导航:首页 > 创造发明 > 潮汐能发明者

潮汐能发明者

发布时间:2021-07-21 17:33:12

㈠ 大规模使用潮汐能的原因

目前,只有潮汐能发电技术比较成熟,其他形式海洋能的应用大都还停留在探索阶段。
2.1 潮汐能
潮汐能是海水受到月球、太阳等天体引力作用而产生的一种周期性海水自然涨落现象,是人类认识和利用最早的一种海洋能。潮汐能发电与水力发电的原理、组成基本上是一样的,也是利用水的能量使水轮发电机发电。问题是如何利用海潮所形成的水头和潮流量,去推动水轮发电机运转。海水的垂直涨落运动称为潮汐,海水水平运动叫潮流。人们通常把潮汐和潮流中所包含的机械能统称为潮汐能。潮汐能利用一般分两种形式:一是利用潮汐的动能,直接利用潮流前进的力量来推动水车、水泵或水轮发电机;一是利用潮汐的位能,在电站上下游有落差时引水发电。由于利用潮汐的动能比较困难,效率又低,所以潮汐发电多采用后一种形式,潮汐电站就是利用海洋潮位涨、落与库水位形成落差进行涨落潮发电。利用潮汐能发电可以采用单库单向、单库双向或双库单向等三种形式[5,6]。
国外利用潮汐发电始于欧洲,20世纪初德国和法国已开始研究潮汐发电。世界上最早利用潮汐发电的是德国1912年建成的布苏姆潮汐电站,而法国则于1966年在希列塔尼米岛建成一座最大落差为13.5m、坝长750m、总装机容量24万kW的朗斯河口潮汐电站,年均发电量为5.44亿kW?h,它使潮汐电站进入了实用阶段。之后,美、英、加拿大、前苏联、瑞典、丹麦、挪威、印度等国都陆续研究开发潮汐发电技术,兴建各具特色的潮汐电站,并已取得巨大成功。

㈡ 太阳能热水器是谁,那一年,哪个国家,为什么发明的。。

太阳能是最重要的基本能源,生物质能、风能、潮汐能、水能等都来自太阳能,太阳内部进行着由氢聚变成氦的原子核反应,不停地释放出巨大的能量,不断地向宇宙空间辐射能量,这就是太阳能。太阳内部的这种核聚变反应可以维持很长时间,据估计约有几十亿至几百亿年,相对于人类的有限生存时间而言,太阳能可以说是取之不尽,用之不竭的。 太阳能的总量很大,我国陆地表面每年接受的太阳能就相当于1700亿吨标准煤,但十分分散,能流密度较低,到达地面的太阳能每平方米只有1000瓦左右。同时,地面上太阳能还受季节、昼夜、气候等影响,时阴时晴,时强时弱,具有不稳定性。根据太阳能的特点,必须解决以下四个基本技术问题,才能有效地加以利用。 1、太阳能采集 2、太阳能转换 3、太阳能贮存 4、太阳能输运 太阳能开发利用是当今国际上一大热点,经过最近20多年的努力,太阳能技术有了长足进步,太阳能利用领域已由生活热水,建筑采暖等扩展到工农业生产许多部门,人们已经强烈意识到,一个广泛利用太阳能和可再生能源的新时代——太阳能时代即将来到。 太阳能利用的基本知识(1)、太阳的基本结构 太阳能是一个炽热气体构成的球体,主要由氢和氦组成,其中氢占80%,氦占19%。 (2)、太阳常数 太阳常数是指在太阳地球间平均距离外,在地球大气层以上垂直于太阳光线的平面上,单位面积,单位时间内的太阳辐射能的数值,该数值是个常数,一般取1367瓦/米2。(4920千焦/米2时)。 由于通过地球外大气层吸收反射,太阳光到达地面的辐射强度大大降低。 (3)、太阳辐射能和到达地球的太阳能 整个太阳每秒钟释放出来的能量是无比巨大的,高达3.826×1033尔格或37.3×106兆焦,相当于每秒钟燃烧1.28亿吨标准煤所放出的能量。 太阳辐射到达地球陆地表面的能量,大约为17万亿千瓦,仅占到达地球大气外层表面总辐射量的10%。即使这样,它也相当目前全世界一年内能源总消耗量的3.5万倍。 (4)、我国的太阳能资源 我国太阳能资源十分丰富,全国有2/3以上的地区,年辐照总量大于502万千焦/米2,年日照时数在2000小时以上。 (5)、太阳能的特点 太阳能的优点 太阳能作为一种新能源,它与常规能源相比有三大优点: 第一,它是人类可以利用的最丰富的能源,据估计,在过去漫长的11亿年中,太阳消耗了它本身能量的2%,可以说是取之不尽,用之不竭。 第二,地球上,无论何处都有太阳能,可以就地开发利用,不存在运输问题,尤其对交通不发达的农村、海岛和边远地区更具有利用的价值。 第三,太阳能是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡。 太阳能的缺点 太阳能的利用有它的缺点: 第一,能流密度较低,日照较好的,地面上1平方米的面积所接受的能量只有1千瓦左右。往往需要相当大的采光集热面才能满足使用要求,从而使装置地面积大,用料多,成本增加。 第二,大气影响较大,给使用带来不少困难。 (6)、太阳能利用的技术领域 人类直接利用太阳能有三大技术领域,即光热转换、光电转换和光化学转换,此外,还有储能技术。 太阳光热转换技术的产品很多,如热水器、开水器、干燥器,采暖和制冷,温室与太阳房,太阳灶和高温炉,海水淡化装置、水泵、热力发电装置及太阳能医疗器具。

㈢ 是谁发明了太阳能

太阳能利用历史回顾
据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀作功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率 不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段,下面分别予以介绍。

第一阶段(1900-1920)

在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造 的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 -1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。

第二阶段(1920-1945)

在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935-1945)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。

第三阶段(1945-1965)

在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少, 呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。 在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件;1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础。此外,在这一阶段里还有其它一些重要成果,比较突出的有: 1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。

第四阶段(1965-1973)

这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。

第五阶段(1973-1980)

自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。 于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶 ,在城市研制开发太阳热水器,空间用的太阳电池开始在地面应用……。 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。 这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:

各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳 能电站还未升空。
太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想
第六阶段(1980-1992)

70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。 受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使 人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。

第七阶段(1992- 至今)

由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 (1996- 2010),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施 。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。 1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言 》,会上讨论了《世界太阳能10年行动计划》(1996- 2005),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动 ,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。

可以说是: 罗门·德·考克斯

㈣ 有没有人知道太阳能最早是哪国发明的是谁

【利用太阳能的历史】

据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”, “未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的 100年间,太阳能科技发展历史大体可分为七个阶段。

第一阶段(1900~1920年)

在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 ~1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。

第二阶段(1920~1945年)

在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935~1945年)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。

第三阶段(1945~1965年)

在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少,呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1945年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。此外,在这一阶段里还有其它一些重要成果,比较突出的有: 1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨——水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。

第四阶段(1965~1973年)

这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。

第五阶段(1973~1980年)

自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973 年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用……。 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:

各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。

研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。

各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。

太阳热水器、太阳电池等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。

第六阶段(1980~1992年)

70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。

第七阶段(1992年~至今)

由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 (1996 ~ 2010年),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。 1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言》,会上讨论了《世界太阳能10年行动计划》(1996 ~ 2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45 年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。

