A. 关于电桥 我想要全桥、半桥、四分之一桥的概念,但是找不到,谁知道啊
半桥电路的优缺点:
半桥整流输出电压的峰峰值只有输入电压的一半,因此在输出功率相同的情况下,半桥整流需要承担两倍于全桥整流的反向电压或者电流,因此半桥整流对二极管的规格有较高的要求。
半桥整流不仅需要中心抽头型的变压器,而且变压器的原边线径一般要粗一些。
全桥电路的优缺点:
全桥整流需要使用4只主开关管,但是存在同时通断的问题,因此在驱动电路的设计上要花更多的心思。全桥整流则需要变压器线圈匝数更多一些。
(1)全桥谁发明扩展阅读:
桥式整流电路的工作原理如下:
当输入电压U2为正半周时,对D1和D3施加正向电压,D1和D3接通。对D2、D4施加反向电压,D2、D4切断,电路中形成u2、D1、Rfz、D3,在Rfz上形成上下负半波整流电压;
当输入电压U2为负半周期时,对D2和D4施加正向电压,D2和D4导通;对D1、D3施加反向电压,D1、D3切断,电路中形成u2、D2、Rfz、D4的带电电路,Rfz上也形成另一半波正上负下的整流电压。
B. 全桥应变力传感器问题与发现
压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。 发展状况 1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。早期的硅压力传感器是半导体应变计式的。后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。此芯片仍需粘贴在弹性元件上才能敏感压力的变化。采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器。这种新型传感器的优点是: ①频率响应高(例如有的产品固有频率达1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可达0.1~0.01%; ④灵敏高,比金属应变计高出很多倍,有些应用场合可不加放大器;⑤无活动部件,可靠性高,能工作于振动、冲击、腐蚀、强干扰等恶劣环 境。其缺点是温度影响较大(有时需进行温度补偿)、工艺较复杂和造价高等。缺点是: ①温度特性差,由于压阻式压力传感器是用半导体材料制作的,受温度影 响较大,因此,在温度变化大的环境中使用时,必须进行温度补偿。 ②工艺复杂,对研制条件要求高而严格,尤其是扩散杂质、烧结、封装工 艺等比其他传感器要复杂的多,因而成本也相对要高。应用 压阻式传感器广泛地应用于航天、航空、航海、石油化工、动力机械、生物医学工程、气象、地质、地震测量等各个领域。在航天和航空工业中压力是一个关键参数,对静态和动态压力,局部压力和整个压力场的测量都要求很高的精度。压阻式传感器是用于这方面的较理想的传感器。例如,用于测量直升飞机机翼的气流压力分布,测试发动机进气口的动态畸变、叶栅的脉动压力和机翼的抖动等。在飞机喷气发动机中心压力的测量中,使用专门设计的硅压力传感器,其工作温度达500℃以上。在波音客机的大气数据测量系统中采用了精度高达0.05%的配套硅压力传感器。在尺寸缩小的风洞模型试验中,压阻式传感器能密集安装在风洞进口处和发动机进气管道模型中。单个传感器直径仅2.36毫米,固有频率高达300千赫,非线性和滞后均为全量程的±0.22%。在生物医学方面,压阻式传感器也是理想的检测工具。已制成扩散硅膜薄到10微米,外径仅0.5毫米的注射针型压阻式压力传感器和能测量心血管、颅内、尿道、子宫和眼球内压力的传感器。图3是一种用于测量脑压的传感器的结构图。压阻式传感器还有效地应用于爆炸压力和冲击波的测量、真空测量、监测和控制汽车发动机的性能以及诸如测量枪炮膛内压力、发射冲击波等兵器方面的测量。此外,在油井压力测量、随钻测向和测位地下密封电缆故障点的检测以及流量和液位测量等方面都广泛应用压阻式传感器。随着微电子技术和计算机的进一步发展,压阻式传感器的应用还将迅速发展。
C. 什么叫半桥整流,什么叫全桥整流
整流桥就是将整流管封在一个壳内里,分全桥和半桥。全桥是将连接好的桥式整流电路的四个二极管封在一起。
半桥是将桥式整流的两个二极管封在一起,用两个半桥可组成一个桥式整流电路,一个半桥也可以组成变压器带中心抽头的全波整流电路。
资料扩展:
1.二极管是最常用的电子元件之一,他最大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现在丰富多彩的电子信息世界的诞生。
2.既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实很简单只要用万用表打到电阻档测量一下正向电阻如果很小,反相电阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理以及基本电路,这样才能为以后的电子技术学习打下良好的基础。
D. 有关桥的资料
赵州桥,又名安济桥,也叫大石拱桥,座落在河北省赵县城南五里的清水河上。它不仅是中国第一座石拱桥,也是当今世界上第一座石拱桥。唐代文人赞美桥如"初云出月,长虹饮涧"。
这座桥建于隋朝公元605年至618年,由一名普通的石匠李春所建,距今已有1350多年的历史。在漫长的岁月中,虽然经过无数次洪水冲击、风吹雨打、冰雪风霜的侵蚀和8次地震的考验,却安然无恙,巍然挺立在清水河上。
李春设计的赵州桥,桥身长50.82米,宽9.60米,大拱的净跨度长37.37米,拱高7.23米。他考虑,为使桥面坡度小,将桥高与跨度呈1:5的比例,这样既便于行人来往,也便于车辆通行;拱顶高,又便于桥下行船。他又在大拱的两肩上,各做两个小拱,使得整个桥型显得格外均衡、对称,既便于雨季泄洪,又节省了建筑材料。其结构雄伟壮丽、奇巧多姿、布局合理,多为后人所效仿。李春设计的桥面坦直,共分三股,中间走车马,两旁走行人,不仅可使秩序井然,且又能防止交通事故的发生。可见,在1300多年前,在技术十分落后的情况下,一个普通石匠李春有这样高超的技术,实为难能可贵。
李春选用的石料和石料砌法技艺与众不同。他采用长方形石料,每块重约一吨,在1350多年前的隋朝,李春在没有起重机和吊车的情况下,运这么重的大石头是何等的艰辛。这充分显示了我国劳动人民的伟大智慧。可见李春付出了多大的心血和代价!
