔分层的平均贯入阻力。计算时,变层附近过渡段以及较薄的贯入阻力峰谷值都不予以考虑。对一般地层,平均贯入阻力可用矩形面积代替曲边梯形面积法直接在图上量取(图3-24和图3-25)。
图3-24 单孔分层平均比贯入阻力
图3-25 单桥探头静力触探曲线
双桥探头在计算摩阻比时,可不考虑锥头阻力和侧壁摩擦阻力在同一测点深度上的差异。单孔各土层贯入阻力的计算方法,应根据所使用的量测仪器确定。当使用电阻应变仪或数字测力仪量测时,可采用算术平均法,当使用电子电位差计量测时,可采用面积法计算。
其格式可见图3-26所示。
在计算单孔分层贯入阻力时,应剔除记录中的异常点以及超前和滞后值。在判别砂土液化时,对贯入阻力变化较大、且较薄的夹层或互层,应分别计算其各自土层的贯入阻力。
三、场地触探指标
作为一个勘察场地,通常布置了若干触探孔。在提出的勘察报告中,应提出场地每一土层的触探指标,并以此为依据进行地基评价。
选择场地触探指标要考虑勘察阶段、场地复杂程度、工程重要性和指标分散程度等因素。勘察场地各土层的贯入阻力,可分为一般值和计算值两类。在选址或初勘阶段可提供一般值;详勘或施工勘察阶段则可提供一般值和计算值。可按下面的方法计算。
一般值:可采用场地单孔各土层贯入阻力的范围值(或算术平均值)。
计算值:应按土质均匀性和建筑物的类别确定。
当土质均匀、测试数据离散度较小,或为Ⅱ类建筑物时,应以各触探孔穿越该层的厚度为权,采用厚度的加权平均法,按下式来计算场地各土层的贯入阻力:
土体原位测试与工程勘察
式中:
图3-26 双桥探头静力触探曲线
当土质不均,测试数据离散度较大,或为Ⅰ类建筑物时,根据指标所需解决的问题,可分别按下列公式计算其最大平均值或最小平均值:
土体原位测试与工程勘察
土体原位测试与工程勘察
式中:
对于有特殊要求的工程,场地各土层的贯入阻力,必要时可按保证界限法提供计算值。
四、勘察报告书
由于静力触探既是一种原位测试手段,又是一种勘探手段,因此,在单独使用后或与钻探配合对场地勘察后,就可以对场地进行工程地质评价并提出报告书。其格式和内容与一般勘查报告相似。不同之处是:在图件上,提供静力触探剖面图或柱状图;在文字论述上,包括有:静力触探指标内容以及注明静力触探设备、探头规格等。
③ 静力触探测试成果的应用
静力触探是应用很广的一种原位测试技术,其用途可归纳为以下几方面:
一、土层划分和土类划分
静力触探的主要用途在于它能比较准确地测定土层的力学剖面,这对确定浅基和桩尖持力层等具有十分重要的意义。此外,对地基勘察中合理布置钻孔,设计取样位置或其他原位试验位置等的确定也很有意义。
静力触探测试表明:土类及其成因、时代、密实度不同,一般其锥尖阻力或比贯入阻力也会有明显不同;不同土类由于某种原因(如砂层和老粘土)可能有相同的锥尖阻力(或比贯入阻力),而侧壁摩擦力和孔压值可大不相同。因而在土类划分时,要求以qc为主,结合fs(或FR)和孔压值(或孔压参数比)予以划分,并以同一分层内的触探参数值基本相近为原则。
图3-27 单桥静力触探曲线及划分土层
目前,三种探头所测土层或土类参数,均可用来划分土层或土类,但其划分精度有很大差别:用多参数划分比用单参数划分精度高;有经验的人比无经验的人划分精度高;有钻探取样作对比的比没有取样品的精度高。图3-27为武汉地区长江第四纪冲积层的单桥静力触探曲线,图右侧为划分的土层,具有一定的代表性。它不仅适用于武汉地区,也适用于长江中游第四纪冲积层(已有勘察资料证明)或更大范围内的第四纪冲积层分布区。但应注意,在新的地区须有少量的钻探对比资料证明。