㈤ 二十世纪改变人类生活的最重大的发明是什么

OE修复手套

“修复手套”是植入可以模仿一个特殊原因的生物力学设备执行器和传感器的人力。机械手的设计研究实验室“修复手套”的目的是创造一种人工肌肉的“外衣”。这种“外衣”能够帮助人体重新运动。科学家们在世界各地,程序员,发明家正在开发复制或更换车身结构,帮助人体的创新技术。

,OE仿生心脏

同一位置CATO是一个人工心脏移植手术可以完全模仿人类的心脏设备,引起心室的血液室,阀,吸气阀和肺动脉和主动脉的血能特殊的动态装置组成。最大的挑战面临的科学家

人工心脏是包括电源设备,它包括移植到有限的空间通常位于一个心脏。科学家们不得不采取奶牛进行试验,并取得了巨大成功,他成功地为人工心脏移植的专利相同的地位创造了有利条件。

,OE神经转换

澳大利亚程序员开发的系统。根据这一制度,从肌萎缩侧索硬化症疾病折磨的人,今后再也不能用自己的残疾遭受的限制,只要可以沟通的神经信号,通过与他人的技巧。另一位科学家已经研制出一种新型的人机连接接口:一个人可以利用皮肤表面电极接收神经信号,然后经过人工智能分析,就能实现通信目的。后两位科学家合作,该系统被称为神经转化技术。

,OE耳朵看世界

莱斯利·凯博时基金设计了声纳装置,它可以释放出超声波,还能发现其他发行对象和障碍物的反射。然后该数据被转换成一系列声音,可以分别从遥远物体发出的声音的声频,听到。稍加训练后,人的大脑似乎下意识地想象这些声音送入太空。

该技术荣获1998年世界通信创新奖,如今全世界的盲人将利用这个技术的优势,自信地行走在他们不熟悉的领域。

,OE人造肌肉

人造肌肉的研究工作始于20世纪40年代,但仅在过去的10年里,它已经取得了很大的发展,因为研究中心在全球开发了特种聚合物和智能材料。人类的未来很可能会看到实力世界最强,功能最强大的仿生手臂的审判。

㈥ 农民最新发明潮汐发电 具体介绍一下

潮汐发电装置

利用潮汐的落差推动水轮机而发电称之为潮汐发电。即在海湾或河内流入海口处筑起堤坝,涨容潮时蓄水,退潮时将蓄水放出,利用潮涨潮落的水流驱动水轮,每日可发电4欢。潮汐发电的设想久已有之,但直至20世纪上半叶,还没有一个人在技术和经济上提出可行的方案。直至1961年法国开始于布列塔尼的圣罗马湾建造兰斯发电站,1967年竣工的该电站装有可逆式水轮机(一系列的固定和转动叶片)可使潮汐流在个方向,即从海上向海滩涨潮时和从海滩向外海退潮时都能工作。
农民发明家董禹全,一个被被很多专业人士嗤之以鼻,被指责为疯子骗子的江苏盐城大丰人士,终于引发了2008年一个爆炸性新闻,采用双向做功水轮发电技术,将水能发电效率一次提高了3.8倍,从而写下了水电行业节能增效及其技术开发领域一个史无前例的惊人数据。由于这个数据好得离谱,导致了专家里手的根本不可能的唏嘘否定之声。
你要的是不是这个?

㈦ 太阳能是在多少年发明的

据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。
第一阶段(1900~1920年)
在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 ~1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
第二阶段(1920~1945年)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935~1945年)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。
第三阶段(1945~1965年)
在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少, 呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。 在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1945年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。此外,在这一阶段里还有其它一些重要成果,比较突出的有: 1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨——水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
第四阶段(1965~1973年)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。
第五阶段(1973~1980年)
自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。 于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶 ,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用……。 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。 这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。
太阳热水器、太阳电池等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。
第六阶段(1980~1992年)
70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。 受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使 人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。
第七阶段(1992年~至今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 (1996 ~ 2010年),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施 。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。 1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言 》,会上讨论了《世界太阳能10年行动计划》(1996 ~ 2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动 ,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。

㈧ 谁知道人类利用太阳能的历史太阳灶是谁发明的

近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机

算起。该发明是一台利用太阳能加热空气使其膨胀作功而抽水的机器。在1615年-1900年之间,世界上又研制

成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率

不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年

间,太阳能科技发展历史大体可分为七个阶段,下面分别予以介绍。
1.1第一阶段1900-1920
在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平

板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造

的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902

-1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南

建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。

1.2第二阶段(1920-1945)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃

料的大量开发利用和发生第二次世界大战(1935-1945)有关,而太阳能又不能解决当时对能源的急需,因此

使太阳能研究工作逐渐受到冷落。
1.3第三阶段(1945-1965)
在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少,

呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学

术交流和展览会,再次兴起太阳能研究热潮。

在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1955年,以色列泰伯等在第一次国际太阳

热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了

条件;1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础。

此外,在这一阶段里还有其它一些重要成果,比较突出的有:

1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。

1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。

1961年,一台带有石英窗的斯特林发动机问世。

在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上

的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成

一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。

1.4第四阶段门(1965-1973)

这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资

大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。

1.5第五阶段(1973-1980)

自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退

的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗

争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。

于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们

认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国

家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。

1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太

阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房

、工业太阳能系统、太阳热发电、太阳电他生产系统、分散型和大型光伏发电系统等。为实施这一计划,日

本政府投入了大量人力、物力和财力。

70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身

太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶

,在城市研制开发太阳热水器,空间用的太阳电池开始在地面应用……。1975年,在河南安阳召开“全国

第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究

和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题

组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。

这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:

(1)各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为

政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工

作。

(2)研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、

光解水制氢、太阳能热发电等。

(3)各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在

较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范

卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳

能电站还未升空。

(4)太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想

1.6第六阶段(1980-1992)

70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相

继大幅度削减太阳能研究经费,其中美国最为突出。

导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳

能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核

电发展较快,对太阳能的发展起到了一定的抑制作用。

受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳

能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽

然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。

这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使

人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。

1.7第七阶段(1992-至今)

由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样

背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》,

《2I世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了

可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在

一起,使太阳能利用工作走出低谷,逐渐得到加强。

世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发

和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确

了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》

(1996-2010),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施

。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。

1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言

)},会上讨论了《世界太阳能10年行动计划》(1996-2005),《国际太阳能公约》,《世界太阳能战略

规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动

,广泛利用太阳能。

1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护

紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力

,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的

同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济

效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。

通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,

处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复

多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利

用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的

太阳能科技进步仍比以往任何一个世纪都大。

2太阳能科技进步

太阳能利用涉及的技术问题很多,但根据太阳能的特点,具有共性的技术主要有四项,即太阳能采集、太

阳能转换、太阳能贮存和太阳能传输,将这些技术与其它相关技术结合在一起,便能进行太阳能的实际利用。

2.1太阳能采集

太阳辐射的能流密度低,在利用太阳能时为了获得足够的能量,或者为了提高温度,必须采用一定的技

术和装置(集热器),对太阳能进行采集。集热器按是否聚光,可以划分为聚光集热器和非聚光集热器两大类。

非聚光集热器(平板集热器,真空管集热器)能够利用太阳辐射中的直射辐射和散射辐射,集热温度较低;聚

光集热器能将阳光会聚在面积较小的吸热面上,可获得较高温度,但只能利用直射辐射,且需要跟踪太阳。

2.1.1平板集热器

历史上早期出现的太阳能装置,主要为太阳能动力装置,大部分采用聚光集热器,只有少数采用平板集

热器。平板集热器是在17世纪后期发明的,但直至1960年以后才真正进行深入研究和规模化应用。在太阳

能低温利用领域,平板集热器的技术经济性能远比聚光集热器好。为了提高效率,降低成本,或者为了满足特

定的使用要求,开发研制了许多种平板集热器:

按工质划分有空气集热器和液体集热器,目前大量使用的是液体集热器;

按吸热板芯材料划分有钢板铁管、全铜、全铝、铜铝复合、不锈钢、塑料及其它非金属集热器等;

按结构划分有管板式、扁盒式、管翅式、热管翅片式、蛇形管式集热器,还有带平面反射镜集热器和逆平

板集热器等;

按盖板划分有单层或多层玻璃、玻璃钢或高分子透明材料、透明隔热材料集热器等。

目前,国内外使用比较普遍的是全铜集热器和铜铝复合集热器。铜翅和铜管的结合,国外一般采用高频

焊,国内以往采用介质焊,199S年我国也开发成功全铜高频焊集热器。1937年从加拿大引进铜铝复合生产

线,通过消化吸收,现在国内已建成十几条铜铝复合生产线。

为了减少集热器的热损失,可以采用中空玻璃、聚碳酸酯阳光板以及透明蜂窝等作为盖板材料,但这些

材料价格较高,一时难以推广应用。

2.1.2真空管集热器

为了减少平板集热器的热损,提高集热温度,国际上70年代研制成功真空集热管,其吸热体被封闭在高

真空的玻璃真空管内,大大提高了热性能。将若干支真空集热管组装在一起,即构成真空管集热器,为了增

加太阳光的采集量,有的在真空集热管的背部还加装了反光板。

真空集热管大体可分为全玻璃真空集热管,玻璃七型管真空集热管,玻璃。金属热管真空集热管,直通

式真空集热管和贮热式真空集热管。最近,我国还研制成全玻璃热管真空集热管和新型全玻璃直通式真空集

热管。

我国自1978年从美国引进全玻璃真空集热管的样管以来,经20多年的努力,我国已经建立了拥有自主

知识产权的现代化全玻璃真空集热管的产业,用于生产集热管的磁控溅射镀膜机在百台以上,产品质量达世

界先进水平,产量雄居世界首位。

我国自80年代中期开始研制热管真空集热管,经过十几年的努力,攻克了热压封等许多技术难关,建立

了拥有全部知识产权的热管真空管生产基地,产品质量达到世界先进水平,生产能力居世界首位。

目前,直通式真空集热管生产线正在加紧进行建设,产品即将投放市场。

2。1.3聚光集热器

聚光集热器主要由聚光器、吸收器和跟踪系统三大部分组成。按照聚光原理区分,聚光集热器基本可分

为反射聚光和折射聚光两大类,每一类中按照聚光器的不同又可分为若干种。为了满足太阳能利用的要求,

简化跟踪机构,提高可靠性,降低成本,在本世纪研制开发的聚光集热器品种很多,但推广应用的数量远比平

板集热器少,商业化程度也低。

在反射式聚光集热器中应用较多的是旋转抛物面镜聚光集热器(点聚焦)和槽形抛物面镜聚光集热器

(线聚焦)。前者可以获得高温,但要进行二维跟踪;后者可以获得中温,只要进行一维跟踪。这两种聚光集热

器在本世纪初就有应用,几十年来进行了许多改进,如提高反射面加工精度,研制高反射材料,开发高可靠性

跟踪机构等,现在这两种抛物面镜聚光集热器完全能满足各种中、高温太阳能利用的要求,但由于造价高,限

制了它们的广泛应用。

70年代,国际上出现一种“复合抛物面镜聚光集热器”(CPC),它由二片槽形抛物面反射镜组成,不需要

跟踪太阳,最多只需要随季节作稍许调整,便可聚光,获得较高的温度。其聚光比一般在10以下,当聚光比在

3以下时可以固定安装,不作调整。当时,不少人对CPC评价很高,甚至认为是太阳能热利用技术的一次重

大突破,预言将得到广泛应用。但几十年过去了,CPC仍只是在少数示范工程中得到应用,并没有象平板集

热器和真空管集热器那样大量使用。我国不少单位在七八十年代曾对CPC进行过研制,也有少量应用,但现

在基本都已停用。

其它反射式聚光器还有圆锥反射镜、球面反射镜、条形反射镜、斗式槽形反射镜、平面。抛物面镜聚光器

等。此外,还有一种应用在塔式太阳能发电站的聚光镜--定日镜。定日镜由许多平面反射镜或曲面反射镜

组成,在计算机控制下这些反射镜将阳光都反射至同一吸收器上,吸收器可以达到很高的温度,获得很大的

能量。

利用光的折射原理可以制成折射式聚光器,历史上曾有人在法国巴黎用二块透镜聚集阳光进行熔化金

属的表演。有人利用一组透镜并辅以平面镜组装成太阳能高温炉。显然,玻璃透镜比较重,制造工艺复杂,造

价高,很难做得很大。所以,折射式聚光器长期没有什么发展。70年代,国际上有人研制大型菲涅耳透镜,试

图用于制作太阳能聚光集热器。菲涅耳透镜是平面化的聚光镜,重量轻,价格比较低,也有点聚焦和线聚焦之

分,一般由有机玻璃或其它透明塑料制成,也有用玻璃制作的,主要用于聚光太阳电池发电系统。

我国从70年代直至90年代,对用于太阳能装置的菲涅耳透镜开展了研制。有人采用模压方法加工大面

积的柔性透明塑料菲涅耳透镜,也有人采用组合成型刀具加工直径1.5m的点聚焦菲涅耳透镜,结果都不大

理想。近来,有人采用模压方法加工线性玻璃菲涅耳透镜,但精度不够,尚需提高。

还有两种利用全反射原理设计的新型太阳能聚光器,虽然尚未获得实际应用,但具有一定启发性。一种

是光导纤维聚光器,它由光导纤维透镜和与之相连的光导纤维组成,阳光通过光纤透镜聚焦后由光纤传至使

用处。另一种是荧光聚光器,它实际上是一种添加荧光色素的透明板(一般为有机玻璃),可吸收太阳光中与

荧光吸收带波长一致的部分,然后以比吸收带波长更长的发射带波长放出荧光。放出的荧光由于板和周围介

质的差异,而在板内以全反射的方式导向平板的边缘面,其聚光比取决于平板面积和边缘面积之比,很容易

达到10一100,这种平板对不同方向的入射光都能吸收,也能吸收散射光,不需要跟踪太阳。

2.2太阳能转换

太阳能是一种辐射能,具有即时性,必须即时转换成其它形式能量才能利用和贮存。将太阳能转换成不

同形式的能量需要不同的能量转换器,集热器通过吸收面可以将太阳能转换成热能,利用光伏效应太阳电池

可以将太阳能转换成电能,通过光合作用植物可以将太阳能转换成生物质能,等等。原则上,太阳能可以直接

或间接转换成任何形式的能量,但转换次数越多,最终太阳能转换的效率便越低。

2.2.1太阳能-热能转换

黑色吸收面吸收太阳辐射,可以将太阳能转换成热能,其吸收性能好,但辐射热损失大,所以黑色吸收面

不是理想的太阳能吸收面。

选择性吸收面具有高的太阳吸收比和低的发射比,吸收太阳辐射的性能好,且辐射热损失小,是比较理

想的太阳能吸收面。这种吸收面由选择性吸收材料制成,简称为选择性涂层。它是在本世纪40年代提出的,

1955年达到实用要求,70年代以后研制成许多新型选择性涂层并进行批量生产和推广应用,目前已研制成

上百种选择性涂层。

我国自70年代开始研制选择性涂层,取得了许多成果,并在太阳集热器上广泛使用,效果十分显著。

2.2.2太阳能一电能转换

电能是一种高品位能量,利用、传输和分配都比较方便。将太阳能转换为电能是大规模利用太阳能的重

要技术基础,世界各国都十分重视,其转换途径很多,有光电直接转换,有光热电间接转换等。这里重点介绍

光电直接转换器件--太阳电池。

世界上,1941年出现有关硅太阳电池报道,1954年研制成效率达6%的单晶硅太阳电池,1958年太阳电

池应用于卫星供电。在70年代以前,由于太阳电池效率低,售价昂贵,主要应用在空间。70年代以后,对太阳

电池材料、结构和工艺进行了广泛研究,在提高效率和降低成本方面取得较大进展,地面应用规模逐渐扩大,

但从大规模利用太阳能而言,与常规发电相比,成本仍然大高。

目前,世界上太阳电他的实验室效率最高水平为:单晶硅电池24%(4cm2),多晶硅电池18。6%(4cm2),

InGaP/GaAs双结电池30.28%(AM1),非晶硅电池14.5%(初始)、12.8(稳定),碲化镐电池15.8%,

硅带电池14.6%,二氧化钛有机纳米电池10.96%。

我国于1958年开始太阳电他的研究,40多年来取得不少成果。目前,我国太阳电他的实验室效率最高

水平为:单晶硅电池20.4%(2cm×2cm),多晶硅电池14.5%(2cm×2cm)、12%(10cm×10cm),GaAs电池

20.1%(lcm×cm),GaAs/Ge电池19.5%(AM0),CulnSe电池9%(lcm×1cm),多晶硅薄膜电池13.6%

(lcm×1cm,非活性硅衬底),非晶硅电池8.6%(10cm×10cm)、7.9%(20cm×20cm)、6.2%(30cm×30cm),

二氧化钛纳米有机电池10%(1cm×1cm)。

2.2.3太阳能一氢能转换

氢能是一·种高品位能源。太阳能可以通过分解水或其它途径转换成氢能,即太阳能制氢,其主要方法如

下:

(1)太阳能电解水制氢

电解水制氢是目前应用较广且比较成熟的方法,效率较高(75%-85%),但耗电大,用常规电制氢,从能

量利用而言得不偿失。所以,只有当太阳能发电的成本大幅度下降后,才能实现大规模电解水制氢。

(2)太阳能热分解水制氢

将水或水蒸汽加热到3000K以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才

能获得如此高的温度,一般不采用这种方法制氢。

(3)太阳能热化学循环制氢

为了降低太阳能直接热分解水制氢要求的高温,发展了一种热化学循环制氢方法,即在水中加入一种或

几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环

使用。热化学循环分解的温度大致为900-1200K,这是普通旋转抛物面镜聚光器比较容易达到的温度,其分

解水的效率在17.5%-75.5%。存在的主要问题是中间物的还原,即使按99.9%-99.99%还原,也还要作

0.1%-0.01%的补充,这将影响氢的价格,并造成环境污染。

(4)太阳能光化学分解水制氢

这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长

波光能的吸收,利用光化学反应制氢。日本有人利用碘对光的敏感性,设计了一套包括光化学、热电反应的综

合制氢流程,每小时可产氢97升,效率达10%左右。

(5)太阳能光电化学电池分解水制氢

1972年,日本本多健一等人利用n型二氧化钛半导体电极作阳极,而以铂黑作阴极,制成太阳能光电化

学电池,在太阳光照射下,阴极产生氢气,阳极产生氧气,两电极用导线连接便有电流通过,即光电化学电池

在太阳光的照射下同时实现了分解水制氢、制氧和获得电能。这一实验结果引起世界各国科学家高度重视,

认为是太阳能技术上的一次突破。但是,光电化学电他制氢效率很低,仅0.4%,只能吸收太阳光中的紫外光

和近紫外光,且电极易受腐蚀,性能不稳定,所以至今尚未达到实用要求。

(6)太阳光络合催化分解水制氢

从1972年以来,科学家发现三联毗啶钉络合物的激发态具有电子转移能力,并从络合催化电荷转移反

应,提出利用这一过程进行光解水制氢。这种络合物是一种催化剂,它的作用是吸收光能、产生电荷分离、电

荷转移和集结,并通过一系列偶联过程,最终使水分解为氢和氧。络合催化分解水制氢尚不成熟,研究工作正

在继续进行。

(7)生物光合作用制氢

40多年前发现绿藻在无氧条件下,经太阳光照射可以放出氢气;十多年前又发现,兰绿藻等许多藻类在

无氧环境中适应一段时间,在一定条件下都有光合放氢作用。

目前,由于对光合作用和藻类放氢机理了解还不够,藻类放氢的效率很低,要实现工程化产氢还有相当

大的距离。据估计,如藻类光合作用产氢效率提高到10%,则每天每平方米藻类可产氢9克分子,用5万平

方公里接受的太阳能,通过光合放氢工程即可满足美国的全部燃料需要。

2.2.4太阳能-生物质能转换

通过植物的光合作用,太阳能把二氧化碳和水合成有机物(生物质能)并放出氧气。光合作用是地球上最

大规模转换太阳能的过程,现代人类所用燃料是远古和当今光合作用固定的太阳能,目前,光合作用机理尚

不完全清楚,能量转换效率一般只有百分之几,今后对其机理的研究具有重大的理论意义和实际意义。

2.2.5太阳能-机械能转换

20世纪初,俄国物理学家实验证明光具有压力。20年代,前苏联物理学家提出,利用在宇宙空间中巨大

的太阳帆,在阳光的压力作用下可推动宇宙飞船前进,将太阳能直接转换成机械能。科学家估计,在未来

10~20年内,太阳帆设想可以实现。

通常,太阳能转换为机械能,需要通过中间过程进行间接转换。

2.3太阳能贮有

地面上接受到的太阳能,受气候、昼夜、季节的影响,具有间断性和不稳定性。因此,太阳能贮存十分必

要,尤其对于大规模利用太阳能更为必要。

太阳能不能直接贮存,必须转换成其它形式能量才能贮存。大容量、长时间、经济地贮存太阳能,在技术

上比较困难。本世纪初建造的太阳能装置几乎都不考虑太阳能贮存问题,目前太阳能贮存技术也还未成熟,

发展比较缓慢,研究工作有待加强。

2.3.1太阳能贮热

(1)显热贮存

利用材料的显热贮能是最简单的贮能方法。在实际应用中,水、沙、石子、土壤等都可作为贮能材料,其中

水的比热容最大,应用较多。七八十年代曾有利用水和土壤进行跨季节贮存太阳能的报道。但材料显热较小,

贮能量受到一定限制。

(2)潜热贮存

利用材料在相变时放出和吸入的潜热贮能,其贮能量大,且在温度不变情况下放热。

在太阳能低温贮存中常用含结晶水的盐类贮能,如10水硫酸钠/水氯化钙、12水磷酸氢钠等。但在使

用中要解决过冷和分层问题,以保证工作温度和使用寿命。

太阳能中温贮存温度一般在100℃以上、500℃以下,通常在300℃左右。适宜于中温贮存的材料有:高压

热水、有机流体、共晶盐等。

太阳能高温贮存温度一般在500℃以上,目前正在试验的材料有:金属钠、熔融盐等。

1000℃以上极高温贮存,可以采用氧化铝和氧化锗耐火球。

(3)化学贮

㈨ 潮汐能不能被充分开发利用的原因是什没

目前,只有潮汐能发电技术比较成熟,其他形式海洋能的应用大都还停留在探索阶段。

2.1 潮汐能

