导航:首页 > 创造发明 > 数学创造思维的研究背景

数学创造思维的研究背景

发布时间:2021-07-30 18:04:02

1. 数学是谁创造的= =

数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”

自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。

从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。

对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”

另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”

从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。

基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性数学不是有一个人创造的,它是根据现在物理或者化学什么的一些数字规律中提炼出来的,每个数学公式什么的都可以是理解为一类实际问题去掉了生活背景以后,只剩下的数字之间的联系,你有兴趣可以查一查数学史。其实最早是没有物理化学数学这么分的,这些科学问题是在逐步发展中才分类的。最早的哲学中,就有许多科学的理论

2. 什么是数学创新思维

众所周知,在数学活动乃至一般的实践活动中,谁都希望自己具有较强的思维能力。这主要取决于一个人的思维品质。思维的发生和发展,既服从于一般的、普遍的规律性,又表现出个性差异,这种个性差异体现在个体思维活动中的智力特征方面就是思维品质,有时也称思维的智力品质。就数学思维来说较为重要的思维品质有深刻性、广阔性、灵活性、创新性、目的性、敏捷性以及批判性。下面就数学思维的创新性谈一谈自己的认识。

思维的创新性与思维活动的独创性、创造性或创造性思维具有相同的含意,只不过创新性强调“新颖”而已,也就是说,创新性是指独立思考创造出有社会(或个人)价值的具有新颖性成分的成果的智力品质。它的特点是主体对知识经验和思维材料进行新颖的组合分析、抽象概括以致达到人类思维的高级形态;它的结果,不论是概念、理论、假设、方案,或是结论,都包括着新的因素,它是一种探新的思维活动。当然,这种新颖不是脱离实际的荒唐,而是具有社会价值的新颖。它可能被人们所忽视或误解,但它的见解或产物,最终会被社会所承认。

在数学教学中,思维的创新性主要表现在学习数学的过程中善于独立地思索、分析和解答问题,提倡探讨与创新精神,当然也包括小发明创造。做为教师,要自觉地启发学生多提问题,提问题是思维的结果,也是创新的开始,不要给学生立下很多规矩,更不要打棍子,即学生在学习过程中常会提出许多不同的看法或新见解,它往往蕴藏着智慧的萌芽,哪怕只有一点点新意,也应充分肯定和大力鼓励。

在中学,思维的创新性更多地表现在发现矛盾以后,把知识融汇贯通,以进攻的姿态,突破矛盾,最终解决问题。例如:

求证:

分析:该题纯从三角去考虑,是较繁琐的。如果想到单位圆上的点,而点,那么欲证命题成立,只须证即可。又数列,故成立。

(方法二),想到单位圆上的点 ,而点 又对应着向量那么欲证命题成立,只须证即可。又向量可看作力,进而想到大小一样,终端分布在正n边形的n个顶点上的共点于正n边形中心的力系,其合力为零。故成立。证明(略)。

用数学方法解决物理问题似乎理所当然,但反过来用物理方法去解决数学问题却不太被人们重视,但对有些问题这样去做不仅解法新颖,具有创新性,而且强化了各科之间的相互联系、互相渗透。

思维的创新性的反面是思维的保守性,它的主要表现是在数学学习中受到各种条条框框的限制,思维受束缚,不愿多想问题,只求现成的“法规”,而产生思维的惰性。消除思维保守性的有效方法是提倡学生多思和多问几个为什么,在加强基础知识和基本训练的前提下,提倡学生独立思考。

21世纪人才竞争的焦点在于培养具有创新思维的一流人才上。只有具有创新思维的人,才能领导和把握科技发展的潮流。作为教师,对学生创新思维的培养是我们义不容辞的责任,也是我们不断探索的课题。

3. 小学生数学思维有什么背景和意义

学好数学就需要具备数学思维.是否具备数学思维影响着学生对于学数学的兴趣。如果一个学生具备数学思维,那么他的数学潜力和智力有可能被开发地更彻底。小学数学在开发学生思维方面有着重要的作用,小学数学有利于学生学会观察与比较思维,有利于培养学生独特的思考方式和创新能力,还可以启发学生数学思维。