二、测定土的物理力学性质指标
土的室内试验指标(即土的物理力学性质指标)是经过钻探取样后,由室内试验获得的。工序多,历程长,成本高,加之应力释放等对土样不可避免的扰动,又使这些指标产生不同程度的误差。因此,探讨用静力触探法来推求室内试验指标是一个多快好省的捷径,已有多人进行了探索。但由于多为地区性经验,应用不方便。有人试图以土层时代和成因为基础,进行全国或全世界范围的对比,突破地区性经验界限,求出触探参数与土的物理力学性质指标之间的内在关系。
1.砂类土
对于砂土的内摩擦角,用静力触探求砂土的相对密度,已积累了相当丰富的经验,效果较好。铁道部静力触探规则(TBJ37—93)提出了砂土内摩擦角和石英质砂土的相对密度参考值,见表3-8和表3-9所列出。
表3-8 砂土的内摩擦角φ
表3-9 石英质砂土的相对密度(Dr)
2.粘性土
粘性土的下述指标,多是对全新世地层测试统计得到的。
(1)求粘性土的内聚力c和内摩擦角φ在大量工程实践的基础上,将双桥静力触探成果(qc和fs)和室内直剪(或三轴)试验成果(c和φ)进行统计分析,结果发现:土的内摩擦角的正切函数与锥尖阻力的平方根之间呈现良好的线性相关,即:
土体原位测试与工程勘察
式中:α、b为系数,与土类有关。当16<fs<80kPa时,α=12.14,b=23.11;当1<fs<9时,α=5.47,b=3.80;且c、fs单位为kPa。
(2)求粘性土不排水抗剪强度 一般按下式求粘性土不排水抗剪强度:
土体原位测试与工程勘察
式中:Cu为粘性土不排水抗剪强度(100kPa);
各地经验公式稍有不同,见表3-10所列。
表3-10 由ps(qc)求Cu(kPa)
(3)软粘土灵敏度 根据中国地质大学在深圳和武汉软土地基的勘察和研究中,发现双桥静力触探和十字板测试的软土灵敏度(Sr)之间存在如下关系:
Sr=300·Fs (3-24)
(4)判断土的潮湿程度(稠度状态)土越潮湿,含水率(ω)越大,其强度越低,贯入阻力越小。所以Ps(qc)和IL或ω之间也存在着一定关系,如式(3-25)所示。见表3-11:
表3-11 单桥探头法(ps)(MPa)
土体原位测试与工程勘察
(5)求饱和重力密度γsat粘性土饱和重力密度值,取决于土粒的相对密度。由于粘土土粒相对密度一般在2.7左右,地下水密度γw为10kN·m-3,则γsat可由下式表示:
γsat=γw+γd-(γd/Ga)γw (3-26)
式中:γd为土的干重力密度(g/cm3);Ga为土粒相对密度(g/cm3)。
(6)求土的压缩模量Es及变形模量E0Es为室内试验所求得的土的压缩模量,压力范围为0.1~0.2MPa,其值愈高,表明土的压缩性愈低。在临界深度以下,土层上复压力加大,静力触探贯入时,探头对周围土体施加压力,土体让出探头体积部分主要是压缩变形所致。其用力来自锥面的法线方向。所以,qc(或ps)和Es在测试机理上是相近的。因而两者呈线性相关性,其关系式一般为:Es=α×ps+b。
用ps求Es,除了可用公式外,还可以查(TBJ37—93)规范中相关表格。土的变形模量是由无侧限的原位载荷测试求出的。国内已有很多单位做这方面的对比工作,见表3-12所列出。
表3-12 ps及E0的经验关系(MPa)
(7)求土的天然孔隙比e0e0愈小,土愈密实,土的强度愈高,则ps(qc)值愈大。因此,ps(qc)和e0的相关性亦甚好(表3-13)。
表3-13 用ps求e0的关系式
