❶ 中国古代是如何计数的
中国数学发展史
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
(三)属于几何方面的材料
自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。
中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。
圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。
在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。
在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。
中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。
(四)属于三角方面的材料
三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。
刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。
在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。
十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。
在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。
❷ 问些关于三角函数的问题~~~~
加我我来告诉你,我也是程序员三角函数跟矩阵
都是非常重要的运算我是过来人分给我吧。上面的SB根本不知道你问的是什么还些SB乱贴网络里的垃圾信息。
❸ 三角函数的发展史以及数学家和应用
三角学的起源与发展
三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具。
(一) 西方的发展
三角学﹝Trigonometry﹞创始于公元前约150年,早在公元前300年,古代埃及人已有了一定的三角学知识,主要用于测量。例如建筑金字塔、整理尼罗河泛滥后的耕地、通商航海和观测天象等。公元前600年左右古希腊学者泰勒斯(p13)利用相似三角形的原理测出金字塔的高,成为西方三角测量的肇始。公元前2世纪后希腊天文学家希帕霍斯(Hipparchus of Nicaea)为了天文观测的需要,作了一个和现在三角函数表相仿的「弦表」,即在固定的圆内,不同圆心角所对弦长的表,他成为西方三角学的最早奠基者,这个成就使他赢得了「三角学之父」的称谓。
公元2世纪,希腊天文学家数学家托勒密(Ptolemy)(85-165)
继承希帕霍斯的成就,加以整理发挥,着成《天文学大成》13卷,包括从0°到90°每隔半度的弦表及若干等价于三角函数性质的关系式,被认为是西方第一本系统论述三角学理论的著作。约同时代的梅内劳斯(Menelaus)写了一本专门论述球三角学的著作《球面学》,内容包球面三角形的基本概念和许多平面三角形定理在球面上的推广,以及球面三角形许多独特性质。他的工作使希腊三角学达到全盛时期。
(二)中国的发展
我国古代没有出现角的函数概念,只用勾股定理解决了一些三角学范围内的实际问题。据《周髀算经》记载,约与泰勒斯同时代的陈子已利用勾股定理测量太阳的高度,其方法后来称为「重差术」。1631西方三角学首次输入,以德国传教士邓玉函、汤若望和我国学者徐光启(p20)合编的《大测》为代表。同年徐光启等人还编写了《测量全义》,其中有平面三角和球面三角的论述。年薛风祚与波兰传教士穆尼阁合编《三角算法》,以「三角」取代「大测」,确立了「三角」名称。1877年华蘅煦等人对三角级数展开式等问题有过独立的探讨。
现代的三角学主要研究角的特殊函数及其在科学技术中的应用,如几何计算等,多发展于20世纪中。
贰、三角函数的演进
正弦函数、余弦函数、正切函数、余切函数、 正割函数、余割函数统称为三角函数(Trigonometric function)。
尽管三角知识起源于远古,但是用线段的比来定义三角函数,是欧拉(p16)(1707-1783)在《无穷小分析引论》一书中首次给出的。在欧拉之前,研究三角函数大都在一个确定半径的圆内进行的。如古希腊的托勒密定半径为60;印度 人阿耶波多(约476-550)定半径为3438;德国数学家里基奥蒙特纳斯(1436-1476)为了精密地计算三角函数值曾定半径600,000;后来为制订更精密的正弦表又定半径为107。因此,当时的三角函数实际上是定圆内的一些线段的长。
意大利数学家利提克斯(1514-1574)改变了前人的做法,即过去一般称AB为 的正弦,把正弦与圆牢牢地连结在一起(如下页图), 而利提克斯却把它称为∠AOB的正弦,从而使正弦值直接与角挂勾,而使圆O成为从属地位了。
