导航:首页 > 创造发明 > 方程式创造者

方程式创造者

发布时间:2021-07-20 05:21:39

Ⅰ 用消元法解高次方程科学首创者是谁

朱世杰,字汉卿,号松庭。燕山(今北京附近)人,生卒年不详,中国元代著名数学家。

中国在两汉时期就能解一次方程,古时候称为“方程术”。到了宋元时期又出现了具有世界意义的成就——天元术。那么,当未知数不止一个的时候,怎么列出高次联立方程组求解呢?有这样一道古代数学题:“直田积八百六十四步,只云长阔共六十步,问阔及长各几步?答曰:阔二十四步,长三十六步”。这就是说,长方形田地的面积等于八六四平方步,长与宽的和是六十步,长与宽各多少步?此题列成方程式即是:xy=864,x+y=60,其中x、y分别表示田的长和宽,这是一个二元二次方程组问题,此题选自我国南宋数学家杨辉所著《田亩比类乘除算法》一书。这说明,我国宋代数学家就已结合生产实践对多元高次方程组有了研究。那么,有没有三元三次方程组,四元四次方程组呢?当然有。早在宋、元时期,我国数学家就圆满地解决了这个问题。

元代数学家朱世杰,在与他同时代的数学家秦九韶、李治所创立的一元高次方程的数值解法和天元术的基础上,进一步发展了“四元术”,创造了用消元法解二、三、四元高次方程组的方法。

朱世杰这—重大发明,都记录在他的杰作《四元玉鉴》一书中。

Ⅱ 哪个法国数学家创造了 方程

法国数学家韦达

十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"

这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".

十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.

由於那时我国古代文化的势力还较强,西方近代科学文化未能及时

在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这

些学科或概念都只是在极少数人中学习和研究.

十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国

传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟

两人很注重数学名词的正确翻译,他们借用或创设了近四百个数

学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借

用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知

数的等式.

1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传

教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程

式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章

算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在

很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审

查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次

方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.

既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.

(本文摘自九章出版社之"数学诞生的故事")

Ⅲ 方程是谁发明的

方程是法国数学家韦达首创 。十六世纪,随着各种数学符号的出现,法国数学家韦达创立内了较系统的表容示未知量和已知量的符号以后,“含有未知数的等式” ,这一专门概念便出现了。方程史话:一、大约3600年前古埃及人写在纸草上的数学问题中,就涉及了方程中含有未知数的等式。二、公元825年左右中亚细亚的数学家阿尔-花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。三、宋元时期中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于“设未知数x。”所以在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。《九章算术·方程》白尚恕注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。

Ⅳ 2002年世界一级方程式F1,舒马赫创造了什么神话拜托了各位 谢谢

在2002年,法拉利赢得了17场比赛中的15场,这种绝对优势F1比赛变得缺乏悬念,从而在世界范围内引起了F1比赛电视观众的大流失。在2003年,因为比赛的竞争激烈程度有所增加,才使得观众数量有所回升,但是观众流失的危机仍然没有消除。在今年的比赛伊始,法拉利车队表现出来的强劲势头又引起了许多人的担心,甚至许多法拉利的支持者们也认为,法拉利和舒马赫独霸天下的局面对F1的长期发展并没有好处。在1955年同阿根廷车手方吉奥一道代表梅赛德斯车队夺得了除摩纳哥大奖赛之外的所有冠军的斯德林-莫斯在接受采访时说,1950年到1957年,方吉奥和梅赛德斯车队是绝对的F1霸主,致使其他车队和车手已经丧失了夺冠的欲望。他说:“当时,其他车手所努力争取的并不是冠军,而是亚军。这种没有悬念的比赛不仅令观众感到乏味,而且也使车手们失去了动力。这样的情况对F1本身的确是一种伤害,因为没有竞争的比赛根本没有魅力可言。”

Ⅳ 方程是谁发明的

方程的发明者是法国数学家韦达。

韦达1540年生于法国的普瓦图(Poitou),今旺代省的丰特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒于巴黎。年轻时学习法律并当过律师。后从事政治活动,当过议会的议员。

在对西班牙的战争中,曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。

韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。

(5)方程式创造者扩展阅读:

早在3600年前,古埃及人写在草纸上的数学问题中,就涉及了方程中含有未知数的等式。

公元825年左右,中亚细亚的数学家阿尔·花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。

方程中文一词出自古代数学专著《九章算术》,其第八卷即名“方程”。“方”意为并列,“程”意为用算筹表示竖式。

卷第八(一)为:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?