三、求浅基承载力
土的原位测试法求地基承载力,一般采用载荷试验、旁压仪试验、静力触探试验等多种行之有效的方法,国内、外都积累了丰富的经验。用静力触探法求地基承载力的突出优点是快速、简便、有效,可以大量采用。在应用此法时应注意以下几点:
1.静力触探法求地基承载力一般依据的是经验公式
这些经验公式是建立在静力触探和载荷测试的对比关系上。但载荷测试原理是使地基土缓慢受压,先产生压缩(似弹性)变形,然后为塑性变形,最后剪切破坏。其受荷过程慢,内聚力和内摩擦角同时起作用。然而静力触探加荷快,土体来不及被压密就产生剪切破坏,同时产生较大的越孔隙水压力,对内聚力影响很大;这样,主要起作用的是内摩擦角、内摩擦角越大,锥头阻力(或比贯入阻力)也越大。
砂土内聚力小或为零;粘性土内聚力相对较大、内摩擦角相对较小。因此,用静力触探法求地基承载力要充分考虑土质的差别(特别是砂土和粘土的区别)。为了在确定基础尺寸以前能表达地基土的强度,我国规范习惯采用较小尺寸的浅地基础,作为统一的衡量标准,称之为基本承载力。静力触探法提供的就是这种基本承载力的值f0。它可满足一般建筑物的要求。用于设计时,应进行基础宽度和埋置深度的修正。
2.地基土的成因、时代及含水量的差别对用静力触探法求地基承载力的经验公式,公式对于老粘土(Q1-Q3)和新粘土(Q4)是有很大区别的。
我国用PS求f0已积累了相当丰富的经验。经验公式很多,由于土类、成因及时代等的不同,故不能用同一个经验式来表达两者的关系。但所有的经验式相关性均较高,其相关系数一般在0.8以上,在众多的PS-f0经验式中,应首推《工业与民用建筑地质勘察规范》(TJ21-77)中所采用的经验式(3-27)、(3-28)、(3-29)。
沙土:
f0=0.0197ps+0.0656(MPa) (3-27)
一般粘性土:
f0=0.104ps+0.0269(MPa) (3-28)
老粘土:
f0=0.1ps(MPa) (3-29)
上述公式均反映了土的力学强度有内在的联系。用ps(qc)确定f0是一种简便易行且可靠的方法。但由于全国各地土质差别很大,各家经验式也有差别,有人总结了以往众多的经验式,进行统计分析后,建议采用下述较精确的经验式:
f0=0.1βps+0.032α (3-30)
式中:β与α为土类修正系数,可参见表3-14。
表3-14 各类β、α修正系数表
四、在桩基勘察中的应用
利用双桥探头测得的qc和fs,可以用在桩基设计中选择桩尖持力层;确定单桩承载力;提供桩基压缩层范围内各层土的变形指标,以便估算桩基沉降,以及在桩基施工时预估沉桩可能性等方面。其中以确定单桩承载力最为重要。
利用静力触探指标确定单桩承载力,应结合桩的类型、施工方法和土质特点等综合考虑。以下仅就打入式预制桩的单桩承载力问题作一简单介绍。
1.太沙基(K.Terzaghi)的静力平衡公式确定单桩极限承载力,即:
pu=quA+U∑hifsi (3-31a)
式中:pu为单桩极限承载力;qu为柱端极限承载力;A为桩端截面积;U为桩周长;hi为分层土厚度;fsi为桩周分层土的极限摩阻力。
将上式除以安全系数2,即得到单桩容许承载力。
根据静力触探与打入式预制桩的相似性,用静力触探锥尖阻力和侧摩阻力分别代替式(3-31a)中的qu和fsi,并赋以一定的修正系数,即得到用静力触探指标确定单桩极限承载力的公式:
土体原位测试与工程勘察
式中:α为桩端阻力修正系数;
同样,将式(3-31b)除以安全系数k,即得单桩容许承载力。