】
到欧拉(Euler)时,才令圆的半径为1,即置角于单位圆之中,从而使三角函数定义为相应的线段与圆半径之比。
1. 正弦、余弦
在△ABC中,a、b、c为角A、B、C的对边,R为△ABC的外接圆半径,则有
称此定理为正弦定理。
正弦定理是由伊朗著名的天文学家阿布尔.威发(940-998)首先发现与证明的。中亚细亚人艾伯塔鲁尼﹝973-1048﹞(p15)给三角形的正弦定理作出了一个证明。 也有说正弦定理的证明是13世纪的那希尔丁在《论完全四边形》中第一次把三角学作为独立的学科进行论述,首次清楚地论证了正弦定理。他还指出,由球面三角形的三个角,可以求得它的三个边,或由三边去求三个角。 这是区别球面三角与平面三角的重要标志。至此三角学开始脱离天文学,走上独立发展的道路。
托勒密( Claudius Ptolemy )的《天文学大成》第一卷
除了一些初级的天文学数据之外,还包括了上面讲的弦表:
它给出一个圆从 ( )° 到180°每隔半度的所有圆心
角所对的弦的长度。圆的半径被分为60等分,弦长以每一等分为单位,以六十进制制表达。这样,以符号 crd a 表示圆心角a所对的弦长, 例如 crd 36°=37p4'55",意思是:36° 圆心角的弦等于半径的 (或37个小部分),加上一个小部分的 ,再加上一个小部分的 ,从下图看出, 弦表等价于正弦函数表,因为
公元6世纪初,印度数学家阿耶波多制作了一个第一象限内间隔3°45'的正弦表,依照巴比伦人和希腊人的习惯,将圆周分为360度,每度为60分,整个圆周为21600份,然后据 2πr=216000,得出r=3438﹝近似值﹞,然后用勾股定理先算出30°、45°、90°的正弦之后,再用半角公式算出较小角的正弦值,从而获得每隔3°45'的正弦长表;其中用同一单位度量半径和圆周,孕育着最早的弧度制概念。他在计算正弦值的时候,取圆心角所对弧的半弦长,比起希腊人取全弦长更近于现代正弦概
念。印度人还用到正矢和余弦,并给出一些三角函数的近似分
数式。
2.正切、余切
著名的叙利亚天文学、数学家阿尔一巴坦尼﹝850-929﹞于920年左右,制成了自0°到90°相隔1°的余切[cotangent]表。
公元727年,僧一行受唐玄宗之命撰成《大行历》。为了求得全国任何一地方一年中各节气的日影长度 ,一行编出了太阳天顶距和八尺之竿的日影长度对应表, 而太阳天顶距和日影长度的关系即为正切﹝tangent﹞函数 。而巴坦尼编制的是余切函数表, 而太阳高度﹝角﹞和太阳天顶距﹝角﹞互为余角,这样两人的发现实际上是一回事,但巴坦尼比一行要晚近200年。
14世纪中叶,中亚细亚的阿鲁伯﹝1393-1449﹞,原是成吉思汗的后裔,他组织了大规模的天文观测和数学用表的计算。他的正弦表精确到小数9位。他还制造了30°到45°之间相隔为1',45°到90°的相隔为5'的正切表。
在欧洲,英国数学家、坎特伯雷大主教布拉瓦丁﹝1290?-1349﹞首先把正切、余切引入他的三角计算之中。
3.正割、余割
正割﹝secant﹞及余割﹝cosecant﹞这两个概念由阿布尔
─威发首先引入。sec这个略号是1626年荷兰数基拉德
﹝1595-1630﹞在他的《三角学》中首先使用,后经欧拉采用
才得以通行。正割、余割函数的现代定义亦是由欧拉给出的。
欧洲的「文艺复兴时期」,﹝14世纪-16世纪﹞伟大的天文学家哥白尼﹝1473-1543﹞提倡地动学说,他的学生利提克斯见到当时天文观测日益精密,认为推算更精确的三角函数值表刻不容缓。于是他定圆的半径为1015,以制作每隔10"的正弦、正切及正割值表。当时还没有对数,更没有计算器。全靠笔算,任务十分繁重。利提克斯和他的助手们以坚毅不拔的意志,勤奋工作达12年之久,遗憾的是,他生前没能完成这项工作,直到1596年,才由他的学生鄂图﹝1550-1605﹞完成并公布于世,1613年海得堡的彼提克斯﹝1561-1613﹞又修订了利提克斯的三角函数表,重新再版。后来英国数学家纳皮尔发现了对数,这就大大地简化了三角计算,为进一步造出更精确的三角函数表创造了条件。
4.三角函数符号
毛罗利科早于1558年已采用三角函数符号, 但当时并无
函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。
而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan. ”, “sec. ”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。后来的符号多有变化,下列的表便显示了它们之发展变化。
使用者 年代 正弦 余弦 正切 余切 正割 余割 备注
罗格蒙格斯 1622 S.R. T. (Tang) T. c pl
Sec Sec.Compl
吉拉尔 1626 tan sec.
杰克 1696 s. cos. t. cot. sec. cosec.