李春带领其他工匠,将石料各面部凿有细密的斜纹,使石块相互咬合扣紧。全桥由28道独立的石拱纵向并列组成。他想,这样可以使每道石拱圈各自独立负荷载重,又便利于修缮。为了加强各拱圈的连接,他又采用9道铁梁贯于拱背之上,接着用腰铁嵌入拱石之间,使桥能"奇巧固护,用于天下"。
最后,李春又组织能工巧匠,在桥面的两侧石栏杆上,刻有许多精美的古典雕刻艺术,图案细腻,刀法苍劲有力,雕刻灵变,各种鸟兽龙腾虎跃,欲飞若动,形象逼真,堪称隋唐时代雕刻艺术的佳作。这种拱上加拱、"敞肩拱"的新式桥型,这样的布局,采用这样的巨形跨度,构成这样的优美的造型,是李春在世界上的首创。在欧洲,14世纪才出现法国泰克河上的赛雷桥,但是,比中国赵洲桥晚了700多年,并且早已被洪水毁坏无存。所以,李春造的赵州桥是全世界桥梁建筑史上唯一尚存的时间最长的一座,在世界占有重要地位,是相当有价值的。这是中国人民的骄傲和自豪。
这座历史悠久、结构奇特、造型美观、居世榜首的赵州桥,凝聚了李春的汗水和心血。李春成为中国、乃至世界建筑史上第一位桥梁专家。
但是,关于李春的生平事迹却没有留下更多的记载。就连隋朝之后的唐朝人,也只有"制造奇特赵州桥的人是隋匠李春"等数语记载。在赵州桥建成100年以后的唐朝开元13年(公元726年)中书令张士贞在《安济桥铭》中简略提到:"赵州清水河石桥,隋匠李春之迹也,制造奇特,人不知其所为。"这说明,在封建社会里,劳动人民的创造发明,不知有多少被埋没了。
特别值得提出的是赵州桥的基础非常坚固。1350年来,两边桥基下沉水平只差5厘米,这说明李春桥址选择科学合理。赵州桥桥基,是建筑在清水河河床的白粗沙层上,既没有打桩,也没有其他石料,桥台仅用五层石料砌成,桥基很牢,结构简单。在1350年前,李春就敢用这样天然地基来承担大桥的全部重量,可见李春对工程学、力学、建筑学、水文、地质等都有深刻的理解。李春有这么多科学知识,无疑是他从劳动实践中获得和积累的。
赵州桥显示了我国古代劳动人民的伟大智慧,李春的名字也永垂史册。
E. 桥梁的历史发展
桥梁是道路的组成部分。从工程技术的角度来看,桥梁发展可分为古代、近代和现代三个时期。 人类在原始时代,跨越水道和峡谷,是利用自然倒下来的树木,自然形成的石梁或石拱,溪涧突出的石块,谷岸生长的藤萝等。人类有目的地伐木为桥或堆石、架石为桥始于何时,已难以考证。古巴比伦王国在公元前1800年(公元前19世纪)就建造了多跨的木桥。据史料记载,中国在周代(公元前11世纪~前256年)已建有梁桥和木浮桥,如公元前1134年左右,西周在渭水架有浮桥。,桥长达183米。古罗马在公元前621年建造了跨越台伯河的木桥,在公元前 481年架起了跨越赫勒斯旁海峡的浮船桥。古代美索不达米亚地区,在公元前 4世纪时建起挑出石拱桥(拱腹为台阶式)。
古代桥梁在17世纪以前,一般是用木、石材料建造的,并按建桥材料把桥分为石桥和木桥。
石桥的主要形式是石拱桥。据考证,中国在东汉时期(公元25~220年)就出现石拱桥,如出土的东汉画像砖,刻有拱桥图形。赵州桥(又名安济桥),建于公元605~617年,净跨径为37米,首创在主拱圈上加小腹拱的空腹式(敞肩式)拱。中国古代石拱桥拱圈和墩一般都比较薄,比较轻巧,如建于公元816~819年的宝带桥,全长317米,薄墩扁拱,结构精巧。
罗马时代,欧洲建造拱桥较多,早在公元前200~公元200年间就在罗马台伯河建造了8座石拱桥,其中建于公元前62年的法布里西奥石拱桥,桥有2孔,各孔跨径为24.4米。公元98年西班牙建造了阿尔桥,高达52米。此外,出现了许多石拱水道桥,如现存于法国的加尔德引水桥,建于公元前1世纪,桥分为3层,最下层为7孔,跨径为16~24米。罗马时代拱桥多为半圆拱,跨径小于25米,墩很宽,约为拱跨的三分之一.
罗马帝国灭亡后数百年,欧洲桥梁建筑进展不大。11世纪以后,尖拱技术由中东和埃及传到欧洲,欧洲开始出现尖拱桥,如法国在公元1178~1188年建成的阿维尼翁桥,为20孔跨径达34米尖拱桥。英国在公元1176~1209年建成的泰晤士河桥为19孔跨径约 7米尖拱桥。西班牙在13世纪建了不少拱桥,如托莱多的圣玛丁桥。拱桥除圆拱、割圆拱外,还有椭圆拱和坦拱。公元1542~1632年法国建造的皮埃尔桥为七孔不等跨椭圆拱,最大跨径约32米。当时椭圆拱曾盛行一时。1567~1569在佛罗伦萨的圣特里尼塔建了三跨坦拱桥,其矢高同跨度比为1∶7。11~17世纪建造的桥,有的在桥面两侧设商店,如意大利威尼斯的里亚尔托桥。
石梁桥是石桥的又一形式。中国陕西省西安附近的灞桥原为石梁桥,建于汉代,距今已有2000多年。公元11~12世纪南宋泉州地区先后建造了几十座较大型石梁桥,其中有洛阳桥、安平桥。安平桥(五里桥)原长2500米,362孔,现长2070米,332孔。英国达特穆尔现存的石板桥,有的已有2000多年。
木桥早期木桥多为梁桥,如秦代在渭水上建的渭桥,即为多跨梁式桥。木梁桥跨径不大,伸臂木桥可以加大跨径。中国 3世纪在甘肃安西与新疆吐鲁番交界处建有伸臂木桥,“长一百五十步”。公元405~418年在甘肃临夏附近河宽达40丈处建悬臂木桥,桥高达50丈。八字撑木桥和拱式撑架木桥亦可以加大跨径。16世纪意大利的巴萨诺桥为八字撑木桥。
木拱桥出现较早,公元104年在匈牙利多瑙河建成的特拉杨木拱桥,共有21孔,每孔跨径为36米。中国在河南开封修建的虹桥,净跨约为20米,亦为木拱桥,建于公元1032年。日本在岩国锦川河修建的锦带桥为五孔木拱桥,建于公元300年左右,是中国僧戴曼公独立禅师帮助修建的。
中国西南地区有用竹篾缆造的竹索桥。著名的竹索桥是四川灌县珠浦桥,桥为8孔,最大跨径约60米,总长330余米,建于宋代以前。
古代桥梁基础,在罗马时代开始采用围堰法施工,即打木板桩成围堰,抽水后在其中修筑桥梁基础和桥墩。1209年建成的英国泰晤士河拱桥,其基础就是用围堰法修筑,但是,那时只能用人工打桩和抽水,基础较浅。中国11世纪初,著名的洛阳桥在桥址江中先遍抛石块,其上养殖牡蛎二三年后胶固而成筏形基础,是一个创举。 18世纪铁的生产和铸造,为桥梁提供了新的建造材料。但铸铁抗冲击性能差,抗拉性能也低,易断裂,并非良好的造桥材料。19世纪50年代以后,随着酸性转炉炼钢和平炉炼钢技术的发展,钢材成为重要的造桥材料。钢的抗拉强度大,抗冲击性能好,尤其是19世纪70年代出现钢板和矩形轧制断面钢材,为桥梁的部件在厂内组装创造了条件,使钢材应用日益广泛。
18世纪初,发明了用石灰、粘土、赤铁矿混合煅烧而成的水泥。19世纪50年代,开始采用在混凝土中放置钢筋以弥补水泥抗拉性能差的缺点。此后,于19世纪70年代建成了钢筋混凝土桥。
近代桥梁建造,促进了桥梁科学理论的兴起和发展。1857年由圣沃南在前人对拱的理论、静力学和材料力学研究的基础上,提出了较完整的梁理论和扭转理论。这个时期连续梁和悬臂梁的理论也建立起来。桥梁桁架分析(如华伦桁架和豪氏桁架的分析方法)也得到解决。19世纪70年代后经德国人K.库尔曼、英国人W.J.M.兰金和J.C.麦克斯韦等人的努力,结构力学获得很大的发展,能够对桥梁各构件在荷载作用下发生的应力进行分析。这些理论的发展,推动了桁架、连续梁和悬臂梁的发展。19世纪末,弹性拱理论已较完善,促进了拱桥发展。20世纪20年代土力学的兴起,推动了桥梁基础的理论研究。