(现今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。问1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)

白话翻译:卷第八(一)为:现在有上禾三点,中禾二点,下禾一点,实际上三十九斗;上禾二点,中禾三点,下禾一点,实际上三十四斗;上禾一点,中禾二点,下禾三点,实际上两个十六斗。向上、中、下禾是一点各是多少?

(现在有上等黍三捆、中等黍二捆、下等黍子捆,打出来的饭共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出来的饭共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出来的饭共有二十六斗。问1捆上等人黍、一捆中等黍、1把下等人黍各能打响多少斗黄米?)

答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。

白话翻译:他回答说:上禾一点,九斗、四分一的一,中禾一点,四斗、四分一的一,下禾一点,二斗、四分之三斗。

方程术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗,于右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不尽者遍乘左行而以直除。左方下禾不尽者,上为法,下为实。实即下禾之实。

求中禾,以法乘中行下实,而除下禾之实。余如中禾秉数而一,即中禾之实。求上禾亦以法乘右行下实,而除下禾、中禾之实。余如上禾秉数而一,即上禾之实。实皆如法,各得一斗。

白话翻译:方程方法是:设置上禾三点,中禾二点,下禾一点,实际上三十九斗,在右边。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不尽的遍乘左行而以直任。左下方禾不尽的,上为法,以下是真实。实立即下禾的事实。

求中禾,因法乘中走下实,而除下禾的事实。我像中禾持数而一,就是中禾的事实。求上禾也因法乘右边走下实,而除下禾、中禾的事实。我像上禾持数而一,登上禾的事实。实际上都像法,各得一斗。

以上是出自《九章算术》中的三元一次方程组,并展示了用“遍乘直除”来消元以解此方程组。

魏晋时期的大数学家刘徽在公元263年前后为《九章算术》作了大量注释,介绍了方程组:二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。他还创立了比“遍乘直除”更简便的“互乘相消”法来解方程组。

Ⅵ 数学方程式中的元和次是谁创立的

数学方程式中的元和次是中国清朝时期的康熙皇帝创立的。

康熙皇帝是中国历史上声名显赫,又有远大抱负,聪明好学的一位皇帝。他除了其文治武功之外 ,还十分爱好数学,曾拜比利时的南怀仁等传教士为师,学习数学 、天文、地理以及拉丁文等,康熙皇帝虽然聪颖过人,但是听外籍教师讲课也有困难,因为南怀仁等人的汉语和满语水平有限,日常会话勉强对付,但要将严谨而高深的科学知识表达出来就显得力不从心了。而当时课本多是外文,即使中译本也是半通不通的。这样,学习中就必然有许多精 力被消耗在语言沟通上,进度不快 。

不过,康熙学习很刻苦,也很有耐心,不懂就请教,直至真正弄懂为止。南怀仁在讲方程时,句子冗长,吐音又很不清楚,康熙的脑子常常被搞得晕晕糊糊的,怎样才能让老师讲得好懂呢?一阵冥思苦想后,一个妙法突然冒出来。他向南怀仁建议 ,将未知数翻译为“元”,最高次数翻译为“次”(限整式方程),使方程左右两边相等的未知数的值翻译为“根”(解)⋯⋯南怀仁用笔认真地记了下来 ,随即用这些新创术语换下自己原先使用的繁琐词语 :“求二‘元’一‘次’方程的‘根 ’(解 )⋯⋯“如此一来,果然简单了很多,而且还可以提高教学效率,南怀仁惊疑地盯着康熙,愣怔了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人 !”

正因为康熙创造的这几个数学术语科学而简洁,十分便于理解和记忆,因此一直延用到今天 。

Ⅶ 方程式的发展历史

一)属于算术方面的材料

大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”

和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。

现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。

古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。

小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。

宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。

(二)属于代数方面的材料

从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。

“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。

我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。

十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。

在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。

级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。

历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。

内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。

十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。

就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大。

结绳:最古的记数方法,传为伏羲所创。

书器:一种最古的记数工具,传为隶首所创。

河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。

八卦:传为周公所创,是最初的二进制法。

规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。

几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。

九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。

技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。

数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

Ⅷ 我们现在数学用的方程,根,解等名词都是康熙创造出来的吗有何依据(正史,谢谢!)