4. 如何提高数学练习课的有效性研究背景

如何提高小学数学课堂练习的有效性
小学数学教学大纲就明确指出:“练习是使学生掌握知识,形成技能,发展智力的重要手段”。的确我们的学生正是借助于我们安排的各种练习题的刺激,积极进行思维活动,进而完成其学习任务的,它对学生能否真正理解课堂内容起关键作用。练习的目的,就是获取知识。设计好练习,也就成为数学教学的重点所在。要使课堂练习真正起作用,教师针对本班学生情况的、特有的、有效的练习需要我们精力地设计。做到适度、高效,让学生既掌握知识,又发展能力,也只有这样,我们的学生练起来才会更省时更有成效。 在平常的教学中,有好多的老师在学生获取知识的认识上有误区,第一认为投入与产出是成正比的。如学生哪个字写错了,就罚他抄十遍。在听一次公开课中,有位老师布置的作业(1)、4小时行8千米,1小时行多少千米?(2)、6小时行3千米,1小时行了多少千米?第一题学生很快就做出 8÷4 =2的正确答案;第二题学生一看与第一题一样的,没多想就说是6÷3=2的错误答案。第二是认为要形成技能,越多越好。从心理学的角度上看,人形成技能,不是越多越好,它有一个衰退点。如六年级的复习考试,考多了,他不投入,相反是越考越差。我们试想一下:一节新授课下来,给学生布置同类型10道练习题做,如果学生会做,做这么多只是机械的重复,为什么要做这么多呢?如果连一题都不会做,让他做更多的题又有何意义?数学课应该是重“质”而不是“量”!为什么有的学生不需要课下做很多的习题,照样会做,而有的学生每天徜徉在题海中,却没有什么提高?原因就是“质”和“量”区别。所以科学合理的安排学生的练习是非常重要,本人结合自己的教学实践谈点粗浅的认识。一、练习要重算理。 如在教两位数除以一位数42÷3时,师可以利用画小棒给学生讲明算理,先一人一捆(10根),然后拆开一捆再进行分配。学生在明白天算理后,再引入竖式除法,学生就能轻松接受。二、练习要突出重点。 数学教学是分单元进行的,每一单元可划分为几个“知识块”,同一“知识块”的几个教学课时又有不同的侧重点或叫“知识点”。课堂练习就是要围绕每堂课的教学重点进行设计。例如,教学“两位数的除法笔算”前两课时,重点、难点是试商。新课前的练习应为学习试商方法作知识铺垫,可这样设计:1、括号里最大能填几:24×()<89; 2、估算:7 9×8=□、490×3=□。 讲授中的练习要为理解试商方法服务。 三、练习要有层次。 每堂课的练习设计要根据知识的结构特征和学生的认知规律进行设计,做到由浅入深,有层次、有坡度,一环套一环,环环相扣。例如,百分数的认识的教学,可设计以下几个层次的练习。
基本练习:7 3 =( )% 、 80%=( )填小数。
综合练习:从小到大43 、0.745 、 7.5% 创新练习:
(5 4 -45%)×(40%-4%)