近代桥梁按建桥材料划分,除木桥、石桥外,还有铁桥、钢桥、钢筋混凝土桥。
16世纪前已有木桁架。1750年在瑞士建成拱和桁架组合的木桥多座,如赖谢瑙桥,跨径为73米。在18世纪中叶至19世纪中叶,美国建造了不少木桥,如1785年在佛蒙特州贝洛兹福尔斯的康涅狄格河建造的第一座木桁架桥,桥共二跨,各长55米;1812年在费城斯库尔基尔河建造的拱和桁架组合木桥,跨径达104米。桁架桥省掉拱和斜撑构,简化了结构,因而被广泛应用。由于桁架理论的发展,各种形式桁架木桥相继出现,如普拉特型、豪氏型、汤氏型等。由于木结构桥用铁件量很多,不如全用铁经济,因此,19世纪后期木桥逐渐为钢铁桥所代替。
铁桥包括铸铁桥和锻铁桥。铸铁性脆,宜于受压,不宜受拉,适宜作拱桥建造材料。世界上第一座铸铁桥是英国科尔布鲁克代尔厂所造的塞文河桥,建于1779年,为半圆拱,由五片拱肋组成,跨径30.7米。锻铁抗拉性能较铸铁好,19世纪中叶跨径大于60~70米的公路桥都采用锻铁链吊桥。铁路因吊桥刚度不足而采用桁桥,如1845~1850年英国建造布列坦尼亚双线铁路桥,为箱型锻铁梁桥。19世纪中以后,相继建立起梁的定理和结构分析理论,推动了桁架桥的发展,并出现多种形式的桁梁。但那时对桥梁抗风的认识不足,桥梁一般没有采取防风措施。1879年12月大风吹倒才建成18个月的阳斯的泰湾铁路锻铁桥,就是由于桥梁没有设置横向连续抗风构。
中国于1705年修建了四川大渡河泸定铁链吊桥。桥长100米,宽2.8米,至今仍在使用。欧洲第一座铁链吊桥是英国的蒂斯河桥,建于1741年,跨径20米,宽0.63米。1820~1826年,英国在威尔士北部梅奈海峡修建一座中孔长 177米用锻铁眼杆的吊桥。这座桥由于缺乏加劲梁或抗风构,于1940年重建。世界上第一座不用铁链而用铁索建造的吊桥,是瑞士的弗里堡桥,建于1830~1834年、桥的跨径为 233米。这座桥用2000根铁丝就地放线,悬在塔上,锚固于深18米的锚碇坑中。
1855年,美国建成尼亚加拉瀑布公路铁路两用桥这座桥是采用锻铁索和加劲梁的吊桥,跨径为250米。1869~1883年,美国建成纽约布鲁克林吊桥,跨度为283+486+283米。这些桥的建造,提供了用加劲桁来减弱震动的经验。此后,美国建造的长跨吊桥,均用加劲梁来增大刚度,如1937年建成的旧金山金门桥(主孔长为1280米,边孔为344米,塔高为228米),以及同年建成的旧金山奥克兰海湾桥(主孔长为704米,边孔为354米,塔高为152米),都是采用加劲梁的吊桥。
1940年,美国建成的华盛顿州塔科玛海峡桥,桥的主跨为853米,边孔为335米,加劲梁高为2.74米,桥宽为11.9米。这座桥于同年11月7日,在风速仅为 67.5公里/小时的情况下,中孔及边孔便相继被风吹垮。这一事件,促使人们研究空气动力学同桥梁稳定性的关系。
钢桥美国密苏里州圣路易市密西西比河的伊兹桥,建于1867~1874年,是早期建造的公路铁路两用无铰钢桁拱桥,跨径为153+158+153米。这座桥架设时采用悬臂安装的新工艺,拱肋从墩两侧悬出,由墩上临时木排架的吊索拉住,逐节拼接,最后在跨中将两半拱连接。基础用气压沉箱下沉33米到岩石层。气压沉箱因没有安全措施,发生119起严重沉箱病,14人死亡。19世纪末弹性拱理论已逐步完善,促进了20世纪20~30年代修建较大跨钢拱桥,较著名的有:纽约的岳门桥,建成于1917年,跨径305米;纽约贝永桥,建成于1931年,跨径504米;澳大利亚悉尼港桥,建成于1932年,跨径503米。3座桥均为双铰钢桁拱。
19世纪中期出现了根据力学设计的悬臂梁。英国人根据中国西藏木悬臂桥式,提出锚跨、悬臂和悬跨三部分的组合设想,并于1882~1890年在英国爱丁堡福斯河口建造了铁路悬臂梁桥。这座桥共有6个悬臂,悬臂长为206米,悬跨长为107米,主跨长为519米。20纪初期,悬臂梁桥曾风行一时,如1901~1909年美国建造的纽约昆斯堡桥,是一座中间锚跨为190米、悬臂为 150和180米、无悬跨、由铰联结悬臂、主跨为300米和360米的悬臂梁桥。1900~1917年建造的加拿大魁北克桥也是悬臂钢桥。1933年建成的丹麦小海峡桥为五孔悬臂梁公路铁路两用桥,跨径为137.50+165+200+165+137.5米。
1896年比利时工程师菲伦代尔发明了空腹桁架桥。比利时曾经造了几座铆接和电焊的空腹桁架桥。
钢筋混凝土桥
1875~1877年,法国园艺家莫尼埃建造了一座人行钢筋混凝土桥,跨径16米,宽4米。1890年,德国不莱梅工业展览会上展出了一座跨径40米的人行钢筋混凝土拱桥。1898年,修建了沙泰尔罗钢筋混凝土拱桥。这座桥是三铰拱,跨径52米。1905年,瑞士建成塔瓦纳萨桥,跨径51米,是一座箱形三铰拱桥,矢高5.5米。1928年,英国在贝里克的罗亚尔特威德建成 4孔钢筋混凝土拱桥,最大跨径为110米。1934年,瑞典建成跨径为181米、矢高为26.2米的特拉贝里拱桥;1943年又建成跨径为264米、矢高近40米的桑德拱桥。
桥梁基础施工,在18世纪开始应用井筒,英国在修威斯敏斯特拱桥时,木沉井浮运到桥址后,先用石料装载将其下沉,而后修基础及墩。1851年,英国在肯特郡的罗切斯特处修建梅德韦桥时,首次采用压缩空气沉箱。1855~1859年,在康沃尔郡的萨尔塔什修建罗亚尔艾伯特桥时,采用直径11米的锻铁筒,在筒下设压缩空气沉箱。1867年,美国建造伊兹河桥,也用压缩空气沉箱修建基础。压缩空气沉箱法施工,工人在压缩空气条件下工作,若工作时间长,或从压缩气箱中未经减压室骤然出来,或减压过快,易引起沉箱病。
1845年以后,蒸汽打桩机开始用于桥梁基础施工。 20世纪30年代,预应力混凝土和高强度钢材相继出现,材料塑性理论和极限理论的研究,桥梁振动的研究和空气动力学的研究,以及土力学的研究等获得了重大进展。从而,为节约桥梁建筑材料,减轻桥重,预计基础下沉深度和确定其承载力提供了科学的依据。现代桥梁按建桥材料可分为预应力钢筋混凝土桥、钢筋混凝土桥和钢桥。
预应力钢筋混凝土桥1928年,法国弗雷西内工程师经过20年的研究,用高强钢丝和混凝土制成预应力钢筋混凝土。这种材料,克服了钢筋混凝土易产生裂纹的缺点,使桥梁可以用悬臂安装法、顶推法施工。随着高强钢丝和高强混凝土的不断发展,预应力钢筋混凝土桥的结构不断改进,跨度不断提高。
