导航:首页 > 创造发明 > 傅科发明的第一个百有多少场

傅科发明的第一个百有多少场

发布时间:2021-06-24 11:51:29

『壹』 历史上的第一位

A 维塔利·阿巴拉科夫,Vitaly Abalakov,(1906-1986),苏联 — 登山设备,阿巴拉科夫绳(或 V-thread)无齿轮攀冰锚 罗伯特·阿德勒,Robert Adler,(1913-2007),奥地利/美国 — 电视机用无线遥控器 B 查尔斯·巴贝奇,Charles Babbage,(1791-1871),英国 — 分析机(可编程计算机) 罗吉尔·培根,Roger Bacon,(1214-1294),英国 — 放大镜 约翰·罗杰·贝尔德,John Logie Baird,(1888-1946),苏格兰 — 电动机械电视系统 约翰·巴丁,John Bardeen,(1908-1991),美国 — 晶体管的共同发明人 亚历山大·格拉汉姆·贝尔,Alexander Graham Bell,(1847-1922),美国 — 电话机 卡尔·本茨,(1844-1929),Karl Benz,(1844-1929),德国 — 汽油动力汽车 蒂姆·伯纳斯-李,Tim Berners-Lee,(1955-),英国 —和Robert Cailliau共同发明万维网 沃尔特·豪泽·布喇顿,Walter Houser Brattain,(1902-1987),美国 — 晶体管的共同发明人 路易斯·布莱叶,Louis Braille,(1809-1852),法国 — 布莱叶点字法(一种盲文书写系统) 卡尔·费迪南德·布劳恩,Karl Ferdinand Braun,(1850-1918),德国 — 阴极射线管 谢尔盖·布林,Sergey Brin,(1973-),苏联/美国 — 和拉里·佩奇共同发明了Google网络搜索引擎 约翰·勃朗宁,John Moses Browning,(1855-1926),美国 — 半自动手枪 C 华莱士·卡罗瑟斯,Wallace Hume Carothers,(1896-1937),美国 — 尼龙 亨利·科安德,Henri Coand,(1886-1972),罗马尼亚 — 现代喷气式飞机 雅克-伊夫·库斯托,Jacques Cousteau,(1910-1997),法国 — 水肺及Nikonos水下照相机 汤马斯·克拉普,Thomas Crapper,(1836-1910),英国 — 水电技师 格伦·柯蒂斯,Glenn Curtiss,(1878-1930),美国 — 滑翔机机翼的副翼 D 尼尔斯·古斯塔夫·达伦,Nils Gustaf Dalén,(1869-1937),瑞典 — AGA炉具,Dalén灯塔用灯具,Agamassan,蓄电池,结合燃点航标、燃点浮标和蓄电池等功能的自动调节装置 汉弗里·戴维,Humphry Davy,(1778-1829),英国 — 戴维灯 詹姆斯·杜瓦,James Dewar,(1842-1923),苏格兰 — 保温瓶 威廉·肯尼迪·迪克森,William Kennedy Laurie Dickson,(1860-1935),苏格兰 — 电影摄像机和活动电影放映机 鲁道夫·狄塞尔,Rudolf Christian Karl Diesel,(1858-1913),德国 — 柴油发动机 E 乔治·伊士曼,George Eastman,(1854-1932),美国 — 胶卷 托马斯·阿尔瓦·爱迪生,Thomas Alva Edison,(1847-1931),美国 — 电灯、留声机、活动电影放映机等 威廉·埃因托芬,Willem Einthoven,(1860-1927),荷兰 — 心电图与量测装置 道格拉斯·恩格尔巴特,Dr. Douglas C. Engelbart,(1925-),美国 — 鼠标 F 迈克尔·法拉第,Michael Faraday,(1791-1867),英国 — 发电机、电动机、电力变压器 恩里科·费米,Enrico Fermi,(1901-1954),美国/意大利 — 核反应堆 范信达,Reginald Aubrey Fessenden,(1866-1932),加拿大 — 收发两用无线电设备 亚历山大·弗莱明,Alexander Fleming,(1881-1955),苏格兰 — 青霉素(又称盘尼西林,Penicillin,抗生素的一种) 莱昂·傅科,Jean Bernard Léon Foucault,(1819-1868),法国 — 傅科摆、陀螺仪、涡电流 本杰明·富兰克林,Benjamin Franklin,(1706-1790),美国 — 避雷针、双光眼镜、玻璃琴、富兰克林壁炉 奥古斯丁·简·菲涅耳,Augustin-Jean Fresnel,(1788-1827),法国 — 菲涅耳透镜 巴克敏斯特·富勒,Richard Buckminster Fuller,(1895-1983),美国 — 球形或半球形贝壳或网格建筑结构 G 伽博·丹尼斯,Dennis Gabor,(1900-1979),英国匈牙利 — 全息摄影 理查·加特林,Richard Jordan Gatling,(1818-1903),美国 — 小麦播种机、加特林机枪 汉斯·盖革,Hans Geiger,(1882-1945),德国 — 盖革计数器 罗伯特·戈达德,Robert Hutchings Goddard,(1882-1945),美国 — 液体火箭 查尔斯·古德伊尔,Charles Goodyear,(1800-1860),美国 — 硫化橡胶 奥托·冯·格里克,Otto von Guericke,(1602-1686),德国 — 活塞式真空泵 约翰内斯·古腾堡,Johannes Gutenberg,(约1390年代-1468),— 活字印刷机 H 海什木,Ibn al-Haytham,(965-1039),伊拉克 — 相机暗盒,针孔照相机,放大镜,凹凸镜,球面镜 罗伯特·海莱因,Robert A. Heinlein,(1907-1988),美国 — 水床 约瑟·亨利,Joseph Henry,(1797-1878),美国 — 电磁继电器 海因里希·鲁道夫·赫兹,Heinrich Rudolf Hertz,(1857-1894),德国 — 无线电报,电磁波 乔治·德海韦西,George de Hevesy,(1885-1966),匈牙利 — 放射性指示剂 罗兰·希尔,Rowland Hill,(1795-1879),英国 — 邮票 罗伯特·胡克,Robert Hooke,(1635-1703),英国 — 钟表轮摆,摄影镜头的虹膜式光圈 克里斯蒂安·惠更斯,Christiaan Huygens,(1629-1695),荷兰 — 摆钟 I 饭岛澄男,Sumio Iijima,(1939-),日本 — 碳纳米管 J 贾比尔,Jabir ibn Hayyan (Geber),(721-851),也门/波斯 — 炼金家 K 米哈伊尔·季莫费耶维奇·卡拉什尼科夫,Mikhail Kalashnikov,(1919-),苏联 — AK-47和AK-74自动步枪 狄恩·卡门,Dean Kamen,(1951-),美国 — 思维车以及自动平衡式动力轮椅——iBOT 海克·卡末林·昂内斯,Heike Kamerlingh Onnes,(1853-1926),荷兰 — 液化氢和液化氮 花拉子米/花剌子模,Muhammad ibn Mūsā al-Khwārizmī,(约780-850),波斯 — 现代代数学、挂墙量角器、象限仪等 杰克·基尔比,Jack Kilby,(1923-2005),美国 — 集成电路 肯迪,Al-Kindi (Alkins),(796-873),— 酒精,蒸馏酒,密码分析,频率分析 罗伯特·科赫,Robert Koch,(1843-1910),德国 — 固体介质中的细菌培养法 谢尔盖·帕夫洛维奇·科罗廖夫,Sergey Korolyov,(1907-1966),乌克兰/苏联 — R-7型火箭家族和苏联卫星计划(包括史泼尼克一号卫星)设计人 雷蒙德·库茨魏尔,Raymond Kurzweil,(1948-),美国 — 光学字符识别,台式扫描仪 L 海蒂·拉玛,Hedy Lamarr,(1913-2000),— 展布频谱无线电 塞缪尔·兰利,Samuel Pierpont Langley,(1834-1906),美国 — 测热辐射计 欧文·朗缪尔,Irving Langmuir,(1881-1957),美国 — 白炽灯充保护气,氢焊接,朗缪尔探针 列文虎克,Antoni van Leeuwenhoek,(1632-1723),荷兰 — 改进了显微镜 蒂姆·伯纳斯-李,Tim Berners-Lee,(1955-),英国 —和Robert Cailliau共同发明万维网 威拉得·利比,Willard Frank Libby,(1908-1980),美国 — 放射性碳定年法 尤斯图斯·冯·李比希,Justus von Liebig,(1803-1873),德国 — 氮肥、五球瓶、银镜、发粉 奥托·利林塔尔,Otto Lilienthal,(1848-1896),德国 — 悬挂式滑翔器 詹姆斯·瓦特,James Watt,(1736-1819),英国 — 改良蒸汽机 一 一行,本名张遂,(683-727),唐朝 — 擒纵机构 张 张衡,(78-139),东汉 — 浑天仪、地动仪、、作为圆周率的值 马 马钧,(199-?),三国 — 改进织绫机,龙骨水车(翻车),转轮式投石机,百戏,指南车 毕 毕升,(约970-1051),北宋 — 胶泥活字印刷术 蔡 蔡伦,(63-121),东汉 — 造纸术 沈 沈括,(约1031-1095),北宋 — 日晷仪,浑天仪,铜壶滴漏,观测管 苏 苏颂,(1020–1101),北宋 — 链条传动装置