各家用静探指标确定单桩极限承载力的公式,都具有公式(3-31)这样的形式,所不同的只在于修正系数α和β的值不同,以及对
2.铁道部《静力触探使用技术暂行规定》(1980)推荐按下式确定打入式混凝土桩的单桩承载力:
土体原位测试与工程勘察
式中:
图3-28 综合修正系数α曲线和β曲线图
3.根据《中华人民共和国行业标准建筑桩基技术规范》(JGJ 94-94)中承载力计算有关规定,其中单桩竖向极限承载力标准值按下列规定确定。
(1)当根据单桥探头静力触探资料确定混凝土预制桩单桩竖向极限承载力标准值时,如无当地经验时可按下式计算:
Quk=u∑qsikli+αpskAp (3-33)
式中:u为桩身周长;qsik为用静力触探比贯入阻力值估算的桩周第i层土的极限侧阻力标准值;li为桩穿越第i层土的厚度;α为桩端阻力修正系数;psk为桩端附近的静力触探比贯入阻力标准值(平均值);Ap为桩端面积。
qsik值应结合土工试验资料,在规范上查图可求。psk可按下式计算:
当 psk1≤psk2时:
土体原位测试与工程勘察
当psk1>psk2时:
psk=psk2 (3-35)
式中:psk1为桩端全截面以8倍桩径范围内的比贯入阻力平均值;psk2为桩端全截面以下4倍桩径范围内的比贯入阻力平均值;如桩端持力层为密实的砂土层,其比贯入阻力平均值ps超过20MPa时,则需乘以表3-15中系数C予以折减后,再计算psk2及psk1值;β为折减系数,按psk2/psk1值从表3-16选用。
表3-15 系数C
表3-16 折减系数β
注:表3-15、表3-16可用内插法取值。
(2)当根据双桥探头静力触探资料确定混凝土预制桩单桩竖向极限承载力标准值时,对于粘性土、粉土和砂土,如无当地经验时可按下式计算:
Quk=u∑li·βi·fsi+α·qc·Ap (3-36)
式中:fsi为第i层土的探头平均侧阻力;qc为桩端平面上、下探头阻力;取桩端平面以上4d(d为桩直径或边长)范围内,按土层厚度的探头阻力加权平均值,然后再和桩端平面以下1d范围内的探头阻力进行平均;α为桩端阻力修正系数(对粘性土、粉土取2/3;饱和砂土取1/2);βi为第i层土桩侧摩阻力综合修正系数,按下式计算:
粘性土、粉土:
βi=10.04(fsi)-0.55
砂土:
βi=5.05(fsi)-0.45
五、评价砂土和粉土的震动液化
按道理,若将触探指标与标贯击数N63.5之间建立关系,再利用有关用标贯击数从N63.5判定砂土液化的判别式,就可达到用静力触探指标判定砂土液化可能性之目的。
对梅耶霍夫和施默特曼等人在qc-N63.5的关系方面作了大量工作,从而得出了形如qc=nN63.5的关系式。然而,n的变化幅度是很大的,n值变化规律是随砂粒径增大和密度减小而增大。再加上标准贯入锤击数本身的离散性很大等因素的影响,就使得用静探指标确定N63.5进而判定砂土液化可能性不够理想。
铁道科学研究院等单位将比贯入阻力ps和地震宏观液化现象进行对比研究,提出了用静力触探指标判定砂土液化的方法,现简介如下。
地基饱和砂土液化判别式为:
土体原位测试与工程勘察
式中:pscr为饱和砂土液化临界比贯入阻力值(MPa);Hw为地下水位埋深(m);H0为覆盖层厚度(m);
当实际饱和砂土的比贯入阻力ps的计算值pscα,小于按上式计算的pscr时,则认为它可能液化。pscα按以下方法确定:
表3-17 临界比贯入阻力pso
(1)当砂层厚度大于1m时,取该层ps的平均值作为该层的pscα;