通过上述几个层次的练习,学生在简单运用、综合运用、扩展创新的过程中,理解和掌握了知识,同时也照顾到全班不同层次学生的学习水平,使他们都有收益。 四、练习要有创新。 多途径、多角度地训练学生思维,开发学生智力,是提高学生个体素质的需要,是课堂练习设计的重要依据。要达到这一目的,这就要求教师设置创新的情境。 1、设计联想题,训练学生思维的敏捷性。教师可从引导学生进行横向、纵向和逆向联想等方面设计练习题。如看到“a是b的5/6”,要求学生联想到:(1)a与b的比是5∶6(横向);(2)b与a的比是6∶5(逆向);(3)b是a的1 1/5倍(横向、逆向);(4)a比b少它的1/6(纵向);(5)b比a多它的1/5(纵向、逆向);(6)a增加它的1/5与b相等(纵向);(7)b减少它的1/6与a相等(纵向)。 2、设计多解题,训练学生思维的变通性。例如,学习分数应用题后,教师可出示应用题:“一根长64米的铁丝,剪去总长的5/8做了20个周长相等的方框架,余下的还可以做同样的方框架多少个?”并要求学生采用不同的方法来求解: (1)用分数应用题解法求解:①20÷5/8-20=12;②64×(1-5/8)÷(64×5/8÷20)=12;③64 ÷(64×5/8÷20)-20=12;④20÷〔5/8÷(1-5/8)〕=12;⑤20÷(5/8÷1)-20=12;⑥20×〔 (1-5/8)÷5/8〕=12;⑦20×(1÷5/8)-20=12。 (2)用比例方法求解:设还可以做x个方框架,得5/8∶20 =(1-5/8)∶x。 (3)用工程问题解法求解:①(1-5/8)÷(5/8÷20)=12;②1÷(5/8÷20)-20=12。 3、设计多变题(或多问题),训练学生思维的多向性。“一题多问”和“一题多变”能引导学生从多角度、多层次观察和分析问题、沟通知识的内在联系,培养创造思维能力。例如, (1)、公鸡有120
只,母鸡的只数是公鸡的3 1 ,母鸡有多少只? (2)、公鸡有120
只,是母鸡只数的31 ,母鸡有多少只? (3)、公鸡有120
只,母鸡比公鸡多31 ,母鸡有多少只? (4)、公鸡有120
只,比母鸡多3 1 ,母鸡有多少只? (5)、公鸡有120
只,母鸡比公鸡少31 ,母鸡有多少只? (6)、公鸡有120
只,比母鸡少3 1 ,母鸡有多少只? (7)、公鸡有120
只,母鸡比公鸡多31 ,公鸡比母鸡少几分之几? (8)、公鸡有120
只,公鸡比母鸡少3 1 ,母鸡比公鸡多几分之几?

4.设计开放式习题,训练学生思维的广阔性。如在下面式中的()内填上适当的数,要求连续进位:235×( )。学生通过观察、尝试,最后得到只要看数字2,能进位就可以连续进位了。

5. 如何有效发展数学创新思维

创新思维已成为新课程改革中教与学的灵魂,是实施素质教育的核心;数学领域蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,善于利用,积极探索培养和训练学生创造性思维的能力。
小学生正处于思维最活跃的年龄阶段,所以小学六年是打好学生创新思维的基础阶段。因此,数学教师在教学过程中应充分运用各种有效的教学手段和方法,来培养小学生的创造思维能力。本人联系多年教学实际,对如何培养小学生的创新思维能力谈几点粗浅的想法:

一、设疑激趣,拓宽思维时空

古人早有“行成于思毁于随”的戒言,也有“学而不思则惘,思而不学则殆”的训导,如果缺乏必要的深思熟虑,就不会促使思维从量变到质变的瞬间飞跃,迸放出创新的火花。“打开一切科学的钥匙都毫无疑义的是问号,而生活的智慧大概就在于逢事都问个为什么”。

在教学实践中,教师要给学生创造充分的思维时空,既要张弛有度,遵循小学生生理和心理周期性起伏变化的规律,还要“处处留心搜求,把进行的其它活动或接触到的其它事物有意无意地和自己思考的问题联系在一起。这样一遇到适当的剌激,就会触发灵感的产生”。因此教师要灵活布设问题悬念,努力创设问题情境,以此激启学生积极思考。特别是要脚踏实地,充分利用课堂教学的空间和时间,把握教材的内容特点,开拓创新思维的培养途径。

以教学“10的分与合”一课时为例,我预先准备了一个盒子,盒子里装了10支铅笔。一上课,我请一名学生上台摸铅笔,然后老师根据学生摸到的支数猜盒子里剩下的支数,经过几次猜都猜对了,学生感到很好奇,然后老师趁热打铁,说:“因为老师知道了盒子里总共有10支,然后根据10的分成就能猜着了,你们想学会这个本领吗?”数学知识的神奇力量激起了学生强烈的求知兴趣,使学生趣味盎然地参与学习,积极思考。

又如:在教学小学数学第三册《可能性》一课时,课伊始,我让一名男生代表和一名女生代表上台进行摸球比赛,比赛规则是蒙上眼睛摸五次,摸到红球次数多者为胜。结果女生代表每次都是红球,这时男生有的生气,有的责怪,有的打抱不平,说老师有“阴谋”。这样的情境创设,激发了学生的兴趣,形成知识之间的悬念,引导学生尝试改变固定的、传统的思维方式,拓宽数学思考的思维时空。