预应力钢筋混凝土桥有简支梁桥、连续梁桥、悬臂梁桥、拱桥、桁架桥、刚架桥、斜拉桥等桥型。简支梁桥的跨径多在50米以下。连续梁桥如1966年建成的法国奥莱隆桥,是一座预应力混凝土连续梁高架桥,共有26孔,每孔跨径为79米。1982年建成的美国休斯敦船槽桥,是一座中跨229米的预应力混凝土连续梁高架桥,用平衡悬臂法施工。悬臂梁桥如1964年联邦德国在柯布伦茨建成的本多夫桥,其主跨为209米;1976年建成的日本滨名桥,主跨240米;中国1980年完工的重庆长江桥,主跨174米。桁架桥如1960年建成的联邦德国芒法尔河谷桥,跨径为 90+108+90米,是世界上第一座预应力混凝土桁架桥。1966年苏联建成一座预应力混凝土桁架式连续桥,跨径为106+3×166+106米,用浮运法施工刚架桥如1957年建成的法国图卢兹的圣米歇尔桥,是一座160米、5~65米的预应力混凝土刚架桥;1974年建成的法国博诺姆桥,主跨径为186.25米,是目前最大跨径预应力混凝土刚架桥。预应力钢筋混凝土吊桥是将预应力梁中的预应力钢丝索作为悬索,并同加劲梁构成自锚式体系,1963年建成的比利时根特的梅勒尔贝克桥和玛丽亚凯克桥,主跨径分别为 56米和100米,就是预应力钢筋混凝土吊桥。斜拉桥如1962年建成委内瑞拉的马拉开波湖桥。这座桥为5孔235米连续梁,由悬在 A形塔的预应力斜拉索将悬臂梁吊起。斜拉桥的梁是悬在索形成的多弹性支承上,能减少梁高,且能提高桥的抗风和抗扭转震动性能,并可利用拉索安装主梁,有利于跨越大河,因而应用广泛。预应力混凝土斜拉桥如1971年利比亚建造的瓦迪库夫桥,主跨径282米;1978年美国建造的华盛顿州哥伦比亚河帕斯科-肯纳威克桥,主跨299米;1977年法国建造的塞纳河布罗东纳桥,主跨320米。中国已建成十多座预应力混凝土斜拉桥,其中1982年建成的山东济南黄河桥主跨为220米。
钢筋混凝土桥二次世界大战以后,世界上修建了多座较大跨径的钢筋混凝土拱桥,如1963年通车的葡萄牙亚拉达拱桥,跨径为270米,矢高50米;1964年完工的澳大利亚悉尼港的格莱兹维尔桥,跨径305米。
中国1964年创造钢筋混凝土双曲拱桥。桥由拱肋和拱波组成,纵向和横向均有曲度,横向也用拱波形式。拱肋和拱波分段预制,因此可用轻型吊装设施安装。这样,在缺乏重型运输工具和重型吊装机具下,也可以修建较大跨径拱桥。第一座试验双曲拱桥,建于中国江苏无锡,跨径为9米。此后,1972年建成湖南长沙湘江大桥,是一座16孔双曲拱桥,大孔跨径为60米,小孔跨径为50米,总长1250米。
钢筋混凝土桁架拱桥是拱和桁架组合而成的结构,其用料少,重量轻,施工简易。
钢桥二次世界大战后,随着强度高、韧性好、抗疲劳和耐腐蚀性能好的钢材的出现,以及用焊接平钢板和用角钢、板钢材等加劲所形成轻而高强的正交异性板桥面的出现,高强度螺栓的应用等,钢桥有很大发展。
钢板梁和箱形钢梁同混凝土相结合的桥型,以及把正交异性板桥面同箱形钢梁相结合的桥型,在大、中跨径的桥梁上广泛运用。1951年联邦德国建成的杜塞尔多夫至诺伊斯桥,是一座正交异性板桥面箱形梁,跨径206米。1957年联邦德国建成的杜塞尔多夫北桥,是座6孔72米钢板梁结交梁桥。1957年南斯拉夫建成的贝尔格莱德的萨瓦河桥,是一座钢板梁桥,跨径为75+261+75米,为倒U形梁。1973年法国建成的马蒂格斜腿刚架桥,主跨为300米。1972年意大利建成的斯法拉沙桥,跨径达376米,是目前世界上跨径最大的钢斜腿刚架桥。1966年美国完工的俄勒冈州阿斯托里亚桥,是一座连续钢桁架桥,跨径达376米。1966年日本建成的大门桥,是一座连续钢桁架桥,跨径达300米。1968年中国建成的南京长江桥,是一座公路铁路两用的连续钢桁架桥,正桥为128+9×160+128米,全桥长6公里。1972年日本建成的大阪港的港大桥为悬臂梁钢桥,桥长980米,由235米锚孔和162米悬臂、186米悬孔所组成1964年美国建成的纽约维拉扎诺吊桥,主孔1298米,吊塔高210米。1966年英国建成的塞文吊桥,主孔985米。这座桥根据风洞试验,首次采用梭形正交异性板箱形加劲梁,梁高只有3.05米。1980年英国完工的恒比尔吊桥,主跨为1410米,也用梭形正交异性板箱形加劲梁,梁高只有3米。
20世纪60年代以后,钢斜拉桥发展起来。第一座钢斜拉桥是瑞典建成的斯特伦松德海峡桥,建于1956年,跨径为 74.7+182.6+74.7米。这座桥的斜拉索在塔左右各两根,由钢筋混凝土板和焊接钢板梁组合作为纵梁1959年联邦德国建成的科隆钢斜拉桥,主跨为334米;1971年英国建成的厄斯金钢斜拉桥,主跨305米;1975年法国建成的圣纳泽尔桥,主跨404米。这座桥的拉索采用密束布置,使节间长度减少,梁高减低,梁高仅3.38米。通过对钢斜拉桥抗风抗震性能的改进,其跨径正在逐渐增大。
钢桥的基础多用大直径桩或薄壁井筒建造。
F. 茅以升发明了什么
茅以升
茅以升,字唐臣。1896年1月9日出生于江苏省丹徒县(今镇江市)。先世经商,祖父茅谦为举人,思想进步,倾向革命,曾创办《南洋官报》,是镇江市的名士。茅以升出生不久,全家迁居南京。
茅以升6岁读私塾,7岁就读于1903年在南京创办的国内第一所新型小学——思益学堂,1905年入江南商业学堂,1911年考入唐山路矿学堂。1912年孙中山先生在唐山路矿学堂讲演时,指出开矿山、修铁路的重要性,坚定了茅以升走“科学救国”、“工程建国”的道路,他从此更加奋发读书,把建设祖国视为己任。每次考试,成绩都是全班第一,5年各科总平均92.5分,为该学堂历史上所罕见。1916年茅以升通过了美国康奈尔大学研究生入学考试,其成绩之优秀,使该校教授们大为惊讶和赞叹。一年后的毕业典礼上校长当场宣布:今后凡是唐山工业专门学校(原唐山路矿学堂)的研究生一律免试注册,茅以升为母校在国外争得极大声誉。1917年,获硕士学位。经导师贾柯贝(H·S·Jacoby)介绍,在匹兹堡桥梁公司实习,同时又利用业余时间到卡利基理工学院夜校攻读工学博士学位。1919年成为该校首名工学博士。博士论文《桥梁桁架次应力》的创见被称为“茅式定律”,并荣获康奈尔大学优秀研究生“斐蒂士”金质研究奖章。1979年应邀访问卡利基—梅隆大学母校时,校长授予他“卓越校友”奖章,以表彰他对世界工程技术方面作出的贡献。
1920年,茅以升应邀回母校任教授,时年24岁,是国内最年轻的工科教授。从此,开始了前后30余年的工科教育事业。次年,任交通大学唐山学校副主任(副院长)。1922年7月,他受聘为东南大学教授。1923年,该校成立工科,任第一任工科主任,1924年,东南大学工科与河海工程专门学校合并,成立河海工科大学,茅以升任首届校长。1926年,任北洋大学教授。1928年,任北平大学第二工学院(即北洋工学院)院长。1930年,任江苏省水利局长,主持规划象山新港。1932年,又回北洋大学任教。他在任校长期间,对校务管理、教学体制,课程设施、教学设备等,都作过重大改进,使学校出现生机勃勃、欣欣向荣的局面,深受师生的拥护与爱戴。
茅以升五次出任唐山交通大学校长,始终关心母校兴衰,为母校赢得了荣誉和功绩。1991年,西南交通大学(文化大革命以后唐山铁道学院迁四川省易名西南交通大学)树茅以升铜像永志纪念。
茅以升开创了“学生考先生”的启发式教学方法,终身致力于教育改革,发表了《工科教育之研究》等20余篇论著,倡导“先习后学,边习边学”,理论结合实际的教育制度。