欧拉 1753 sin. cos. tag(tg). cot. sec. cosec
谢格内 1767 sin. cos. tan. cot. Ⅰ
巴洛 1814 sin cos. tan. cot. sec cosec Ⅰ
施泰纳 1827 tg Ⅱ
皮尔斯 1861 sin cos. tan. cotall sec cosec
奥莱沃尔 1881 sin cos tan cot sec csc Ⅰ
申弗利斯 1886 tg ctg Ⅱ
万特沃斯 1897 sin cos tan cot sec csc Ⅰ
舍费尔斯 1921 sin cos tg ctg sec csc Ⅱ
注:Ⅰ-现代(欧洲)大陆派三角函数符 Ⅱ-现代英美派三角函数符号
我国现正采用Ⅰ类三角函数符号。
1729年,丹尼尔.伯努利是先以符号表示反三角函数,如以AS表示反正弦。1736年欧拉以At 表示反正切,一年后又以Asin 表示 于单位圆上正弦值相等于 的弧。
1772年,C.申费尔以arc. tang. 表示反正切;同年,拉格朗日采以 表示反正弦函数。1776年,兰伯特则以arc. sin表示同样意思。1794年,鲍利以Arc.sin表示反正弦函数。其后这些记法逐渐得到普及,去掉符号中之小点,便成现今通用之符号,如arc sin x,arc cos x 等。于三角函数前加arc表示反三角函数,而有时则改以于三角函数前加大写字母开头Arc,以表示反三角函数之主值。
另一较常用之反三角函数符号如sin-1x ,tan-1x等,是赫谢尔于1813年开始采用的,把反三角函数符号与反函数符号统一起来,至今亦有应用。
参、三角函数的和差化积公式
下列公式
称为三角函数的和差化积公式。
法国著名数学家韦达﹝1540-1603﹞(p18)在他的著名的三角学著作《标准数学》中收集并整理了有关三角公式并给予补充,其中就有他给出的恒等式:
【后记】三角函数名称的由来和补充
想知道为何三角函数要叫做sin,cos 这些名字吗?经过了多方的查取资料,找到了下图:
上面这个图称为三角圆(半径=1),是用图形的方式表达各函数。其中我们可以看到,sinθ为PM线段,也就是圆中一条弦(对2θ圆周角)的一半,所以称为「正弦」。而cosθ是OM线段,但OM=NP,故我们也可以将cosθ视为NOP(90°-θ)的正弦值,也就是θ的余角的正弦值,故称之为「余弦」。其余类推。
另外,除了课本中教的六种三角函数外,我们还查到了其他的三角函数,如上图中的versθ、coversθ和exsecθ。事实上,在历史上曾出现过的三角函数种类超过十种呢!但最后只剩下这六种常用的。其他的还有如半正矢(havθ)、古德曼函数和反古德曼函数等。
【补充:小历史】
大部分的三角函数一开始都是由于天文上的需要而造出来的。在三角函数传入中国时,正、余矢函数还未废弃,故徐光启将八种三角函数称为「八线」。后来因为矢类函数废弃不用,故八线之名渐被「三角」取代,但统一的名称还是到了民国以后才确立的。
参考数据:
1. 梁宗巨(1995),《数学历史典故》(九章出版社)
2. 王怀权《几何发展史》(凡异出版社)
参考网站:
1. http://www.edp.ust.hk/math/history/
2. http://home.ecities.e.tw/sanchiang/
3. http://archives.math.utk.e/topics/history.html
4. http://dir.yahoo.com/Science/Mathematics/History/
泰勒斯﹝Tales of Miletus﹞
约公元前625-前547,古希腊
古希腊哲学家、自然科学家。生于小亚细亚西南海岸米利都,早年是商人,曾游历巴比伦、埃及等地。泰勒斯是希腊最早的哲学学派──伊奥尼亚学派的创始人,他几乎涉猎了当时人类的全部思想和活动领域,被尊为『希腊七贤』之首。而他更是以数学上的发现而出名的第一人。他认为处处有生命和运动,并以水为万物的本源。
泰勒斯在数学方面的划时代贡献是开始引入了命题证明的思想,它标志着人们对客观事物的认识从经验上升到理论。这在数学史上是一次不寻常的飞跃,其重要意义在于:
1. 保证命题的正确性,使理论立于不败之地;
2. 揭露各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;
3. 使数学命题具有充份的说服力,令人深信不疑。
数学自此从具体的、实验的阶段过渡到抽象的、理论的阶段,逐渐形成一门独立的、演译的科学。
证明命题是希腊几何学的基本精神,而泰勒斯是希腊几何学的先驱。在几何学中,下列的基本成果归功于他:
1. 圆被任一直径所平分;
2. 等腰三角形的两底角相等;