二、大胆猜想,培养求异心智

心智是一种直觉,它是非常灵活迅捷而复杂的心理活动现象,是在原有知识的基础上,通过对事物的表象感知,借回忆、想象、猜测等心理活动,闪电般跳跃式地对事物本质进行判断,它是创造思维的灵魂。牛顿认为“没有大胆的猜想,就做不出伟大的发现。”在训练学生直觉思维方面,应鼓励学生大胆猜想,敢于创新,冲破思维定势,摆脱常规约束,允许学生突发奇想,甚至异想天开。对学生回答问题不要苛求过于严谨全面,让它们发现什么说什么,想到多少说多少,说出表象的理解或猜想也可以,不一定要说个所以然;教师对学生独到的见解或奇异的想法要因势利导,引上思维的轨道,让他们想出点门道来。

例如,在教学“能被3整除的数”时,我先让学生猜一猜:“能被3整除的数”会有什么特征?有些学生可能受到“能被2、5整除的数”的特征影响,都在猜测特征是“个位数是3、6、9的数”。老师顺势出示一组个位是3、6、9的数,如13、16、19、23、26、29……结果学生发现这些数都不能被3整除,学生的思维因为猜想的落空陷入了困惑状态,由此引发了他们解决疑惑的心理趋势;而教师乘机再列出另一组数,如12、15、18、21、24、27……学生发现,这些数反而都是能被3整除。这样,通过一系列的猜想与困惑,造成学生认知上不平衡,从而激发起学生继续探索的欲望:为什么后面这一组数都能被3整除呢?学生又带着对这个问题的好奇心进行猜测探索,最后发现原来能被3整除的数的特征是:一个数各个数位上的数的和能被3整除,这个数就能被3整除。

这种探索方法的基本程序就是:提出问题,学生猜想,探索规律,验证结论。它就是要让学生先敢于对数学问题进行大胆猜测,再通过探究寻找规律,这样得到的知识对学生来说是有效的,得到的也不仅仅是一种知识,更多的是数学思维能力的训练。

所以,在学习数学时,教师要鼓励每个学生应有一点敢于猜想的意识,多进行“猜一猜”的活动。猜想是不受现成事实的束缚,它包含着可贵的大胆想象和推测的成分。教师要敢于通过“尝试”、“猜想”等问题情景的创设,大胆暴露学生的思维过程,引导学生沿着合理的解题思路去思考。

当然,在猜想中,要提醒学生仔细观察,分析已知,发现规律,以此类推;或者提醒学生利用结果,进行猜测,推而广之。总之,猜想锻炼的是学生发现规律,利用规律解决问题的能力,能让学生活跃的思维在迸发、碰撞中激发出创新的火花。

三、开拓思路,诱发思维的发散性

徐利治教授曾指出:创造能力=知识量×发散思维能力。思维的发散性,表现在思维过程中,就是思维不受一定解题模式的束缚,从问题个性中探求共性,寻求变异,多角度、多层次去猜想、延伸、开拓,是一种不定势的思维形式。发散思维具有多变性、开放性的特点,是创造性思维的核心。在教学中,可采用多种变式练习来进行训练:

(一)填空答案多样化

教师要擅长改变教材和教纲的有限性,把唯一性的填空改编成一空多填式,以此对学生进行发散思维的培养。如在教完了20以内的进位加法后,为使学生更熟练计算进位加法,安排一组填空,要求其尽量多填,使等式成立:8+5=□+□,□+3=6+□,□+□=6+5,9+□=□+7。

(二)问题解答多向化

从知道的条件进行多角度、全方位的审视,是产生思维多向性的关键,只要善于引导学生联想以前学过的或从生活中具备的知识和方法,准确深入挖掘问题中具备的已知条件,努力探索,那么学生就会在发现问题和解题方法上独树一帜。

例如,我在教学小学数学第四册《统计》一课时,安排学生进行想想做做的练习:先出示一些杯子,师问:“你想按照什么来进行分类并统计?”