茅以升从选择桥梁专业时起,就把培养桥梁建设人才和在祖国江河上修建桥梁视为自己的终身目标。1933年,他辞去舒适的教授工作,接受浙江省的邀请,担任钱塘江桥工委员会主任委员、钱塘江桥工程处处长职务。茅以升用不到两年半的时间,于1937年11月,在极其复杂的水文地质条件下,克服重重困难,建成了钱塘江大桥,打破了外国人垄断中国近代化大桥设计和建造的局面,这是中国桥梁建设史上的一项重大成就,也是中国桥梁史上一个里程碑。因建桥功绩,1941年,中国工程师学会授予茅以升荣誉奖章。
1942年,他赴贵阳任桥梁设计工程处处长,筹备中国桥梁公司。着眼未来,他将钱塘江桥工处的同仁和有志深造的工程技术人员,吸收到桥梁公司,培养他们成为桥梁建设的技术骨干。
茅以升深知科学技术进步对于国家建设的重要性,1950年,他又欣然接受铁道技术研究所所长(后为院长)的职务。这时他虽已年过半百,仍以过人的精力,不辞辛劳,开始了铁道科学研究院的创业。经32年的辛勤耕耘,该院已发展成专业齐全,实力雄厚的综合研究机构,为铁路科技发展做出了突出贡献。他是铁道科学研究院的奠基人,是铁道科研事业的开拓者,在科研领导工作中一贯主张理论结合实际,强调继续教育,倡导专题经济核算,支持新生事物。
茅以升一生勤奋学习、不断研究创新。结合钱塘江桥的设计与施工,他与工程师们共同研究“流沙与冲刷的关系”、“如何将木桩头深深埋入江底”、“倾斜岩层上的沉箱如何稳定”、“合金、铬钢杆件的性质”等,研究力学中的基本概念和古代桥梁等问题。在武汉长江大桥建设中和人民大会堂的结构设计和审定中,他的技术、经验和智慧都发挥了关键性的作用。“文化大革命”期间,一切工作均无法正常进行,他以古稀之年仍然孜孜不倦的学习和研究。这期间,他应大桥局总工程师之请,研究桥梁振动问题,解除了人们对武汉长江大桥在大量群众步行过桥,桥身晃动所产生的困惑。
茅以升是最早从事科普事业的科学家之一。1950年,中华全国科学技术普及协会成立,他当选为副主席。他是最勤奋的科普作家,在他发表的200多篇论著中,有关科普工作的论著和科普文章约占1/3。他的《没有不能造的桥》一文,在1981年荣获全国新长征科普创作一等奖。
为加强国际科技交流,提高中国的国际威望,他曾先后率团访问捷克、苏联、意大利、瑞士、法国、葡萄牙、英国、瑞典、日本、美国,并作学术报告。他在华侨知识分子中从事大统一、大团结工作,号召两岸科技工作者为祖国统一“大桥”各修一座“引桥”,使海外华人、港台同胞深受鼓舞。
他积极参加人民政权的建设,先后担任全国人大代表、常委,1984年当选为全国政协副主席。历任国务院科技规划委员会委员、中国科学院技术科学部副主任、中国科学技术协会副主席、全国科普协会副主席、中华全国自然科学专门学会联合会北京分会主任委员、北京市科协主任委员、中国科技报研究会理事长。他是中国土木工程学会的主要创建者,任第一、二、三届理事会理事长和第四、五届理事会名誉理事长。主持成立了土力学及基础工程学术委员会,任主任委员,该会经茅以升与太沙基教授联系,被国际土协接受为团体会员,为我国土力学界在国际社会中取得了应有的地位。
茅以升积极致力于党的爱国统一战线事业,1952年,他参加九三学社,后任中央副主席。为密切党和科技工作者的联系和九三学社的进步与发展,做出了重要贡献。茅以升早就立志为共产主义事业奋斗终身,由于党的统一战线工作的需要,直到1987年,党组织才接受他的申请,批准他为中国共产党党员,92岁高龄的茅以升终于实现了多年的夙愿。
他终身奋斗、追求,正如他总结自己的一生所说,人生征途“崎岖多于平坦,忽深谷,忽洪涛,幸赖桥梁以渡。桥何名欤?曰奋斗。”他终身坚持实事求是的科学精神,治学严谨,善于独立思考,勇于开拓创新;他谦虚谨慎,平易近人,严于律己,宽以待人;他数十年如一日,艰苦奋斗,呕心沥血,把毕业精力、知识和智慧毫无保留地奉献给了祖国的教育、科技和桥梁建设事业,赢得了广大知识分子的敬佩和爱戴。他的崇高形象永远是中国科技工作者的楷模。
中国近代桥梁事业的先驱
1933年3月,浙江省决定在钱塘江上兴建大桥,以贯通浙江省铁路、公路交通。浙江省建设厅长曾养甫、浙赣铁路局长杜镇远和浙江公路局长陈体诚一致推举茅以升担此重任。消息传来,他非常兴奋。尽管面临筹款能否成功,面临能否打破当时大一些的桥梁都是“洋人”修建的局面,能否击败“洋人”的竞争,以及在险恶大江上造桥能否胜任等尖锐复杂的问题,他还是鼓起勇气,知难而上,开始了对钱塘江大桥从筹办、设计、建造、炸毁、直到修复的领导工作。
茅以升当时在北洋大学任教。他两下杭州调查研究钱塘江建桥的可行性。钱塘江上水、风、土都不比寻常。上游山洪暴发时,水流湍急,下游怒潮倒灌时,波涛险恶,如果上下同时并发,或遇到台风,江水翻腾激荡,势不可挡。江底流沙深达40米以上,受水流冲刷,变迁莫测,突然刷深的最大变化可达10米以上。茅以升仔细研究分析了钱塘江的水文、气象和地质资料,经过调查考虑之后,结论是虽然难度极大,但“在有适当的人力、物力条件下,从科学方面看,钱塘江造桥是可以成功的”。他以无比的勇气和信心,要在钱塘江上施展抱负,为国争光。
茅以升白手起家,就任“钱塘江桥工委员会”主任委员,开始筹建工作,拟成建桥计划书。翌年,浙江省政府成立“钱塘江桥工程处”,茅以升任处长,他邀请罗英任总工程师,延聘了4位工程师,吸收了29位刚从大学工科毕业不久的青年,组成了桥工处的技术队伍。
在此以前,浙江省交通厅已清铁道部顾问美国桥梁专家华德尔提出钱塘江桥工程设计方案。经研究认为,华德尔方案全桥长1872米,正桥29孔,公铁两线路平列,孔径小,墩子多,水上工程量太大,不适合江水与河床地质条件,需758万元(银元),造价太高。茅以升独立思考,自行设计出6个方案进行比较。在评选工程设计方案时,茅以升的设计方案以其经济合理性一举夺标。
中选方案桥址选在闸口六和塔旁。其优点是地质较好;江面较窄,再经堤岸整治,约束江流,使江面宽度缩为1000米;主流稳定,建桥50多年来,通航孔道不变。大桥全长1453米,正桥长1072米,由16孔跨度为65.84米简支钢桁梁组成,钢梁选用铬铜合金钢,强度高,重量轻,抗锈蚀。北岸引桥3孔,南岸引桥1孔,都是用50米的钢拱梁和钢筋混凝土框架及平台组成。全桥方圆配合,色调稠和,主次分明,浑然一体。全桥设计方案明显优于华德尔方案的特点有:全桥长度减少;钢梁自重减轻;采用双层结构,桥墩长度减去约一半;墩距加大到67米,减少桥墩数量,水下工程量锐减,从而工期缩短,工程造价大幅度下降;采用等跨度梁,遭破坏时便于修复。全桥造价(决算)仅531.64万元(法币)。
在施工上,采取了因地制宜结合实际的措施,如利用钱塘江的水来克服钱塘江的流沙,利用潮汐涨落浮运架梁等。在施工组织上,采用了“上下并进,一气呵成”的新办法,有效地组织五家承包公司,基础、桥墩、钢梁等工程同时进行,只要两个相邻墩子完工,即可架梁,从而保证了在困难丛生的情况下,工程得以提前完成。