3. 两条直线相交,对顶角相等;
4. 已知三角形两角和夹边,三角形即已确定;
5. 对半圆的圆周角是直角;
6. 相似三角形对应边成比例等等。
泰勒斯在埃及时还曾利用日影及比例关系算出金字塔的高,说明相似形已有初步认识。在天文学中他曾精确地预测了公元前585年5月28
日发生的日食,还可能写过《航海天文学》一书,并已知按春分、夏至、秋分、冬至划分四季是不等长的。
阿尔-比鲁尼al-Biruni﹝973-1050﹞
比鲁尼生于今乌兹别克的一个城市,毕生从事科学研究和写作,共写了大约146部著作,但留传至今的只有22部。按已知其页数的著作估算,比鲁尼写出的手稿当有13000页之多,当中几乎涉及到当时所有科学领域,如天文学、历史学、地理学、数学、力学、医学、药物学、气象学等。比鲁尼特别偏重于那些易受数学影响的学科,其大部份之著作均是天文学和占星术有关。他在数学的应用,尤其在数学的传播、东西方数学的交流方面,做出了突出的贡献。
欧拉(Euler Leonhard,1707-1783)
欧拉,瑞士数学家及自然科学家。在1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。 欧拉出生于牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,于19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。
1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。
1735 年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚 体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。
1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的 最后一刻。
欧拉是数学史上最多产的数学家,我们现在习以为常的数学符号很多都是欧拉所发明介绍的,例如:函数符号 f(x)、圆周率π、自然对数的底 e、求和符号 Σ、log x、sin x、cos x以及虚数单位 i 等。乔治西蒙曾称他为数学界的莎士比亚。
韦达Francois Viè te(1540-1603)
法国数学家。亦译维埃特。因其著作均用拉丁文 发表,故名字当用拉丁文拼法,译为韦达(Vi ta)。1540年生于普瓦图地区丰特奈-勒孔特,1603年12 月13日卒于巴黎。早年在普瓦捷大学学习法律,1560 年毕业后成为律师,后任过巴黎行政法院审查官,皇家私人律师和最高法院律师。1595-1598年对西班牙战争期间破译截获的西班牙密码,卓有成效。他业余研究数学,并自筹资金印刷和发行自己的著作。
主要著作有:《应用三角形的数学定律》(1579 ),给出精确到5位和10位小数的6种三角函数表及造表方法,发现正切定律、和差化积等三角公式,给出球面三角形的完整公式及记忆法则:《截角术》( 1615年出版),给出sinnx和cosnx的 展开式;《分析术入门》(1591),创设大量代数符号,引入未知量的运算,是最早的符号代数专著;《 论方程的识别与订正》(1615年出版),改进了三、四次方程的解法,给出三次方程不可约情形的三角解法,记载了著名的韦达定理(方程根与系数的关系式);《各种数学解答》(1593)中给出圆周率π值的 第一个解析表达式,还得到π的10位精确值等等。
徐光启﹝公元1562-1633年﹞
徐光启,字子先,号玄扈,生于上海,于1604年考中进士,相继任礼部右侍郎、尚书、翰林院学士、东阁学士等,最后官至文渊阁大学士,他毕生致力于介绍西方科学,同时注意总结中国的固有科学遗产,编成巨著《农政全书》,成为我国近代科学的启蒙大师。
徐光启除与利玛窦合译《几何原本》前六卷外,还有《测量全义》﹝公元1631年﹞,这是西方三角学及测量术传入我国之始。公元1629年﹝崇祯二年﹞,徐光启首次应用西方天文学和数学正确推算日蚀。同年七月,礼部决定开设历局,由徐光启组建,于是,一些西方传教士如龙华尼﹝意大利人﹞、郑玉函﹝瑞士人﹞、汤若望﹝德国人﹞、罗雅谷﹝意大利人﹞先后参与了中国的历法改革工作。从公元1629至1643年,明亡止,共完成了《崇祯历书》137卷,主要介绍当时欧洲天文学家第谷﹝Tycho. Brahe﹞的地心学说,数学方面则以平面几何与球面三角据多。
❹ 反正切函数的连分数数学家怎么得到的
y=tanx x=arctany 这是两个式子,同一关系,在第一个式子中,当 x < π/2 且趋于 π/2 时,y 趋于 +∞,因此在第二个式子中,当 y 趋于 +∞ 时,x 趋于 π/2 。