康熙教皇子数学、天文学、地理学、医学、测量学、农学等。先以观测日食回为例。康熙三十六年答(1697年)闰三月初一日,日食。时康熙帝亲征噶尔丹在外,皇太子在北京观测,使用皇父所赐嵌有三层玻璃的小镜子,装于自鸣钟之上,用望日千里眼观望。日食似不到十分,日光、房屋、墙壁及人影俱可见,甚属明耀。观测奏报自京城发出,送皇父览阅。康熙帝得到奏报后,朱批曰:“览尔所奏,果然如此。”后来皇四子胤禛(雍正)回忆道:“昔年遇日食四五分之时,日光照耀,难以仰视。皇考亲率朕同诸兄弟在乾清宫,用千里镜,四周用夹纸遮蔽日光,然后看出考验所亏分数。此朕身经实验者。”又以几何学为例。法国耶稣会士白晋写给法王路易十四的信中说,康熙帝亲自给皇三子胤祉讲解几何学,并培养其科学才能。后又让胤祉等向意大利耶稣会士德理格学习律吕知识,“命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日讲究其精微,修造新书”。康熙帝命在畅春园蒙养斋开馆,派允祉主持纂修《律历渊源》,汇律吕、历法和算法于一书。允祉还为《古今图书集成》的纂辑做出贡献,成为康熙朝一位杰出的学者。但他在雍正继位后,仍未逃过劫难:被夺爵,禁景山永安亭而死。

Ⅸ 创造一元一次方程的是谁

一元一次方程式
--- 方程式的由来
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"
这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".
十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.
由於那时我国古代文化的势力还较强,西方近代科学文化未能及时
在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这
些学科或概念都只是在极少数人中学习和研究.
十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国
传教士伟烈亚力,将英国数学家德.摩尔根的译出.李.伟
两人很注重数学名词的正确翻译,他们借用或创设了近四百个数
学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借
用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知
数的等式.
1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传
教士兰雅合译英国渥里斯的,他们则把"equation"译为"方程
式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指中的意思,而方程式是指"今有未知数的等式".华.傅的主张在
很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审
查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次
方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.
既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.
(本文摘自九章出版社之"数学诞生的故事")

Ⅹ 谁是最早的F1一级方程式赛车世界冠军

第一位赛车世界冠军是Giuseppe Farina (1906-1966)。

世界上首次出现汽车比赛是在1894年--1900年(法国巴黎到里昂),当时没有出现“方程式”(Formula)一词。1904年之前,每个国家及汽车俱乐部都可以自行组织汽车赛,各自制定一套规则。
当时最具影响力的一些汽车俱乐部为保持汽车赛事的繁荣,决定成立一个国际组织(FIA),由该组织指定通行的规则以适用于全世界的汽车比赛。国际汽车联合会(Fe’e’deration Internationale de I’Automobile,缩写为FIA,简称国际汽联)因此应运而生。FIA制定竞赛规则,从而保证车手及观众的安全。
“方程式”最初于1904年被FIA使用(限制最大重量),以区别于小型汽车,作为与小型汽车不同类型的另类赛车。二次世界大战后, “一级方程式”一词正式出现。
F1一级方程式大奖赛 (FORMULA ONE WORLD CHAMPIONSHIP)
Formula(方程式)赛车的含义:“方程式”其实就是“规则与限制”的意思,因为F1比赛是在FIA所制订的规格与规则下制造赛车及进行比赛。所有参赛队伍都必须遵守这套如方程式般的准则。
除了F1之外,还有其他不同等级的方程式比赛诸如F3、 F3000、 Formula Ford、 Formula Renault 等等,他们都属于方程式赛车的一种,只是各自的规范不同,而F1是FIA所制订的方程式赛车规范中等级最高的,因此以1命名。
全世界第一场F1是在英国银石(Silver stone)赛道上举行,车辆规格以1947年所制定的规则为依据,引擎最大排气量为4500cc非增压引擎或是1500cc机械增压引擎。

第一位赛车世界冠军Giuseppe Farina (1906-1966)

1950年 F1全年赛季总共有七场比赛,其中包含一场美国Indianapolis 500。
第一场F1比赛冠军由Giuseppe Farina驾驶阿尔法.柔蜜欧(Alfa Romeo)赛车所取得,而他也成为F1史上第一位世界冠军。
Giuseppe Farina 参赛车Alfa Romeo 1950

正式的F1车赛是从1961年开始。F1制定了新的规则,把排量限制在1.5升,这个规则如同是为当时的英国小型赛车量身定做,尤其对LOTUS 18赛车有利。虽然在当时F2比F1更受关注,但英国赛车界和LOTUS公司以及考文垂引擎制造公司仍持续不断地进行F1赛车的开发工作,长期不懈的努力让LOTUS在世界赛场上一展风采,而最大的竞争对手就是装备1.5升V6引擎的法拉利(Ferrari)赛车,这比LOTUS的1.5升4缸引擎的动力强劲许多。
在1961年摩纳哥车赛上,老旧的LOTUS 18赛车却遥遥领先法拉利获得胜,随后推出的LOTUS 24赛车采用更精良的4缸发动机,虽然动力仍旧比法拉利的V6引擎低20马力,但更轻的自重弥补了不足。
莲花汽车公司的创办人柯林查普曼