在施工中他克服困难,不断改进施工技术与创新,例如,沉箱下水浮运问题,在修建船坞、滑道失败后,成功地采用了水平轨道运输;沉箱浮运就位后,因洪水猛涨、潮水激荡,多次发生锚走绳断,冲走沉箱事故,后改用10吨混凝土大锚、并用高压射水将重锚埋入泥沙,才使沉箱得以定位;为使长30米的木桩桩顶入土10—15米而设计专用送桩;采用独特的射水打桩法,使原来每24小时打桩1—2根,增加到20根以上;在墩位处沉放柴排和石笼,防止沉箱移动和倾斜;此外,还设计制造了不少特殊工具与设备,如特制打桩船、送桩、沉箱起吊设备,钢梁浮运专用托架等。
1937年抗日战争开始,大桥处于关系国家安危的战略地位,茅以升决定组织赶工,他几乎每天都下到桥基气压沉箱内,与员工研究措施。经全体员工努力奋战,于9月26日通了火车,宣告大桥建成。从1935年4月6日动工起,历时不到两年半。不幸的是,战局恶化,于同年12月23日茅以升不得不挥泪亲自参与将桥炸毁。直至1953年茅以升亲临主持大桥修复工程,才使其得到新生。
中华人民共和国建立40多年来,这座大桥始终是南北交通的枢纽,担负着繁重的运输任务,为祖国建设事业作出巨大贡献。茅以升始终关心大桥的运营、养护、维修情况,并于1984年视察运行近50年的大桥后,就另建第二座钱塘江桥向中央提出可行性建议。
中国铁路桥梁史这样评价钱塘江桥:“20世纪30年代,在自然条件比较复杂的钱塘江上,以当时尚不发达的施工技术,用不到3年时间,由我国工程师自行设计并监造,建成了一座基础深达47.8米的双层公铁两用桥,这是旧中国铁路桥梁建设史上的一项重大成就,也是中国铁路桥梁史上的一个里程碑。”
培养造就了一批桥梁工程科技人才
茅以升在修建钱塘江桥时已下决心,要使已组成的桥梁技术班子,在钱塘江桥建设中得到锻炼,成长壮大,让他们在祖国的江河上修建各式各样的大桥。为此,他把钱塘江大桥工地办成了训练培养桥梁技术人才的学校。为了给国家培养更多未来的建桥队伍,在大桥施工期间,每年暑假前还致函国内各工科院校,请他们选派三年级大学生80人来工地参观实习两个月,每天上课12小时,其余时间分派至各工点实习。桥工处不仅供应食宿,热情接待,还指定专人讲解、辅导。茅以升本人也在百忙中抽时间为他们讲课。这一创举,受到各大学的热烈欢迎。
钱塘江桥工处在完成本身任务之处,为了锻炼队伍,还接受一些其他桥的设计任务,如广州“六二三”桥;福建省峡兜乌龙江桥的测量钻探、初步设计;1936年,为筹建武汉长江大桥,进行了钻探和桥址比较工作,并作出了建桥计划书。抗日战争胜利后,又提出“武汉大桥计划草案”。这些工作,虽因经费无着落而无结果,但锻炼了人才,为以后的建桥者提供了有益的资料。
1941年唐山交大恢复正常教学以后,他又一次虚席让贤,自己去开拓新的工作领域,就任交通部桥梁设计工程处处长,开始谋划抗战胜利后修复铁路、修建桥梁等工作。抗日战争时期,生活艰苦,很多有志造桥的工程技术人员,谋生无路。他筹建了桥梁公司,把这些技术人员和原钱塘江桥工处的部分员工,集中到桥梁公司,当时,虽然没有桥梁设计施工工程,就组织他们学习,研究桥梁的设计和施工,布置桥梁标准设计系列,并搜集参考资料,为武汉长江大桥、上海越江工程及修复遭破坏桥梁等工程准备方案。1946年,茅以升代表上海“越江工程委员会”提出了《上海市越江工程研究报告》,接着又承担了部分桥梁修复工程,其中包括承办钱塘江桥正式修复的设计与施工。尽管这些工作无利可图,却培养了掌握新技术的人才,对祖国的建设有十分重大的战略意义。
茅以升不顾责难,派人经营商业,以其收入作为这批职员的生活费用。1944年,桥梁公司经济十分困难濒于倒闭,茅以升筹划未来,从培养人才着眼,还毅然送大量人员去美国实习。对出国人员的家属,照支工资,直到回国。这批留美人员各有专攻,收获很大,归国后,大都成为祖国大型桥梁建设的前驱和骨干,在祖国建设中发挥了重要作用。
致力于工科教育,倡导教育革命精心培育科技人才
1920年起,前后约30余年,茅以升在教育战线上,倾注了不少心血。他曾出任东南大学、河海工程专门学校、北洋大学、唐山工学院等多座大学校长,立基创业,功绩显著,是知名的教授和杰出的教育家。
茅以升在各校任职期间,对校务管理、学校体制、课程设置、教学设备、科学研究、学术活动、教学作风、学生工作和校园管理等,都亲自过问,并作了重大改进。
他在教学工作中,治学严谨,实事求是,素以认真、严格、诲人不倦著称。授课时讲求概念清楚,逻辑严密,注意深入浅出,根据学生的知识水平,用事例解释理论概念,力求讲清每一理论原则的实践意义,使学生透彻领悟,融会贯通。课外与学生交流,尽心辅导,并征求意见,以改进教学。
他不断研究和改进教学方法。他认为教师的责任不仅是授业,更重要的是培养学生自力学习、自力研究的习惯和能力。他反对把学生当作“受体”的灌注式教学,实行启发式教学,使学生成为“主体”。他以自己的治学经验“博闻强记,多思多问,取法乎上,持之以恒”要求学生。他独特的教学方法是通过“考先生来考学生”。每次上课的前十分钟,先指定一名学生,让他就前次学习课程提出一个疑难问题,从学生所提问题的深浅,可知他对课程是否作过深入的钻研和探讨及领会程度。问题提得好,或教师都不能当堂解答的提问者,给满分。如提不出问题,则由另一学生提问,前一学生作答。此法推行后,学生由被动学习变主动学习,学习思想极为活跃,学业大进,深受学生欢迎。同时,学生所提问题,能使教师受到启发,起到教学相长的作用。著名教育家陶行知先生曾亲自带领教育科学生来听茅以升的课,对他的教学方法评价很高,认为“这的确是个崭新的教学上的革命,是开创了我国教育的一个先例,值得推广”。
茅以升认为旧教育的弊病是理论与实际脱节,通才与专才脱节,科学与生产脱节,片面追求理论教育的“质”,严重忽视培养人才的“量”。他于1926年在上海交大30周年纪念刊和《工程》杂志上发表《工程教育之研究》的论文,批判理论脱离实际的欧美教育制度,呼吁建立适合我国现状的教育制度。主张“先授工程科目,次及理论科学,将现行程序完全倒置”。并且从学制、招生、课程、考核、教授、实习、服务等方面,提出大破大立的改革方案。中华人民共和国成立后,他认为为新社会培育人才,更应进行教育革命。1949—1950年,他撰写专论《教育的解放》、《习而学的工程教育》等,强调按照人的认识规律,由感性知识入手,进而传授理性知识,先让学生“知其然”,而后逐渐达到“知其所以然”,从而把理论与实际、科学与生产、读书与劳动、学校与现场紧密结合起来。1962年,他将自己的教育思想系统整理写成《建设一个为社会主义服务的教育制度》,在全国人大常委会小组会上发言,受到周总理高度评价。
此外,他还强调要努力提高全民族的文化和科技水平,投身科普工作,抓业余教育和科技人员的继续教育。他重视教育、重视培养人才,几十年如一日,锲而不舍,呕心沥血,直至生命的最后一刻。
中国土力学的开拓者