学生1:有的杯子有把柄,有的杯子没有把柄。

师:对,可以分成有把杯和无把杯。

学生2:有的杯子2元,有的杯子3元,有的杯子4元。

师:对,可以按照价格来分类统计。

学生3:有的杯子有颜色,有的杯子没有颜色。

师:对,可以分成有色杯和无色杯。

学生4:有的杯子高,有的杯子矮。

师:对,也可以根据高矮来分类统计。……

我们可以看到,由于每个学生对事物的观察和思考都具有自己的个性特点,假如只局限于自己个人的思考范畴内,学生只能认识到极为有限的事物统计标准,但是在教师有意的引导下,学生纷纷回答,让不同的智慧火花在课堂上闪现,每个学生都在享受着集体的共同智慧结晶,打开了思维之大门。

(三)问题设计自主化

此类方式是指习题只给出已知条件,至于要求求解什么、怎样求解是需要学生自主设置的。训练的目的是让学生沿着尝试多种方向设计问题,并能用相应方法解决问题。如:“由已知黄花9朵,红花3朵”,师问:“你能提出哪些问题?”学生提出了求和、求差、求倍数关系的好多问题,此类训练可以让每个学生都会有机会发现自己数学智慧的一面,激起创新思维的主动性。

(四)解题思路发散化

在数学教学中培养学生创新的思维能力,“一题多解”是最切实可行切实有效的方法,是培养学生发散思维的一种好方法。教师要重视引导学生在解好一题后,不要满足于结论,不要拘泥于常规,不束缚于定势,而是通过有针对性的,有数学依据地开展积极思维,大胆设想,合理分析,探索和开发题目的“潜在价值”,在沿着不同的方向思考后,比较了多种解决问题的方法后,找出最佳方案,锻炼学生敏捷的解题能力。具体来说,可以通过纵横发散、知识串联、综合沟通等方法,达到举一反三、融会贯通的效果。

1、在应用题解题中培养思维发散性

应用题解题方法多样化,主要有利于培养学生思维的深刻性,针对具体题目让学生寻找不同方法,换个角度思考、分析,可能得到意想不到的收获。

如:小学数学第四册有这样一个应用题:“一辆公共汽车原有35个人,下车了9人,又上来了12人,现在车上有几人?”大部分学生列式:35-9+12=38(人),这毫无疑问是对的,不过,我没有满足,继续问:“还有不同的想法吗?”这时,一个小朋友举起了他的小手:“我是这样做的:12-9=3(人),35+3=38(人)。”好多小朋友瞠目结舌,然后就说:“不对吧”。另外有几个小朋友发出了不同的声音:“对的”,我让这位小朋友说理由,他说:“12-9=3(人)求出的是上来的比下去的多的,多的加上原来的就是现在有的人数。”多么精炼的回答呀!

以上两种方法各具特色,妙趣横生,我似乎看见学生的思维正自由驰骋于数学领域。

2、在计算题解题中培养思维发散性

在数学解题学习中,学生的主要任务并不是解题,而是学习解题,因此教师教的重点和学生学的重点,不在于“解”,而在于“学解”。所以教师要在尽可能不提供现成结论的前提下,让学生亲身独立地进行数学解题活动,这就要求我们在教学预设时,不能仅仅满足于预设解题过程和方法,更要预设教学过程和方法,倡导学生个体之间、群体之间的多向互动的格局,使学生与学生之间不断交流解题信息。在此过程中,教师和学生分享彼此的解题经验和认识,交流彼此的解题情感和体验,真正为促进解题的思维创新提供可能性,这种理念,哪怕是在计算题的解题训练中也一样要得到落实。

例如:小学数学第四册的笔算加法,这部分内容是在学习了口算加法的基础上进行的。我出示了例题(352+234=?)之后就让学生自己进行尝试练习,然后巡视,让我没想到的是,学生在思考探索和交流之后,提供的解答方法竟然会这么异彩纷呈,我就赶紧让他们上台板演。