『贰』 迈克尔逊干涉仪发明历史是什么

以太漂移实验迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊-莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出与有关的效应。
1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。
改进仪器
1884年在访美的瑞利、开尔文等的鼓励下,他和化学家莫雷(Morley,Edward Williams,1838~1923)合作,提高干涉仪的灵敏度,得到的结果仍然是否定的。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验引起科学家的震惊和关注,与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。随后有10多人前后重复这一实验,历时50年之久。对它的进一步研究,导致了物理学的新发展。迈克尔逊的另一项重要贡献是对光速的测定。早在海军学院工作时,由于航海的实际需要,他对光速的测定开始感兴趣。
测定光速
1879年开始光速的测定工作。他是继菲佐、傅科、科纽之后,第四个在地面测定光速的。他得到了岳父的赠款和政府的资助,使他能够有条件改进实验装置。他用正八角钢质棱镜代替傅科实验中的旋转镜,由此使光路延长600米。返回光的位移达133毫米,提高了精度,改进了傅科的方法。他多次并持续进行光速的测定工作,其中最精确的测定值是在1924~1926年,在南加利福尼亚山间22英里长的光路上进行的,其值为(299796±4)km/s。迈克尔逊从不满足已达到的精度,总是不断改进,反复实验,孜孜不倦,精益求精,整整花了半个世纪的时间,最后在一次精心设计的光速测定过程中,不幸因中风而去世,后来由他的同事发表了这次测量结果。他确实是用毕生的精力献身于光速的测定工作。迈克尔逊在基本度量方面也作出了贡献

『叁』 物理学发展史及其重要事件

公元前650-前550年,古希腊人发现摩擦琥珀可使之吸引轻物体,发现磁石吸铁。

公元前480-前380年间战国时期,《墨经》中记有通过对平面镜、凹面镜和凸面镜的实验研究,发现物像位置和大小与镜面曲率之间的经验关系(中国墨子和墨子学派)。公元前480-前380年间战国时期,《墨经》中记载了杠杆平衡的现象(中国墨子学派)。公元前480-前380年间战国时期,研究筑城防御之术,发明云梯(中国墨子学派)。公元前四世纪,柏拉图学派已认识到光的直线传播和光反射时入射角等于反射角。公元前350年左右,认识到声音由空气运动产生,并发现管长一倍,振动周期长一倍的规律(古希腊亚里士多德)。公元前三世纪,实验发现斜面、杠杆、滑轮的规律以及浮力原理,奠定了静力学的基础(古希腊阿基米德)。公元前三世纪,发明举水的螺旋,至今仍见用于埃及(古希腊阿基米德)。公元前250年左右,战国末年的《韩非子·有度篇》中,有“先王立司南以端朝夕”的记载,“司南”大约是古人用来识别南北的器械(或为指南车,或为磁石指南勺)。《论衡》叙述司南形同水勺,磁勺柄自动指南,它是后来指南针发明的先驱。公元前221年,秦始皇统一中国度、量、衡,其进位体制沿用到二十世纪。公元前二世纪,中国西汉记载用漏壶(刻漏)计时,水钟使用更早。公元前二世纪,发明水钟、水风琴、压缩空气抛弹机(用于战争)(埃及悌西比阿斯)。公元前一世纪,最先记载过磁铁石的排斥作用和铁屑实验(罗马卢克莱修)。公元前31年,中国西汉时创用平向水轮,通过滑轮和皮带推动风箱,用于炼铁炉的鼓风。