30年代,国际上对土力学的研究还刚刚开始。茅以升在钱塘江大桥施工中遇到桩打不下和沉井下沉发生歪斜等现象,经过对钱塘江流沙的研究,他感到土力学是当前迫切需要研究的课题,立即开始刻苦钻研,很快掌握了这门新兴学科。他对库伦土压力经典理论中所存在的问题有独到的见解,经常与国际土力学及基础工程学会的创始人太沙基教授通信讨论研究。1938-1941年间,他在唐山工学院开课讲授,是我国第一个讲授土力学课的人。同时向全校师生作“Stresses on Retaining Wall”等学术报告。1940年,与其兄、弟捐款,请中国工程师学会设“石渠奖金”,专奖研究土力学的优秀会员。1948年,在上海发起“中国土力学及基础工程学会”。中华人民共和国建立后,基本建设工作全面铺开,面临许多复杂的地基基础问题,急需土力学与基础工程方面的人才与技术,这时,茅以升认为应尽一切努力普及并提高土力学知识,他于1952年在中国土木工程学会组织成立了土力学小组,举办土力学学术交流和普及讲座。在他的倡仪下,这种土力学学术活动逐渐传播到天津、上海、南京各地。1957年,茅以升主持成立了全国土力学及基础工程学术委员会,并成为国际土协的团体会员。同年,他代表我国土力学学会参加了在伦敦举行的第四届国际土力学及基础工程学术会议,为我国土力学界在国际上取得了应有的地位。几十年来,我国土力学与基础工程科学技术已有显著的提高与发展,这一切与茅以升的长期领导和关怀是分不开的,他对我国这一科学技术的开拓、发展有着不可磨灭的功绩。
铁道科学研究院的奠基人铁道科技事业的开拓者
茅以升担任铁道科学研究院院长工作,长达32年之久。1950年,他被任命为铁道技术研究所(后改为研究院)所长时,全所只有60人,4个研究组,只能从事一些试验工作。他不计较单位大小,职位高低,他考虑的是,要发展铁路运输事业,必须发展铁道科学技术,铁道科学是一门内容极其复杂而理论又比较高深的综合性的“技术科学”,这是一个需要开拓和发展的领域。他一方面亲自主持院务工作,另一方面以研究院为基地,研究科学管理、科研方针,中国铁路建设与铁路科研的关系,进一步发展他的教育、生产、科研相结合的思想。这一期间,他结合在科研管理上遇到的问题,先后发表了20多篇论文和文章,如《科学研究的组织和体制问题》、《我国铁路科学研究的远景》等,阐述了科学与生产之间的关系,基础科学、技术科学(应用科学)、生产技术之间的关系。他认为“在基础科学与生产专业之间,技术科学是桥梁”,产业部门的研究机构的任务是使技术经验理论化,学科理论实用化。“生产技术是技术科学的实践,实验技术则是基础科学与技术科学的实践。对生产而言,实验技术是生产技术的前导,有时生产技术亦有实验技术的性质,这就是‘中间工厂’中的生产”,指出生产技术需要综合的技术科学中学科的综合理论。
首先,他肯定了铁道科学研究院主要从事技术科学研究,他明确提出:“铁道科研工作当然应该为铁道运输服务,也就是在提高铁路运输效率的要求上,负有解决技术问题的主要责任”。他针对铁路专业技术综合性的特点,强调铁道科学研究院也要办成铁路专业齐全的综合性研究机构。
茅以升的办院思想,始终贯穿着理论结合实际,科研为生产服务这一条红线。他参加主持制订的1956、1963、1977年铁道科学研究工作远景规划,都是“针对运输生产建设的技术关键,选定铁路发展中的重大、综合、长远、理论方面的课题,引进、消化国外先进技术,解决实现铁路现代化的各种科学技术问题。”
1956年编制铁道科技发展规划时,他站在全路科技发展的高度,强调要把铁道系统中的全部科学力量组成全国性的分门分类大小成套的科学工作网,把铁道科学研究院作为整个铁道科研力量,全国科研工作网的一个组成部分和核心来考虑。
他主张“生产中来,生产中去,科学为生产服务”,科研立题要结合运输生产需要,而且强调要尽快把科研成果应用到生产上去,要求“加强发展研究,安排好中间试验,及时组织科研成果的审查、鉴定和推广、形成运输生产力”。他主张对课题进行经济核算,认为只有通过经济核算,才能体现出科研工作投入少、产出高的特点,进一步明确科技在国民经济发展中的重要作用。
早在60年代初,他就面对科技迅速发展这个现实情况,强调职工继续教育和研究生培养的重要性。组织各种专业训练班,建立大学生进院摸底考试制度和导师制度,对他们进行有针对性的补课和培养。先后在院内成立了红专大学、科技学院和教育中心(研究生部)。铁道科学研究院是国务院批准的首批具有硕士、博士学位授予权的单位。茅以升80岁高龄还亲自招收研究生。
茅以升历任铁道科学研究院历届学术委员会主任,离职后,还兼任院学术委员会名誉主任。他提倡学术民主,主张学术争鸣。
铁道科学研究院在茅以升的领导下,经过全院职工的努力,到1980年,全院职工已达3532人,其中科技人员1827人;全院设有10个研究所,1个实验工厂,1个环形铁道试验段;30多年来共取得1800多项研究成果,其中约60%在铁路运输生产建设中发挥了作用。铁道科学研究院现已建成为具有相当规模的铁道科技研究试验中心
G. 桥的发展史
我国的桥梁,大致经历了四个发展阶段。
第一阶段以西周、春秋为主,包括此前的历史时代,这是古代桥梁的创始时期。此时的桥梁除原始的独木桥和汀步桥外,主要有梁桥和浮桥两种形式。
当时由于生产力水平落后,多数只能建在地势平坦,河身不宽、水流平缓的地段,桥梁也只能是写木梁式小桥,技术问题较易解决。而在水面较宽、水流较急的河道上,则多采用浮桥。
第二阶段以秦、汉为主,包括战国和三国,是古代桥梁的创建发展时期。秦汉是我国建筑史上一个璀璨夺目的发展阶段,这时不仅发明了人造建筑材料的砖,而且还创造了以砖石结构体系为主题的拱券结构,从而为后来拱桥的出现创造了先决条件。
战国时铁器的出现,也促进了建筑方面对石料的多方面利用,从而使桥梁在原木构梁桥的基础上,增添了石柱、石梁、石桥面等新构件。不仅如此,它的重大意义,还在于由此而使石拱桥应运而生。
石拱桥的创建,在中国古代建桥史上无论是实用方面,还是经济、美观方面都起到了划时代的作用。石梁石拱桥的大发展,不仅减少了维修费用、延长了桥的使用时间,还提高了结构理论和施工技术的科学水平。
因此,秦汉建筑石料的使用和拱券技术的出现,实际上是桥梁建筑史上的一次重大革命。故从一些文献和考古资料来看,约莫在东汉时,梁桥、浮桥、索桥和拱桥这四大基本桥型已全部形成。
第三阶段是以唐宋为主,两晋、南北朝和隋、五代为辅的时期,这是古代桥梁发展的鼎盛时期。隋唐国力较之秦汉更为强盛,唐宋两代又取得了较长时间的安定统一,工商业、运输交通业以及科学技术水平等十分发达,是当时世界上最先进的国家。
东晋以后,由于大量汉人贵族官宦南迁,经济中心自黄河流域移往长江流域,使东南水网地区的经济得到大发展,经济和技术的大发展,又反过来刺激桥梁的大发展。
因此,这时创造出许多举世瞩目的桥梁,如隋代石匠李春首创的敞肩式石拱桥--赵州桥,北宋废卒发明的叠梁式木拱桥--虹桥,北宋创建的用筏形基础、植蛎固墩的泉州万安桥,南宋的石梁桥与开合式浮桥相结合的广东潮州的湘子桥等。
这些桥在世界桥梁史上都享有盛誉,尤其是赵州桥,类似的桥在世界别的国家中,晚了七个世纪方才出现。纵观中国桥梁史,几乎所有的重大发明和成就,以及能争世界第一的桥梁,都是此时创建的。
第四阶段为元、明、清三朝,这是桥梁发展的饱和期,几乎没有什么大的创造和技术突破。这时的主要成就是对一些古桥进行了修缮和改造,并留下了许多修建桥梁的施工说明文献,为后人提供了大量文字资料。