潮汐能是海水受到月球、太阳等天体引力作用而产生的一种周期性海水自然涨落现象,是人类认识和利用最早的一种海洋能。潮汐能发电与水力发电的原理、组成基本上是一样的,也是利用水的能量使水轮发电机发电。问题是如何利用海潮所形成的水头和潮流量,去推动水轮发电机运转。海水的垂直涨落运动称为潮汐,海水水平运动叫潮流。人们通常把潮汐和潮流中所包含的机械能统称为潮汐能。潮汐能利用一般分两种形式:一是利用潮汐的动能,直接利用潮流前进的力量来推动水车、水泵或水轮发电机;一是利用潮汐的位能,在电站上下游有落差时引水发电。由于利用潮汐的动能比较困难,效率又低,所以潮汐发电多采用后一种形式,潮汐电站就是利用海洋潮位涨、落与库水位形成落差进行涨落潮发电。利用潮汐能发电可以采用单库单向、单库双向或双库单向等三种形式[5,6]。

国外利用潮汐发电始于欧洲,20世纪初德国和法国已开始研究潮汐发电。世界上最早利用潮汐发电的是德国1912年建成的布苏姆潮汐电站,而法国则于1966年在希列塔尼米岛建成一座最大落差为13.5m、坝长750m、总装机容量24万kW的朗斯河口潮汐电站,年均发电量为5.44亿kW?h,它使潮汐电站进入了实用阶段。之后,美、英、加拿大、前苏联、瑞典、丹麦、挪威、印度等国都陆续研究开发潮汐发电技术,兴建各具特色的潮汐电站,并已取得巨大成功。

我国大陆海岸线长1.8万km,曲折的海岸线,众多的潮汐河流,蕴藏着丰富的潮汐能源。潮汐能利用的近代发展,起始于20世纪50年代后期。从1958年起,我国陆续在广东顺德、东湾、山东乳山、上海崇明等地建立了几十座潮汐能发电站,其中浙江省温岭市西南角乐清湾江厦潮汐试验电站装机容量最大,功率为3 200kW,仅次于法国的郎斯潮汐发电站和加拿大安纳波利斯潮汐发电站,是亚洲最大的潮汐电站。目前,国内外已建的主要潮汐电站如表2所示

表2 国内外已建主要潮汐电站

站名 所在地 装机容量(MW) 运行方式 建成时间

朗斯 法国 24×10 单库双向 1967年

安纳波利斯 加拿大 1×20 单库单向 1984年

基斯洛湾 前苏联 2×0.4 单库双向 1968年

江厦 中国浙江 1×0.5 1×0.6 3×0.7 单库双向 1985年

海山 中国浙江 2×0.075 双库连程 1975年

白沙口 中国山东 0.96 单库单向 1978年

浏河 中国江苏 2×0.075 单库双向 1976年

镇口 中国广东 6×0.026 单库双向 1972年

果子山 中国广西 0.04 单库单向 1977年

潮汐能发电是一项潜力巨大的事业,经过多年来的实践,在工作原理和总体构造上基本成型,可以进入大规模开发利用阶段,随着科技的不断进步和能源资源的日趋紧缺,潮汐能发电在不远的将来将有飞速的发展,潮汐能发电的前景是广阔的。

2.2 波浪能

波浪能发电是继潮汐发电之后发展最快的一种海洋能源利用措施。波浪能是由大气层和海洋在相互影响的过程中,由于在风和海水重力作用下形成永不停息、周期性上下波动的波浪,这种波浪具有一定的动能和势能。波浪能的大小与波高的平方和波动水域面积成正比。目前,日本、英国、美国、德国、加拿大、中国等都在研究波浪能发电,以日本、英国、挪威等国开发利用的水平较高。

解决波浪能发电的关键是波浪能转换装置。目前,人们运用最多的几种方式有气动式波浪能发电、液动式波浪能发电、蓄水波浪能发电等。气动式波浪能发电是利用波浪的起伏力量,均匀地把波浪能转换成气流能,以推动空气涡轮机发电。世界上第一台小型气动式波浪能发电装置是日本人益田在1964年发明的。液动式波浪能发电装置是把波浪能转换成液压能,再通过液压电机发电。比较典型的是英国人索尔特博士发明的“点头鸭”式波浪发电装置,“鸭体”吸收波浪能效率可达80%~90%。1985年,英国在苏格兰的艾莱岛建造了一座75kW的振荡水柱波力电站,1995年又建成一座输出功率为2MW的波浪能发电站,可满足2000户家庭用电。蓄水波浪能发电是利用气泵原理,使海浪“聚集”,并提高波浪的高度,以涌进岸边高处的蓄水池,再用高水头来冲击水轮电机发电。

我国波浪能资源丰富,估计约有5亿kW以上。但我国波浪能发电的研究起步较晚,1990年才在大万山岛建成第一座20kW级的试验性波浪发电站。

2.3 温差能

温差能是由于深部海水与表面海水温度差而产生的能量。温差能发电与地热能发电相似,其方式有三种:第一种是开放循环式,即将海水直接在低压下蒸发,产生蒸汽,去推动涡轮发电机发电。最早提出开放循环式温差发电的是法国的阿松瓦尔,他的学生克劳德在1926年试验成功海水温差发电,并于1930年在古巴海滨建成世界上第一座海水温差发电站,功率为10kW。1948年,法国在非洲象牙海岸建造了一座7000kW的海水温差发电站。开放循环式发电除得到电能外,还可以得到大量的淡水和副产品。第二种是封闭循环式,即利用海水上下温度差来使低沸点物质(如氟里昂、氨等)产生蒸汽,再用蒸汽推动涡轮发电机发电。闭路循环式是美国安德森父子1964年提出来的,1979年美国在夏威夷正式建成闭路循环式发电站,发电能力为50kW。闭路循环式发电可大大提高进排气之间的压力差和涡轮机的工作效率。第三种是混合循环式,它具有以上两种发电方式的特点,且效率更高。

目前,全世界已建有8座温差能发电站。预计到2010年全球将有1030座海洋温差能发电站问世。美、日等国是研究温差能发电的先进国家。美国在夏威夷建有一座闭路循环温差发电站,输出功率50kW,还将建一座发电能力达16万kW的温差能发电站。日本于20世纪80年代分别在南太平洋的瑙鲁岛和鹿儿岛建成100kW和MW级两座温差能电站。我国海域辽阔,东海、黄海、南海的平均水温都比较高,特别是南海夏季平均可达36℃以上,且大部分地区水深在1000m以上,自表层向下500~1000m即可得到5℃的冷水,具有利用海水温差发电的有利条件和广阔前景。中国科学院广州能源研究所于20世纪80年代中期曾在实验室进行过开放式温差能装置的模拟研究。