(2)当砂层厚度小于1m,其上、下土层均为阻值较小时,取较大值作为该层的pscα值。
(3)当砂层的厚度较大,力学性质显著不同可分层时,应分别计算分层的平均比贯入阻力值进行判别。
静力触探成果,除上述各项的应用,还可用于确定砂土的内摩擦角φ和相对密度Dr以及粘性土的液性指数IL、计算地基沉降、评价黄土湿陷性、检验地基加固效果、明确边坡滑动位置等。
GB50021—94《岩土工程勘察规范》规定:可用psd值判定饱和分析砂土的液化势
土体原位测试与工程勘察
式中:psd为在地下水位深度及上覆非液化土层厚度均为2m时的基准值;αυ、αu、αp分别为地下水位、非液化土层厚度及土的塑性影响系数。
这一经验公式经多次验证,可与SPT的N值判定相辅相成,加强了判定液化势的准确值。
六、检验压实填土质量及强夯效果
静力触探检验强夯效果,一般限于粘性土和砂类土;对杂填土、房渣土及碎石土无效。
强夯加固地基的作业过程,一般可以分为以下几个步骤:
(1)通过现场勘察与试验了解场地的性质;
(2)由设计人员或岩土工程师确定和探勘建筑物需要的场地土质条件;
(3)根据经验和设备条件,选择锤重和落距;
(4)进行试夯;
(5)根据试旁结果,设计强夯施工工艺,并付诸实施;
(6)检验强夯效果。
静力触探可以贯穿上述整个工作的始终:在勘察阶段,可以通过静力触探了解场区松软土层的分布及其力学性质,其他阶段可作为质量检测手段。图3-29是某工程所测夯前与夯后的静力触探阻力曲线的比较,反应明显。
图3-29 黄土强夯前后psH曲线的比较
④ 昨夜西风凋碧树,独上高楼,望尽天涯路!心静,淡然,默默努力,静静等待出成果!众里寻他千百度,蓦然回
高楼骋望,不见所思,因而想到音书寄远:“欲寄彩笺兼尺素,山长水阔知何专处!属”彩笺,这里指题诗的诗笺;尺素,指书信。两句一纵一收,将主人公音书寄远的强烈愿望与音书无寄的可悲现实对照起来写,更加突出了“满目山河空念远”的悲慨,词也就这渺茫无着落的怅惘中结束。“山长水阔”和“望尽天涯”相应,再一次展示了令人神往的境界,而“知何处”的慨叹则更增加曳不尽的情致。
婉约派词人许多伤离怀远之作中,这是一首颇负盛名的词。它不仅具有情致深婉的共同特点,而且具有一般婉约词少见的寥阔高远的特色。它不离婉约词,却又某些方面超越了婉约词
⑤ 静力触探的试验成果
静力触探成果应用很广,主要可归纳为以下几方面:划分土层;求取各土层工程性质指标;确定桩基参数。
1.划分土层及土类判别
根据静力触探资料划分土层应按以下步骤进行 :
(1)将静力触探探头阻力与深度曲线分段。分段的依据是根据各种阻力大小和曲线形状进行综合分段。如阻力较小、摩阻比较大、超孔隙水压力大、曲线变化小的曲线段所代表的土层多为粘土层;而阻力大、摩阻比较小、超孔隙水压力很小、曲线呈急剧变化的锯齿状则为砂土。
(2)按临界深度等概念准确判定各土层界面深度。静力触探自地表匀速贯入过程中,锥头阻力逐渐增大(硬壳层影响除外),到一定深度(临界深度)后才达到一较为恒定值,临界深度及曲线第一较为恒定值段为第一层;探头继续贯入到第二层附近时,探头阻力会受到上下土层的共同影响而发生变化,变大或变小,一般规律是位于曲线变化段的中间深度即为层面深度,第二层也有较为恒定值段,以下类推。
(3)经过上述两步骤后,再将每一层土的探头阻力等参数分别进行算术平均,其平均值可用来定土层名称,定土层(类)名称办法可依据各种经验图形进行。还可用多孔静力触探曲线求场地土层剖面。
2.求土层的工程性质指标