这第三种方法尤令我惊异,惊异于学生居然有如此让人出乎意料的数感。这也证明,计算中的多种解题方法练习,同样非常利于达到诱导学生进行创新性发散思维的目的。

四、运用类比,训练灵活多变的思维

类比是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一类事物也可能具有某种属性的思维方法,是发现问题、探索解决问题途径常用的数学思维方法,是创造性思维的精髓。利用类比思维可使学生加深对基础知识的理解,举一反三,融会贯通,发现新的数学知识;可培养学生的发散思维、创造思维及合情推理能力,即遇到新的问题,从形式结构的表象联想似曾相识的旧知识,进一步从感性认识深化到它们的内在联系,以旧喻新,类比新的知识,发现新的理论。

如六年级有这样一道题目:“甲乙两地相距240千米。快车从甲地开往乙地要4小时,慢车从乙地开往甲地要6小时,两车同时从两地出发相向而行。多少小时相遇?”老师要求学生解答,并说出思路。

生1:240÷(240÷4+240÷6),先求出甲和乙的速度和,路程除以速度等于时间。

这时,老师问:“还有其他解法吗?”一个平时不太爱发言的学生举手了,他说:“我是这样想的,把两地相距的路程看作单位‘1’,可列式为1÷(1÷4+1÷6)”。

很明显,这个同学利用的是类比思维方式。在解决问题过程中,他从要解决的问题出发,受“题型特点”的启示,联想与它类似的一个熟悉的问题即工程问题,想到曾做过类似题目,并以这个类似题目作为中介,又想到了某种解题方法和技巧,而后进行分析,用熟悉的解法来思考解答所要解决的问题,这种创造思维的火花可以感染全班的每一位同学。

五、实践是创造思维能力的练兵场

(一)充分利用游戏,创新思维在实践中触发

杨振宁博士曾作过这样的对比,中国学生学习成绩比一起学习的美国学生好得多,然而十年后,科研成果却比人家少得多,原因何在?其实就在于美国的学生思维活跃,动手能力和创新能力强。针对小学生在平时学习中缺乏参与性活动这一现状,新教材为学生设计了大量的、具有思考价值的游戏、比赛,(如:对口令、猜数、青蛙过河等等),我很重视这些形式的题目,在课堂上总是多给学生一些自由的时间,让学生多进行一些创造性的活动,使每个学生都能积极地参与到课堂中来,开动脑筋、拓宽思维。

如在教学进位加法的练习课时,这节课的主要目的是使学生熟练口算20以内的进位加法。于是我用了三个游戏把整节课贯穿起来。首先是个人抢答赛。老师出题学生抢答或学生互相出题,这个游戏的设计主要是培养学生思维的敏捷性。接着是小组合作争优赛。4人一组,用三个数组成4个算式,比比哪个组想的算式最多。这个游戏不仅使学生对整体与部分的关系有了深刻的认识,还培养了学生思维的整体性和合作竞争的意识。最后“吃鱼”这个游戏把整个课堂气氛烘托起来,学生们个个跃跃欲试,学习情绪高涨。游戏是这样的,每人一条鱼,每条鱼的上面都有一道题,只要能大声地读题说得数,这条鱼就送给你。学生们不仅要把自己的题说对,还要对其他同学的题进行判断,大大提高了练习的强度。游戏是以“开火车”的形式进行的,又提高了练习的时效性。这节练习课,虽然没有让学生动笔去写,但它的练习强度和效率是显而易见的,在练习课中学生的思维异常活跃。

由此可见,丰富多彩、富有创造性的活动和练习不但能够收到意想不到的效果,还能够使每一个学生从中体验到学习给他们带来的快乐。

(二)捕捉生活素材,创新思维在实践中提升

任何知识都来源于生活,形成于实践,又指导实践,推动科学技术的发展,而学习掌握它,如果脱离实践就成为无源之水。富勒说过:“理论是一种宝库,而实践是它的金钥匙。”我们要力求引导学生,通过阅读、练习、观察、实验、讨论等多种形式,使学生动脑动口动手,在亲自参与下获取知识,熟练技能,领悟理论的本质。组织学生互相讨论,发挥学生各自思维个性差异的优势,使他们相互间的思维“推波助澜”,形成多维立体交叉的思维信息网,教师随时点拨指导,使思维产生跃变。

比如一年级的小朋友刚接触减法,学校里正好组织秋游,游览的路上,我就有意地问:“沈望,你带了几个橘子?”“5个。”“已经吃了几个?”“2个。”“还剩几个?”“3个。”“你能用一个算式表示吗?”“5-2=3”,其余小朋友也争先恐后地喊道。

在回家的路上,我问小朋友:“今天玩得开心吗?”