2.4 盐差能

海水属于咸水,它含有大量的矿物盐,河水属于淡水。因此,当陆地河水流入大海的交界区域,咸淡水相混时就会形成盐度差和较高的渗透压力,淡水会向咸水方向渗透,直至两者盐度平衡,在两种水体的接触面上新生一种物理化学能,利用这种能量发电就是海洋盐差能发电。

盐差能发电是美国人在1939年首先提出来的。目前,世界上只有以色列建了一座150kW的盐差能发电的实验装置,实用性盐差能发电站还未问世,看来人类要大规模地利用盐差能发电还有一个相当长的过程。

2.5 海流能

海流亦称洋流,是海洋中的海水朝一个方向不断流动,尤如河流具有固定流动路线一样,会产生一种不易觉察的海流动力。海流主要分布在大西洋的西部边界,那里有强大的黑潮海流、墨西哥海流,此外,世界上还有日本海流、北太平洋海流、南极环海流等。

海流能的主要用途是发电。它的发电原理就是利用海流的冲击力使水轮机高速旋转,再带动发电机发电。美国设计了一个最宏伟的海流能利用装置,就放在佛罗里达半岛外侧的墨西哥海流上,还将一艘海流发电船长年停泊在强劲的海流上发电。我国海流能发电起步较晚,1994年才在浙江省岱山县官山岛建成第一座海流能发电站。目前,世界海流能发电技术仍处于试验研究

㈩ 谁能帮我解释核能发电和潮汐发电

一.概述

自从1896年法国物理学家贝可勒尔发现铀的天然放射性以来,由于近百年来世界各国科学家的辛勤探索,人类不但对物质的微观结构有了更深刻的了解,而且还开发出了威力无比的核能。与此同时与核能相关的核技术,如加速器技术、同位素制备技术、核辐射探测技术、核成像技术、辐射防护技术及应用核技术等也得到迅猛发展。近百年来在这个领域已有40多位科学家获得了世界科学技术成就的最高奖赏——诺贝尔物理学奖或化学奖,这是其他任何学科领域都从未有过的。

第二次世界大战末期,美国使用绰号叫“小男孩”和“胖子”的两颗原子弹在日本广岛和长崎造成了人间灾难。从此人们一听到“原子弹”三个字就不寒而粟,甚至“原子能”或“核能”也被曲解为核武器的代名词。直至今天还有不少人对核电站害怕得很,以为核电站出事故时也会像原子弹一样爆炸,公众对核能和核技术充满恐惧感和神秘感。

然而核能的发现和应用也与古代“火药”的发明和应用一样,它既能用来作为杀人武器,又能移山填海,造福人类。事实上,第二次世界大战结束后,热爱和平的各国科学家就在和平利用核能力上面进行了卓有成效的工作。原子弹爆炸9年后,世界上第一座核电站在前苏联建成发电,它标志着人类大规模利用核能时代的开始。然而,直到今天,核能的利用仍然在两个领域中同时展开和同时发展。一方面在建设更多的不同堆型的核电站——轻水堆电站、重水堆电站、快堆电站,另一方面又在制造大规模的杀伤核武器——原子弹、氢弹、中子弹;一方面在建造核动力破冰船,另一方面又在建造核动力航空母舰和核潜艇。以致直至今天人类仍处在核威胁和核恐怖之中。为此热爱和平的人们一直在呼吁禁止核武器,直至彻底销毁全部核武器。

在进入21世纪,和平和发展已成为世界主流,人们既期望核能作为最具潜力的新能源在解决人类面临的能源危机中能发挥主力军的作用;又希望核武器永远在地球上消失,让人类赖以生存的地球成为美丽的乐园。

二.原子与原子核

人类对客观世界的认识是逐步深化的。从宏观上讲,宇宙浩瀚无穷;从微观上讲,又存在一个肉眼看不见的,难以捉摸的无限渺小的世界。

两千多年前人们就提出:世畀是由什么构成的?鉴于当时的科学技术水平,人们只能靠猜测和臆想来解释丰富多采的自然现象。时至今日,对这个问题人们可以毫不犹豫地回答:宇宙间浩瀚的万物都是由元素构成的。

构成元素的最小单位是原于。原子非常小,其直径大约只有l*lO-8cm。1911年卢瑟福通过用α粒子轰击金属薄片的散射实验证实这么小的原子也是有核的。原子核更小,约为10-13cm,只占原子大小的十万分之一。原于核带正电,它周围是数目不等的带负电的电子。原子核又是由质子和中子两种粒子组成,质子带正电,中子不带电。质子所带正电荷的大小和电子所带负电荷的大小正好相等,因此整个原子是中性的。现代科学家测出质子的质量为1.007277原子质量单位,中子的质量为1.008665原子质量单位,而电子质量仅为0.0005486原子质量单位,可见原子的质量主要集中在核上。质子所带正电荷的电量为1.602192*lO-19C。

如果原子核是由Z个质子和N个中子组成,则Z就是该原子核所属元素的原子序数。Z+N=A,A就是原子的质量数。因此如果知道某元素的原子序数和质量数就可以知道原于核里的质子和中子数。通常用如下符号表示元素的核状态:

质子数相同的原子具有相似的化学性质,处在元素周期表的同一位置,但它们的中子数可能不同;我们就把质子数相同而中子数不同的元素称之为同位素。例如氢原子核只有一个质子,没有中子( ),而它的同位素氘则有一个质子和一个中子( ),氚有两个中子和一个质子( )。同位素在化学性质方面虽然相似,但其他性质就相差甚远。如氢和氘都是稳定的同位素,而氚却带放射性。

1896年法国科学家贝可勒尔发现铀元素能自动地放射出一种穿透力很强的射线,它能透过黑纸使底片感光,这就是所谓放射现象。随后1900年居里夫妇在研究镭射线时发现,镭射线通过磁场后被分为两束。1906年卢瑟福在重复居里夫妇的实验时采用更高强度的磁场,结果镭射线被分成了三束(见图4-1)。后来科学家就把这三束射线分别称之为α射线、β射线和γ射线。其中α射线是由带正电的高速度的氦原子核组成;α射线是由速度很大的电子组成;而γ射线则是一种波长极短,不带电荷的穿透力极强的射线。

现在科学家们已经知道,每一种元素的同位素在受到中子轰击后,多半都会变成一种特定的放射性元素,都会放出。、α β γ射线,这些射线都具有一定的穿透力。因此人们可以在一种元素的原子核上人为地添加中子或质子,使他们变成别的原子。这样的原子常常是有放射性的,通常就称之为放射性同位素。通过加速器或核反应可以获得大量的放射性同位素。

放射性同位素的原子核是不稳定的,它能自发地放射出α、β、γ射线而转为另一种元素或转变到另一种状态,这一过程称之为衰变。衰变是放射性原子核的基本特征。但放射性同位素的每个核的衰变并不是同时发生的,而是有先有后。为了描述衰变过程的快慢,科学家定义放射性元素的原子核数因衰变而减少到原有原子核数一半时所需的时间为半衰期。因此衰变越快的元素,半衰期越短。半衰期是放射性同位素的一个特定常数,它基本上不随外界条件的变动和元素所处状态的改变而改变。