一世纪左右,发明蒸汽转动器和热空气推动的转动机,这是蒸汽涡轮机和热气涡轮机的萌芽(古希腊希隆)。一世纪,发现盛水的球状玻璃器具有放大作用(罗马塞涅卡)。300年至400年,中国史载晋代已有指南船,可能是航海罗盘的最早发明。

根据敦煌等地出土文物,在公元七、八世纪,中国唐朝已采用刻板印书,是世界上最早的印刷术。十世纪,中国发明了使用火药的火箭。十世纪左右,著《光学》,明确光的反射定律并研究了球面镜和抛物面镜(阿拉伯阿尔·哈赛姆)。

据《梦溪笔谈》,约公元1041─1048年间,中国宋朝毕升发明活字印刷术,早于西方四百年。约1200年至1300年,欧洲人开始使用眼镜。1231年,中国宋朝人发明“震天雷”是一种充有火药、备有导火线的铁器,可用投射器射出,是火炮的雏型。1241年,蒙古人使用火箭作武器,西方认为这是战争中首次使用火箭。1259年,中国宋朝抗击金兵时,使用一种用竹筒射出子弹的火器,是火枪的雏型。十三世纪中叶,根据实验观察,描述凹镜和透镜的焦点位置及其散度(英国罗杰·培根)。十三世纪,用空气运动解释星光的闪烁(意大利维塔罗)。十三世纪,指出虹霓是由日光的反射和折射作用所造成的(意大利维塔罗)。

1583年,用自身的脉搏作时间单位,发现单摆周期和振幅无关,创用单摆周期作为时间量度的单位(意大利伽利略)。1590年,做自由落体的科学实验,发现落体加速度与重量无关,否定了亚里士多德关于降落加速度决定于重量的臆断,引起了一些人的强烈反对(意大利伽利略)。1590年,发现投射物的运行路线是抛物线(意大利伽利略)。1590年,认识到物体自由降落所达到的速度能够使它回到原高度,但不能超过(意大利伽利略)。1590年,用凸物镜和凹目镜创造第一个复显微镜(荷兰詹森)。1593年,发明空气温度计,由于受大气压影响尚不够准确(意大利伽利略)。1600年,《磁铁》出版,用铁磁体来说明地球的磁现象,认识到磁极不能孤立存在,必须成对出现(英国吉尔伯特)。

1605年,发现分解力的平行四边形原理(比利时斯台文)。1610─1650年,提出太阳系起源的旋涡假说,认为宇宙充满“以太”。把热看作一种运动形式,与莱布尼茨争论运动的功效问题近五十年,后来恩格斯对这一争论作了科学的总结(法国笛卡儿)。1620年,从实际观察中归纳出光线的反射和折射定律(荷兰斯涅耳)。1628年,用两块凸透镜制成复显微镜,是近代显微镜的原型(德国衰纳)。1629年,发现同电相斥现象(意大利卡毕奥)。1629─1639年,提出光线传播的最小时间原理(法国费尔玛)。1634年,认识到音调和振动频率有关,提出弦的振动频率和弦长的关系(意大利伽利略)。1636年,首次测量振动频率和空气传声速度,发现振弦的倍频音,提出早期的音乐和乐器理论(法国默森)。1637年,提出光的粒子假说,并用以推出光的折射定律(法国笛卡儿)。1638年,提出一种无所不在的“以太”假说,拒绝接受超距作用的解释,坚持认为力只能通过物质粒子和与之紧邻的粒子相接触来传播,把热和光看成是“以太”中瞬时传播的压力(法国笛卡儿)。1643年,发明水银气压计(意大利托里切利、维维安尼)。1640─1690年,观察到气压对沸腾和凝结的影响(英国波义耳)。1650年左右,创制摩擦起电机,发现地磁场能使铁屑磁化(德国格里凯)。1650年,发明空气泵,用以获得真空,从而证实了空气的存在(德国格里凯)。