生:“开心。”

师:“都玩了哪些项目呀?”

生:“射箭、打气球、野炊、爬山……”

师:“今天的秋游活动中,你发现了数学问题吗?”

思考片刻。

生1:“叔叔给了我5支箭,我一支一支地射,一会儿全射光了。”

师:“你能用算式表示吗?”

生1:“5-5=0。”

师:“真好。”

生2:“妈妈给我4元钱,我用掉了2元,还剩2元,4-2=2。”

生3:“我带了2个面包,被我吃光了,2-2=0”

生4:“墙上有10个气球,我打破了一个,还剩9个,10-1=9”

……

在这样的问题解决情景中,由于是从学生的生活入手进行数学知识的训练和巩固的,学生更愿意交流,更愿意表达自己的想法,迸发出了学生思维的火花,创新思维在实践中得到了提升。

又如:我在教学《元角分的认识》一课,在课堂上创设了一个在商店内买卖物品的模拟场景,让学生经历“买卖物品”,然后延伸到家庭生活中,布置了一个特殊的课外作业,让学生星期天跟妈妈上菜场买菜或上商场购物,试着帮妈妈付钱、算帐,回学校后相互交流自己购物、付钱和算帐的经过,说说自己懂得了什么,还有什么困难。针对学生的交流再作小结。

如:有位同学说自己的购物经历:“我用一元钱去买了两枝铅笔、一块橡皮,铅笔2角钱一枝,共4角钱,橡皮5角钱一块,还找回一角钱。”

单凭课堂上的讲解、练习是很难达到这种效果的,学生在亲身实践中发散了思维。

美国教育学家第斯多惠说过:“教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。”因此,教学实质上就是设法激启学生自觉学习的兴趣,让他们亲自参与学习,只有多参加实践,多体验生活,积累生活的第一经验,储备直觉思维的感性素材,才有可能升华为抽象思维的理性认识,产生广阔的思维联想,进而进行归纳、类比、推猜,发现新的事物,建构新的理论。

总之,虽然数学具有严谨的逻辑性,但这只是对于理论的完成形式推演论证而言,而理论的学习掌握,解题思路的形成或数学知识的应用,特别是数学知识的发展完善,新理论的发明建构,都离不开灵活自由的创造性思维,它推动人类的进步,创造人类文明,是人类发展进步的巨大财富。我们每一个教育工作者,一定要重视学生创新思维能力的培养,为学生提供思考、探索和创新的具有开放性和选择性的最大空间,我们就能引导学生自己发现问题,进行创造性学习,培养创新思维,为成为适应二十一世纪科技发展所需要的人才奠定基础

6. 如何在初中数学课堂培养学生的创新思维课题研究背景

摘要在应试教育向素质教育转轨的过程中,教育教学的目标是培养具有开拓性、创造性的人才,这就要求在数学教学中必须对学生进行创造性思维的培养。针对初中数学教学的特点,笔者提出了从良好的教学环境

阅读全文

与数学创造思维的研究背景相关的资料

热点内容
京韵花园纠纷 浏览:895
卫生服务站公共卫生考核方案 浏览:62
快递时效投诉 浏览:782
世纪创造绝缘有限公司 浏览:600
聚投诉珍爱网 浏览:47
公共卫生服务协议书2017 浏览:805
改革工作成果汇报 浏览:49
医疗纠纷管理伦理的主要要求不包括 浏览:959
工业光魔创造不可能720p 浏览:243
君主立宪制是法国大革命的成果 浏览:13
王成果青岛科技大学 浏览:519
护理品管圈成果汇报书 浏览:875
使用权获取途径 浏览:759
怎么投诉奥迪4s店 浏览:31
美术教师校本研修成果 浏览:740
股权转让合同模板 浏览:638
知识产权部门重点的工作计划范文 浏览:826
用地批准书能证明土地的使用权权吗 浏览:829
拓荒者知识产权 浏览:774
商标侵权事宜处理委托书 浏览:168