用静力触探法推求土的工程性质指标比室内试验方法可靠、经济,周期短,因此很受欢迎,应用很广。可以判断土的潮湿程度及重力密度、计算饱和土重力密度γsat、计算土的抗剪强度参数、求取地基土基本承载力f0、用孔压触探求饱和土层固结系数及渗透系数等。
3.在桩基勘察中的应用
用静力触探可以确定桩端持力层及单桩承载力,这是由于静力触探机理与沉桩相似。双桥静力触探远比单桥静力触探精度高,在桩基勘察中应优先采用。
⑥ 静力载荷测试成果的应用
载荷测试的主要成果是压力-沉降量曲线(即P-S曲线)和变形模量。其成果主要用来确定地基容许承载力和预估建筑物的沉降量。其他应用,有待今后不断丰富和发展。
(一)确定地基容许承载力(或承载力标准值fk)
在确定地基土的容许承载力时,通常要考虑两个因素,即:在多大荷载作用下地基土的变形达到逐渐稳定状态;所产生的变形是否影响建筑物的正常使用。
利用载荷测试成果确定地基承载力的方法,是以P-S曲线的特征点所对应的压力作为基本依据的。这两个特征点可以把P-S曲线分为三段,分别反映了地基土在逐级受压以至破坏的三个变形阶段,即直线变形阶段、剪切变形或塑性变形破坏阶段、整体剪切破坏阶段(可参见图4—3中的Ⅰ、Ⅱ、Ⅲ区)。①在直线变形阶段,地基土所受压力较小,主要是压密变形或似弹性变形,地基变形较小,处于稳定状态。直线段端点所对应的压力即为比例界限P0,可作为地基土的容许承载力。此点靠近塑性变形破坏阶段,和临塑荷载(由理论计算得来)Pcr很接近。②当压力继续增大超过比例界限时,在基础(或承压板)边缘出现剪切破裂或称塑性破坏。随压力继续增大,剪切破裂区不断向纵深发展,此段P-S关系呈曲线形状。曲线末端(为一拐点)所对应的压力即为极限界限,可作为地基土极限承载力P1。可通过极限承载力除以一定的安全系数(一般取2.5—3.0)的方法确定地基土容许承载力。③如果压力继续增加,承压板(或基础)会急剧不断地下沉。此时,即或压力不再增加,承压板仍会不断急剧下沉,说明地基发生了整体剪切破坏。
上述确定地基容许承载力的方法,一般适用于低压缩性土,地基受压破坏形式为整体剪切破坏,曲线上拐点明显。
对于中、高压缩性土,地基受压破坏形式为局部剪切破坏或冲剪破坏,其P-S曲线上无明显的拐点。这时可用P-S曲线上的沉降量S与承压板的宽度(或换算成直径)B之比等于0.02时所对应的压力作为地基土容许承载力。对砂土和新近沉积的粘性土,则采用S/B=0.010—0.015时所对应的压力为容许承载力。
(二)确定湿陷性黄土的湿陷起始压力
我国北方广泛分布着一种特殊土——黄土,其工程性质的一个显著特点是,有些黄土具有湿陷性,即在一定压力作用下,黄土受水浸湿后,结构迅速破坏,产生显著附加沉降(陷)的性能。不言而喻,它对工程建筑构成了致命危险。因此,在黄土地区进行工程地质勘察时,必须查明建筑场区有无湿陷性黄土存在;如有,则要确定是自重湿陷还是非自重湿陷,非自重湿陷性黄土的起始压力是多少。定量而准确地回答这些问题,最直接可靠、常用的方法就是黄土浸水载荷测试。
1.黄土浸水载荷测试的基本要求
(1)承压板面积不小于5000cm2;
(2)压力增量取预估湿陷起始压力的1/5,或采用10—20kPa;
(3)承压板以外的试坑面积须铺设5—10cm厚的砂砾石滤层;
(4)坑内注水,坑内水面应高于滤层顶面3cm;
(5)沉降观测装置的固定点不得受浸水影响。
2.黄土浸水载荷测试方法
确定湿陷性黄土的湿陷起始压力Psh的浸水载荷测试可细分为单线法、双线法和饱水单线法,可根据需要和条件选用。