莲花跑车(LOTUS) 是英国绅士柯林查普曼(Colin Anthony Bruce Chapman)的杰作,个人奋斗与智慧的结晶。查普曼是典型的英国绅士,战后数十年,这位英国工程师对世界汽车运动影响巨大。他统领下的 LOTUS 车队是一支骁勇的车队,自1958年首次参加 F1 车赛便名声大噪屡建奇功,先后7次在 F1 中夺冠,创出了多种名垂青史的经典车款。他所设计的一体成形车身单座赛车具划时代意义,在 F1 赛事中统治了整整20年。

查普曼从零开始,在汽车运动的狂热驱使下,亲手制造自己所心仪的赛车,进而在汽车制造与竞赛两方面都创造了辉煌业绩。称得上是世界汽车史上最美的一段佳话。无论是批量生产的跑车还是赛车,他都亲自参与研发设计与制造,倾注了毕生心血。在五六十年代设计的 LOTUS Seven 及许多小跑车令人至今难忘。至今,莲花汽车公司logo上仍有查普曼的名字缩写“CABC”。
柯林·查普曼去世后,莲花汽车公司几易其主,最终在1997年被马来西亚西康集团收购。
LOTUS 五种经典车型: Elite精英性情跑车、Seven赛威性情跑车、Elen爱伦性情跑车、Europe欧洲性情跑车、Esprit精灵超级跑车。

法拉利创建于1929年,是举世闻名的赛车和运动跑车的生 产厂家。创始人是世界赛车冠军,划时代的汽车设计大师恩佐·法拉利(Enzo ferrari 1898-1988)。
法拉利汽车大部分采用手工制造,年产量只有4千辆左右,公司总部设在意大利的摩德纳。

恩佐·法拉利认为,最中意的赛车是还没造出来的赛车,最大的成功是还没有达到的成功。这位被誉为“赛车之父”的意大利人,从小就嗜车如命。当13岁时,他终于说服了父亲,开始了自己单独驾车的历史。赛车场上发动机的轰鸣声,比赛的惊险和刺激,使他愈战愈勇。他驾驶着阿尔法 ·罗密欧驰骋赛场,屡获殊荣,被队友们誉为赛车队的“骑士”。由参加赛车到组建赛车俱乐部,最后他终于创建了自己的汽车公司。现在的法拉利被誉为“红色闪电”

1947年,法拉利生产出以自己的名字命名--法拉利Tipol25,以跳马图为商标的第一辆车。此后的3年时间里,又相继生产了 Tipo166、Tipo195、Tipo212、Tipo225、等型赛车。
赛车的性能需要在赛车场上检验,法拉利积极参加各种汽车大赛,借以检验、宣传自己的赛车。

法拉利赛车没有辜负他的期望,先后夺得多项桂冠:在1951年的迈勒·米格拉尔汽车大赛上,排量4.1升的 Tipo375获胜;在布宜诺斯艾利斯1000千米汽车赛上,排量4.9升的Tipo410夺魁;1956年,经过法拉利改造的蓝旗车一举夺得世界汽车竞赛的最高荣誉--一级方程式赛车年度总冠军。一连串的胜利,奠定了法拉利赛车在世界车坛至高无上的地位

阅读全文

与方程式创造者相关的资料

热点内容
榆次区公共卫生服务中心 浏览:990
申发明5G 浏览:815
矛盾纠纷排查调处工作协调会议记录 浏览:94
版权贸易十一讲 浏览:370
综治办矛盾纠纷排查调处工作总结 浏览:903
知识产权局专业面试 浏览:75
马鞍山市是哪个省的 浏览:447
马鞍山市保安 浏览:253
股权转让样本 浏览:716
工程管理保证书 浏览:198
社区矛盾纠纷排查汇报 浏览:352
新疆公共就业服务网登陆 浏览:316
侵权著作权案件审理指南上海 浏览:145
马鞍山陆建双 浏览:853
北京东灵通知识产权服务有限公司西安分公司 浏览:6
海南证券从业资格证书领取 浏览:846
成果有男票吗 浏览:828
知识产权法04任务0001答案 浏览:691
马鞍山519日停电通知 浏览:977
马鞍山金鹰营业时间 浏览:919