此外,也建造完成了一些像明代江西南城的万年桥、贵州的盘江桥等艰巨工程。同时,在川滇地区兴建了不少索桥,索桥建造技术也有所提高。 到清末,即1881年,随着我国第一条铁路的通车,迎来了我国桥梁史上的又一次技术大革命。
(7)全桥谁发明扩展阅读:
历史发展
桥梁是道路的组成部分。从工程技术的角度来看,桥梁发展可分为古代、近代和现代三个时期。
人类在原始时代,跨越水道和峡谷,是利用自然倒下来的树木,自然形成的石梁或石拱,溪涧突出的石块,谷岸生长的藤萝等。人类有目的地伐木为桥或堆石、架石为桥始于何时,已难以考证。古巴比伦王国在公元前1800年(公元前19世纪)就建造了多跨的木桥。
据史料记载,中国在周代(公元前11世纪~前256年)已建有梁桥和木浮桥,如公元前1134年左右,西周在渭水架有浮桥。,桥长达183米。古罗马在公元前621年建造了跨越台伯河的木桥,在公元前 481年架起了跨越赫勒斯旁海峡的浮船桥。
古代美索不达米亚地区,在公元前 4世纪时建起挑出石拱桥(拱腹为台阶式)。
古代桥梁在17世纪以前,一般是用木、石材料建造的,并按建桥材料把桥分为石桥和木桥。
石桥的主要形式是石拱桥。据考证,中国在东汉时期(公元25~220年)就出现石拱桥,如出土的东汉画像砖,刻有拱桥图形。
赵州桥(又名安济桥),建于公元605~617年,净跨径为37米,首创在主拱圈上加小腹拱的空腹式(敞肩式)拱。中国古代石拱桥拱圈和墩一般都比较薄,比较轻巧,如建于公元816~819年的宝带桥,全长317米,薄墩扁拱,结构精巧。
罗马时代,欧洲建造拱桥较多,早在公元前200~公元200年间就在罗马台伯河建造了8座石拱桥,其中建于公元前62年的法布里西奥石拱桥,桥有2孔,各孔跨径为24.4米。
公元98年西班牙建造了阿尔桥,高达52米。此外,出现了许多石拱水道桥,如现存于法国的加尔德引水桥,建于公元前1世纪,桥分为3层,最下层为7孔,跨径为16~24米。罗马时代拱桥多为半圆拱,跨径小于25米,墩很宽,约为拱跨的三分之一。
罗马帝国灭亡后数百年,欧洲桥梁建筑进展不大。11世纪以后,尖拱技术由中东和埃及传到欧洲,欧洲开始出现尖拱桥,如法国在公元1178~1188年建成的阿维尼翁桥,为20孔跨径达34米尖拱桥。英国在公元1176~1209年建成的泰晤士河桥为19孔跨径约 7米尖拱桥。
西班牙在13世纪建了不少拱桥,如托莱多的圣玛丁桥。拱桥除圆拱、割圆拱外,还有椭圆拱和坦拱。公元1542~1632年法国建造的皮埃尔桥为七孔不等跨椭圆拱,最大跨径约32米。当时椭圆拱曾盛行一时。
1567~1569在佛罗伦萨的圣特里尼塔建了三跨坦拱桥,其矢高同跨度比为1∶7。11~17世纪建造的桥,有的在桥面两侧设商店,如意大利威尼斯的里亚尔托桥。
石梁桥是石桥的又一形式。中国陕西省西安附近的灞桥原为石梁桥,建于汉代,距今已有2000多年。公元11~12世纪南宋泉州地区先后建造了几十座较大型石梁桥,其中有洛阳桥、安平桥。安平桥(五里桥)原长2500米,362孔,现长2070米,332孔。英国达特穆尔现存的石板桥,有的已有2000多年。
木桥早期木桥多为梁桥,如秦代在渭水上建的渭桥,即为多跨梁式桥。木梁桥跨径不大,伸臂木桥可以加大跨径。中国 3世纪在甘肃安西与新疆吐鲁番交界处建有伸臂木桥,“长一百五十步”。公元405~418年在甘肃临夏附近河宽达40丈处建悬臂木桥,桥高达50丈。
八字撑木桥和拱式撑架木桥亦可以加大跨径。16世纪意大利的巴萨诺桥为八字撑木桥。
木拱桥出现较早,公元104年在匈牙利多瑙河建成的特拉杨木拱桥,共有21孔,每孔跨径为36米。中国在河南开封修建的虹桥,净跨约为20米,亦为木拱桥,建于公元1032年。日本在岩国锦川河修建的锦带桥为五孔木拱桥,建于公元300年左右,是中国僧戴曼公独立禅师帮助修建的。
中国西南地区有用竹篾缆造的竹索桥。著名的竹索桥是四川灌县珠浦桥,桥为8孔,最大跨径约60米,总长330余米,建于宋代以前。
古代桥梁基础,在罗马时代开始采用围堰法施工,即打木板桩成围堰,抽水后在其中修筑桥梁基础和桥墩。1209年建成的英国泰晤士河拱桥,其基础就是用围堰法修筑,但是,那时只能用人工打桩和抽水,基础较浅。中国11世纪初,著名的洛阳桥在桥址江中先遍抛石块,其上养殖牡蛎二三年后胶固而成筏形基础,是一个创举。
参考资料来源:网络-桥梁
H. 三阶魔方桥式解法是谁发明的
法国的Roux,因此桥式解法也叫Roux法。
I. 桥式整流电路谁发明的
在1896 由Polish波兰 electrotechnician电气技术员 Karol Pollak发明 ,在同一时间德国物理学家Leo Graetz亦研究同一样东西,所以桥式整流也叫Graetz桥或Graetz电路。
J. 谁有关于"桥"的资料
1.桥的名称的由来
(1).五亭桥 位于杨州瘦西湖内。桥基为12条青石砌成大小不同的桥墩;桥身为拱卷形,由3种不同的卷洞联合,共15孔,孔孔相通,亭亭之间的廊相连。
(2).十字桥 位于山西太原市晋祠内。桥梁为十字形。全桥由34根铁青八角石支撑,柱顶有柏木斗拱与纵、横梁连接,上铺十字桥面。
(3).铁索桥(泸定桥) 位于四川泸定县的大渡河上。全长136米,宽3米,由13根碗口粗的铁链系在两岸的悬崖峭壁上。其中9根并排着的铁链上面铺有木板,就是桥面,另外各2根在桥面两侧,就是扶手。每根铁链重约2000千克。
(4).五音桥 位于河北东陵顺治帝孝陵神道上。桥面两侧装有方解石栏板126块,敲击能发出奇妙的声音。
(5).玉带桥 位于北京颐和园。用白石建成,拱圈为蛋尖形,桥面呈双向反弯曲。桥身用汉白玉雕砌,两侧雕刻精美的白色栏板和望柱。有“海上仙岛”美称。
2.有关桥的诗歌:
(1). 驿外断桥边,寂寞开无主——陆游《咏梅》
(2).枯藤老树昏鸦,小桥流水人家,古道西风瘦马——马致远《天净沙•秋思》
(3).天下风光数会稽,灵汜桥前百里镜——元稹《寄乐天》
(4).柳疏桥尽见,水落路全通——陆游《柳桥秋夕》
(5).灵汜桥边多感伤,分明湖派绕回塘——李绅《灵汜桥》
对联:
(1).一线桥光通越水,半帆寒影带吴歌; 春入船唇流水绿,人归渡口夕阳红。
(2).一泓月色含规影;两岸书声接榜歌。
(3).“一门鼎盛,二姓同村,三代展鸿图,四海扬名,五指峰峦钟沛国”;
“六朵荆花,七行楼屋,八方齐庆贺,九如献寿,十分声价壮桥溪!”
(4).淑气风光架岭送登彼岸,洞天云汉横梁稳步长堤。
(5).暴雨骤倾万斛珍珠浮水面;长虹多挂一条金带束天腰。
俗语:
(1).桥头上跑马------走投无路
(2).桥是桥,路是路------一清二楚
(3).桥孔里插扁担-------担当不起
(4).船到桥头自然直...
(5).你走你的独木桥,我走我的阳关道.
(6)我走过的桥比你走过的路还要多
(7).多一个朋友多一条路,结一个仇人拆一座桥。
谜语:
(1).门前断桥余残雪(打一字)--霖
(2)驼背公公,力大无穷,爱驮什么?车水马龙。(谜底:桥)
(3).地下的彩虹-桥