(1)多点单线法:在同一土层中不少于三点(点距≤6m),分别做天然湿度下的载荷测试,加载到预定的浸水压力(各点的浸水压力可分别采用预估的湿陷起始压力、大于和小于预估湿陷起始压力50kPa)。稳定标准,采用相对稳定法,即将每个载荷测试的地基土浸水,测定浸水后的稳定沉降量,直至每小时的沉降量不大于0.1mm为止。则与每一级压力等级相当的湿陷下沉量Ssh为
土体原位测试机理、方法及其工程应用
式中:S——天然条件下的沉降量(mm);
Sw——浸水条件下的沉降量(mm)。
最后绘制P-Ssh曲线(见图4—4)。取曲线转折点所对应的压力即为湿陷起始压力Psh;如转折点不明显,则取Ssh/B=0.02所对应的压力作为湿陷起始压力(B为承压板宽度)。
(2)饱水单线法:只做一个载荷测试。将设备安装好后,即向试坑内浸水,使3.5倍承压板直径(或宽度)深度内的土层达到饱和。采用饱和含水量作为饱和标准指标,即浸水后土层含水量达饱和含水量(计算得到)的85%—90%时就认为是饱和了。然后,按相对稳定法进行载荷测试,绘出P-Sw曲线,Sw为饱水情况下承压板的下沉量。湿陷起始压力的求法同单线法。
(3)双线法:在同一土层的不同地点(点距≤6m)分别做两个试验。一个试验按相对稳定法在天然湿度下进行;一个试验按饱水单线法在浸水条件下进行。两试验点应采用相同的压力增量。结果可得到在同一级荷载(压力)下的三个不同沉降量,即天然湿度下的沉降量、浸水条件下的沉降量及后者减去前者的湿陷量Ssh。最后,绘制P-Ssh曲线。求湿陷起始压力的方法同多点单线法,详见图4—5。
以上列出了三种黄土浸水载荷测试方法。饱水单线法只需做一点,不受土层均匀程度差别的影响;多点单线法可在某一预定压力时浸水,对测定某级压力的浸水湿陷量比较合适;双线法在理论上可以测定最大压力以内任一压力的湿陷量,对全面观察土层在不同压力下的湿陷性是较经济的方法。由于双线法和多点单线法要进行平行试验,受土层的不均匀性影响较大。
须说明的是,当P-Ssh曲线上出现两个转折点时,可取两个转折点之间的中值所对应的压力作为湿陷起始压力;当曲线上无明显转折点时,可根据曲线形态取Ssh≥0.02B所对应的压力作为湿陷起始压力。对湿陷性小的土,取值大些;对湿陷性较大的土,取值小些。
图4—4多点单线法求湿陷起始压力
图4—5双线法求湿陷起始压力
(三)计算基础的沉降量
直接利用原位测试成果,特别是载荷试验成果计算地基的变形量,较据室内试验得出的压缩模量计算更接近于实际。前者在国外应用甚广。原苏联规定,用载荷试验的变形模量计算地基变形量;日本用P-S曲线先算出地基系数,然后计算沉降量;欧美国家也有类似情况。我国曾习惯于用压缩模量指标采用分层总和法计算地基沉降量,结果和实际沉降量差别较大。1974年颁布的《工业与民用建筑地基基础设计规范》(TJ7-74),在分层总和法的基础上提出了一个较为简便的计算公式,根据我国多年的建筑经验,在公式前加了一个经验系数,以修正理论计算的误差。尽管如此,仍不如采用原位测试得到的土的变形模量进行计算更符合实际。
当建筑物基础宽度两倍深度范围内的地基土为均质时,可利用载荷测试沉降量推算建筑基础的沉降量:
对砂土地基
对粘性土地基
式中:Sj——预估的基础沉降量(cm);
S——载荷与基础底面压力值相等时的载荷测试承压板的沉降量(cm);
b——基础短边宽度(cm);
B——承压板宽度(cm)。
⑦ 静力载荷测试资料的整理及测试成果
1.压力-沉降量关系曲线