三.核能的来源

人类生活中利用的大多是化学能。化石燃料燃烧时燃料中的碳原子和空气中的氧原子结合,同时放出一定的能量。这种原子结合和分离使得电子的位置和运动发生变化,从而释放出的能量称之为化学能。显然它与原子核无关。
如果设法使原子核结合或分离是否也能释放出能量呢?近百年来科学家持之以恒的努力给予的答案是肯定的。这种由于原子核变化而释放出的能量,早先通俗地称为原子能。因为所谓原子能实际上是由于原子核发生变化而引起的,因此应该确切地称之为原子核能。经过科学家们多年的宣传,现在广大公众已了解原子能实际上是“核”的功劳,于是现在简洁的称呼“核能”取代了“原子能”;“核弹”、“核武器”取代了“原子弹”和“原子武器”。

“核能”来源于将核子(质子和中子)保持在原子核中的一种非常强的作用力——核力。试想,原于核中所有的质子都是带正电的,当它们拥挤在一个直径只有10-13cm的极小空间内时其排斥力该有多么大!然而质子不仅没有飞散,相反地还和不带电的中子紧密地结合在一起。这说明在核子之间还存在一种比电磁力要强得多的吸引力,这种力科学家就称之为“核力”。核力和人们熟知的电磁力以及万有引力完全不同,它是一种非常强大的短程作用力。当核子间的相对距离小于原子核的半径时,核力显得非常强大;但随着核子间距离的增加,核力迅速减小,一旦超出原于核半径,核力很快下降为零。而万有引力和电磁力都是长程力,它们的强度虽会随着距离的增加而减小,但却不会为零。
科学家在研究原于核结合时发现,原子核结合前后核子质量相差甚远。例如氦核是由4个核子(2个质子和2个中子)组成,对氦核的质量测量时发现,其质量为4.002663原子质量单位:而若将4个核子的质量相加则应为4.032980原子质量单位。

这说明氦核结合后的质量发生了“亏损”,即单个核的质量要比结合成核的核子质量数大。这种“质量亏损现象”正是缘于核子间存在的强大核力。核力迫使核子间排列得更紧密,从而引发质量减少的“怪”现象。

根据爱因斯坦的质能关系,任何物质的质量m和能量E之间有如下关系: E=mc2

式中:C为真空中的光速。根据上式,氮核的质量亏损所形成的能量为E=28.30MeV。当然就单个氦核而言,质量亏损所形成的能量很小,但对1g氦而言,它释放的能量就大得惊人,达6.78×1011J,即相当于19万kW·h的电能。由于核力比原子核与外围电子之间的相互作用力大得多,因此核反应中释放的能量就要比化学能大几百万倍。科学家将这种由核子结合成原子核时所放出的能量称之为原子核的总结合能。由于各种原子核结合的紧密程度不同,原子核中核子数不同,因此总结合能也会随之变化。由于结合能上的差异,于是产生了两种利用核能的不同途径:核裂变和核聚变。

核裂变又称核分裂,它是将平均结合能比较小的重核设法分裂成两个或多个平均结合能大的中等质量的原子核,同时释放出核能。重核裂变 般有自发裂变和感生裂变两种方式。自发裂变是重核本身不稳定造成的,因此其半衰期都很长。如纯铀自发裂变的半衰期约为45亿年,因此要利用自发裂变释放出的能量是不现实的。例如100万kg的铀自发裂变发出的能量一天还不到lkW·h电能。感生裂变是重核受到其他粒子(主要是中子)轰击时裂变成两块质量略有不同的较轻的核,同时释放出能量和中子。一个铀核受中子轰击时发生感生裂变时所释放的能量如表4-1所示。核感生裂变释放出的能量才是人们可以加以利用的核能。

核聚变又称热核反应,它是将平均结合能较小的轻核,例如 氘和氚在一定条件下将它们聚合成一个较重的平均结合能较大的原子核.同时释放出巨大的能量。由于原子核间有很强的静电排斥力,因此一般条件下发生核裂变的几率很小,只有在几千万度的超高温下,轻核才有足够的动能去克服静电斥力而发生持续的核聚变。由于超高温是核聚变发生必须的外部条件,所以又称核聚变为热核反应。

由于原子核的静电斥力同其所带电荷的乘积成正比,所以原子序数越小,质子数越少,聚合所需的动能(即温度)就越低。因此只有一些较轻的原子核,如氢、氘、氚、氦、锂等才容易释放出聚变能。最有希望的聚合反应是氘和氚的反应,它释放的能量是铀裂变反应的5倍。

利用氦(2He4)、锂(3Li6)和氢的同位素氘及氚产生的几种不同的聚变反应,其中以氘-氚反应和氘-氘反应较为理想。氘-氚反应可以在较低的温度下进行:

1D2+1T3 → 2He4+n+17.6MeV

但氚只能由人工制造,如用中子轰击锂-6获得:

3Li6+n → 2He4+1T3+4.8MeV

而锂资源有限,只能供应数百年,因此氘-氚反应不能从根本上解决能源问题。利用丰富的氘同位素作原料,使其聚合发生下列反应:

1D2 +1D2 → 2He3+n+3.2MeV

1D2+1D2 → 1T3+P+4.0MeV

1D2+2He3 → 2He4+P+18.3MeV

在不使用锂-6的情况下,总反应为:

61D2 → 2 2He4+2P+2n+43.1MeV

氘在海水中含量非常丰富,而且提取也经济。海水中的重水是提取氘的重要原料。如每一立方米海水中的氘具有的潜能相当于大约270吨煤或1360桶石油的燃烧能量,而全球海洋中的氘的总能量供应相当于全世界原始化石燃料总能量供应的5000万倍。若氘-氘反应能够实现,海洋将成为人类用之不竭的能源。另一方面由于聚变反应不产生裂变碎片,所以更为安全,因此核聚变是理想的能源。

在氢弹爆炸中发生的是不可控的核聚变反应,而可控的核聚变反应至今仍处在研究阶段。核聚变反应的主要困难是如何获得热核反应所需的1亿摄氏度的高温及如何约束高温下的热核材料。虽然目前世界上已建成了很多对高温等离子体实行磁约束的实验装置,但至今未获得突破性的进展。

由于核聚变要求很高的温度,目前只有在氢弹爆炸和由加速器产生的高能粒子的碰撞中才能实现。因此使聚变能能够持续地释放,让其成为人类可控制的能源,即实现可控热核反应仍是21世纪科学家奋斗的目标。

四.反应堆

1.链式反应

20世纪最激动人心的科学成果之一就是核裂变的利用。链式反应是实现大规模可控核裂变的关健。图4-2是核裂变链式反应的示意图。从图上可以看出;每个铀核裂变时会产生2-3个中子,这些中子又会轰击其他铀核,使其裂变并产生更多的中子,这样一代一代发展下去就会形成一连串的裂变反应。这种连续不断的核裂变过程就称之为链式反应。虽然控制中子数的多寡就能控制链式反应的强弱。最常用的控制中子数的方法就是用善于吸收中子的材料制成控制棒,并通过控制棒位置的移动来控制维持链式反应的中子数目,从而实现可控核裂变。镉、硼、铪等材料吸收中子能力强,常用来制作控制棒。

2.反应堆的分类

实现大规模可控核裂变链式反应的装置称为核反应堆,简称为反应堆.它是向人类提供核能的关键设备。根据反应堆的用途所采用的燃料、冷却剂与慢化剂的类型以及中于子能量的大小,反应堆有许多分类的方法。

(1)按反应堆的用途分类

1) 生产堆。这种堆专门用来生产易裂变或易聚变物质,其主要目的是生产核武器的装料怀和氚。

2)动力堆。这种堆主要用作发电和舰船的动力。

3)试验堆。这种堆主要用于试验研究,它既可进行核物理、辐射化学、生物、医学等方面的基础研究,也可用于反应堆材料,释热元件、结构材料以及堆本身的静、动态特性的应用研究。