(1)首先,应对载荷测试的原始数据进行检查和校对,整理出荷载与沉降量、时间与沉降量汇总表。然后,绘制压力P与沉降量S关系曲线(图4—3)。该曲线是确定承载力、地基土变形模量和土的应力-应变关系的重要依据。
(2)在载荷试验中,由于各种因素的影响,会使P-S曲线偏离坐标原点。这时,应对P-S关系曲线加以校正,也就是校正沉降量观测值。其方法有:
图4—3压力与沉降量关系曲线
P0—比例界限;PL-极限界限;Ⅰ—压实阶段;Ⅱ—剪变阶段;Ⅲ—破坏阶段
①图解法:在按原始试验数据绘制的P-S关系曲线上找出比例界限点。从比例界限点引一直线,使比例界限前的各沉降点均匀靠近直线,直线与纵坐标交点的截距即为S0。将直线上任一点的S、P和S0代入下式,求得P-S曲线直线段的斜率C。
因S=S0+CP
故
②最小二乘法:其计算式如下:
土体原位测试机理、方法及其工程应用
解(4—2)方程组,得:
土体原位测试机理、方法及其工程应用
式中,N为直线段加荷次数;其他符号意义同前。
以上两式中,除S为变数外,其余均可预先计算成现成表格,用时可查表4—1、表4—2。
表4—1每级荷载间隔为100kPa时的有关值
表4—2每级荷载间隔为50kPa时的有关值
③求得P-S曲线直线段截距S0及斜率C后,就可用下述方法对原始沉降观测值S进行校正。对比例界限以前各点,根据C,P值按(4—5)式校正:
土体原位测试机理、方法及其工程应用
对于比例界限以后各点,按(4—6)式校正:
土体原位测试机理、方法及其工程应用
式中,S′为沉降量校正值;其他符号意义同前。
(3)根据校正后的S′值绘制P-S′(压力-沉降量)关系曲线,即一般称的P-S曲线。
2.曲线特征值的确定
(1)当P-S曲线具有明显的直线段及转折点时,一般将转折点所对应的压力定为比例界限值,将曲线陡降段的渐近线和横坐标的交点定为极限界限值(图4—3)。
(2)当曲线无明显直线段及转折点时(一般为中、高压缩性土),可用下述方法确定比例极限。
①在某一级荷载压力下,其沉降增量△Sn超过前一级荷载压力下的沉降增量△Sn-1的2倍(即△Sn≥2△Sn-1)的点所对应的压力,即为比例界限。
②绘制lgP-lgS(或
3.计算变形模量E0
土的变形模量是指土在单轴受力,无侧限情况下的应力与应变之比。由于土是弹塑性体,其变形包括土的弹性变形和塑性变形,故可称为总变形模量,其值可由载荷试验成果P-S曲线的直线变形段,按弹性理论公式求得,仅适用于土层属于同一层位的均匀地基。当承压板位于地表时:
土体原位测试机理、方法及其工程应用
式中:P,S——分别为P-S曲线直线段内一点的压力值(kPa)及相应沉降值(cm);
B——承压板的宽度或直径(cm);
μ——土的泊松比,其值见表4—3;
ω——承压板形状系数。刚性方形板,ω=0.886;刚性圆形板,
表4—3土的泊松比μ值(侧膨胀系数)
当承压板位于地表面以下时,应乘以深度修正系数I1:
土体原位测试机理、方法及其工程应用
式中,I1为承压板埋深h时的修正系数;当h≤B,
对非均质土层,可用小承压板于不同深度处进行载荷测试,将承压板影响范围内的土层作为均质土处理。
⑧ 物理学家______总结了伽利略等人的研究成果,概括出重要的物理定律:一切物体总保持匀速直线运动状态或静
对于运动和力的关系,牛顿在总结实验现象和前人经验的基础上,得到了第内一定律容.牛顿第一定律是理想状态下物体运动和力的关系,在实际条件下,物体受到外力的作用,这些力的作用是改变物体的运动状态.
后人为了纪念牛顿对力学研究的突出贡献,将力的单位以“牛顿”来命名.
故答案为:牛顿;外力;力.