4)供热堆。这种堆主要用作大型供热站的热源。

(2)按反应堆采用的冷却剂分类

1)水冷堆。它采用水作为反应堆的冷却剂。

2)气冷堆。它采用氦气作为反应堆的冷却剂。

3)有机介质堆。它采用有机介质作反应堆的冷却剂。

4)液态金属冷却堆。它采用液态金属钠作反应堆的冷却剂。

(3)按反应堆采用的核燃料分类

1)天然铀堆。以天然铀作核燃料。

2)浓缩铀堆。以浓缩铀作核燃料。

3)钍堆。以钍作核燃料。

(4)按反应堆采用的慢化剂分类

1)石墨堆。以石墨作慢化剂。

2)轻水堆。以普通水作慢化剂。

3)重水堆。以重水作慢化剂。

(5)按核燃料的分布分类

1)均匀堆。核燃料均匀分布。

2)非均匀堆。核燃料以燃料元件的形式不均匀分布。

(6)按中子的能量分类

1)热中子堆。堆内核裂变由热中子引起。

2)快中子堆。堆内核裂变由快中子引起。

3.动力堆

在核能的利用中动力堆最为重要。动力堆主要有轻水堆,重水堆、气冷堆和快中子增殖堆。

(1)轻水堆

轻水堆是动力堆中最主要的堆型。在全世界的核电站中轻水堆约占85.9%。普通水(轻水)在反应堆中既作冷却剂又作慢化剂。轻水堆又有两种堆型:沸水堆和压水堆。前者的最大特点是作为冷却剂的水会在堆中沸腾面产生蒸汽,故叫沸水堆。后者反应堆中的压力较高,冷却剂水的出口温度低于相应压力下的饱和温度,不会沸腾,因此这种堆又叫压水堆。压水堆是核电站应用最多的堆型,在核电站的各类堆型中约占61.3%。

(2)重水堆

重水堆以重水作为冷却剂和慢化剂。由于重水对中子的慢化性能好,吸收中子的几率小,因此重水堆可以采用天然铀作燃料。这对天然铀资源丰富,又缺乏浓缩铀能力的国家是一种非常有吸引力的堆型。在核电站中重水堆约占4.5%。

(3)气冷堆

气冷堆是以气体作冷却剂,石墨作慢化剂。气冷堆经历了三代。第一代气冷堆是以天然铀作燃料,石墨作慢化剂.二氧化碳作冷却剂。这种堆最初是为生产核武器装料,后来才发展为产和发电两用。这种堆型早巳停建。第二代称之为改进型气冷堆,它是采用低浓缩铀作燃料,慢化剂仍为石墨,冷却剂亦为二氧化碳,但冷却剂的出口温度已由第一代的400度提高到600℃。第三代为高温气冷堆。与苗两代的区别是采用高浓缩铀作燃料,并用氦作为冷却剂。由于氦冷却效果好,燃料为弥散型无包壳,堆芯石墨又能承受高温,所以堆芯气体出口温度可高达800℃,故称之为高温气冷堆。核电站的各种堆型中气冷堆约占2%—3%,除发电外高温气冷堆的高温氦气还可直接用于需要高温的场合,如炼钢、煤的气化和化工过程等。

(4)快中子增殖堆

前述的几种堆型中核燃料的裂变主要是依靠能量比较小的热中子,都是所谓热中子堆。在这些堆中为了慢化中子,堆内必须装有大量的慢化剂。快中子反应堆不用慢化剂,裂变主要依靠能量较大的快中子。如果快中子堆中采用239Pu(钚)作燃料,则消耗一个239Pu核所产生的平均中子数达2.6个,除维持链式反应用去一个中子外,因为不存在慢化剂的吸收,故还可能有一个以上的中子用于再生材料的转换。例如可以把堆内天然铀中的238U转换成239Pu,其结果是新生成的239Pu核与消耗的239Pu核之比(所谓增殖比)可达1.2左右,从而实现了裂变燃料的增殖。所以这种堆也称为快中子增殖堆。它所能利用的铀资源中的潜在能量要比热中子堆大几十倍。这正是快堆突出的优点。
由于快堆堆芯中没有慢化剂,故堆芯结构紧凑、体积小,功率密度比一般轻水堆高4-8倍。由于快堆体积小,功率密度大,故传热问题显得特别突出。通常为强化传热都采用液态金属钠作为冷却剂。快中子堆虽然前途广阔,但核术难度非常大,目前在核电站的各种堆型中仅占0.7%。

潮汐能发电
潮汐能的主要利用方式是潮汐发电。利用潮汐发电必须具备两个物理条件:首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水,并可进行土建工程。潮汐发电的工作原理与一般水力发电的原理是相近的,即在河口或海湾筑一条大坝,以形成天然水库,水轮发电机组就装在拦海大坝里。潮汐电站可以是单 水库或双水库。从图1可以看出单水库潮汐电站只筑一道堤坝和一个水库。老的单水库潮汐电站是涨潮时使海水进人水库,落潮时利用水库与海面的潮差推动水轮发电机组。它不能连续发电,因此又称为单水库单程式潮汐电站。新的单水库潮汐电站利用水库的特殊设计和水闸的作用既可涨潮时发电,又可在落潮时运行,只是在水库内外水位相同的平潮时才不能发电。这种电站称之为单水库双程式潮汐电站,它大大提高了潮汐能的利用率。

因此为了使潮汐电站能够全日连续发电就必须采用双水库的潮汐电站。图2是双水库潮汐电站的示意图。这种电站建有两个相邻的水库,水轮发电机组放在两个水库之间的隔坝内。一个水库只在涨潮时进水(高水位库),一个水库(低水位库)只在落潮时泄水;两个水库之间始终保持有水位差,因此可以全日发电。 由于海水潮汐的水位差远低于一般水电站的水位差,所以潮汐电站应采用低水头、大流量的水轮发电机组。目前全贯流式水 轮发电机组由于其外形小、重量轻、管道短、效率高已为各潮汐电站广泛采用。

据估计到2O00年全世界潮汐发电站的年发电量可达到3X1010~6X1010kw·h。潮汐电站除了发电外还有着广阔的综合利用前景,其中最大的效益是围海造田、增加土地,此外还可进行海产养殖及发展旅游。正由于以上原因潮汐发电已倍受世界各国重视。

阅读全文

与潮汐能发明者相关的资料

热点内容
马鞍山市保安 浏览:253
股权转让样本 浏览:716
工程管理保证书 浏览:198
社区矛盾纠纷排查汇报 浏览:352
新疆公共就业服务网登陆 浏览:316
侵权著作权案件审理指南上海 浏览:145
马鞍山陆建双 浏览:853
北京东灵通知识产权服务有限公司西安分公司 浏览:6
海南证券从业资格证书领取 浏览:846
成果有男票吗 浏览:828
知识产权法04任务0001答案 浏览:691
马鞍山519日停电通知 浏览:977
马鞍山金鹰营业时间 浏览:919
矛盾纠纷排查调处信息 浏览:714
贵州注册土木工程师岩土证书领取时间 浏览:829
买家投诉发票 浏览:251
普通护照的期限 浏览:766
发明文言文 浏览:523
国培线下专题研修成果 浏览:577
马鞍山苏丛勇 浏览:109