年,发现对静止液体的任一部分所加的压强不变地向各个方向传递的巴斯噶定律(法国巴斯噶)。1654年,证实抽去空气的空间不能传播声音(德国格里凯)。1654年,用十六匹马拉开组成抽空球器的两个半球,直接证明大气压的巨大压强(德国格里凯)。1656年,发明摆钟(荷兰惠更斯)。1660年,用光束做实验,发现杆、小孔、栅等引起的影放宽并呈现彩色带的现象,取名“衍射”(意大利格里马第)。1666年,从刻卜勒行星运动三定律推出万有引力定律,创立了天文学(英国牛顿)。1666年,通过三棱镜发现了光的色散现象(英国牛顿)。1667年,指出笛卡儿光学说不能解释颜色,提出光是“以太”的纵向振动,振动频率决定光色(英国胡克)。1668年,发明放大40倍的反射型望远镜(英国牛顿)。1669年,发现光线通过方解石时,产生双折射现象(丹麦巴塞林那斯)。1672年,研究光色来源,和胡克展开争论,认为光基本上是粒子流,但未完全拒绝“以太”说,认为高速度光粒子有可能和“以太”相互作用而产生波(英国牛顿)。1676年,发现形变和应力之间成正比的固体弹性定律(英国胡克)。1676年,根据木星的周期性卫星被木星掩食现象的观测,算出了光在太空中传播的速度(丹麦雷默)。1678年,向巴黎学院提出《光论》,假定光是纵向波动,推出光的直线传播和反射折射定律。用光的波动说解释双折射现象(荷兰惠更斯)。1686年,《论水和其他流体的运动》出版,是流体力学理论的第一部著作(法国马里奥特)。1687年,推导出流体传声速度决定于压缩性和密度的关系(英国牛顿)。1687年,发表《自然哲学的数学原理》,第一次阐述牛顿力学三定律,奠定了经典力学的基础(英国牛顿)。1695年,把力分为死力和活力两种,死力与静力完全相同,认为力乘路程等于活力(visviva)的增加(德国莱布尼茨)。

1701年,物体冷却速度正比于温差(英国牛顿)。1704年,《光学》一书出版。随着天文学、力学和光学的出现,物理学在十八世纪开始成为科学(英国牛顿)。1705年,制成第一个能供实用的蒸汽机(英国纽可门)。1709年,首次创立温标,即后来的华氏温标(德国华仑海特)。1724年,提出“传递的运动”即活力守恒观念,认为当它发生变化时能够做功的能力并没有失掉,不过变成其他形式了(瑞士约·贝努利)。1728年,根据光行差求算出光速(英国布拉德雷)。1731年,发现导电体和电绝缘体的差别(英国格雷)。1734年,明确电荷仅有两种,异电相吸,同电相斥(法国杜菲)。1738年,发现流线速度和压力间关系的流线运动方程(瑞士丹·贝努利)。1740年,用摆测出万有引力常数(法国布盖)。1742年,《枪炮术原理》一书出版,成为后来研究枪炮术理论和实践的基础(英国罗宾斯)。1742年,创制百分温标,即后来的摄氏温标(瑞典摄尔西斯)。1743年,用变分法得出能概括牛顿力学的普适数学形式,即后人所称的欧勒-拉格朗日方程(瑞士欧勒)。1745年,各自发现蓄电池的最早形式─莱顿瓶(荷兰马森布罗克,德国克莱斯特)。1747年,提出天然运动的最小作用量原理(法国莫泊丢)。1750年,发现磁力的平方反比定律(英国米歇尔)。

1752年,得到暴雨带电性质的实验证据(美国本·富兰克林)。1756年,提出比热概念,发现熔化、沸腾的“潜热”形成量热学的基础(英国约·布莱克)。1767年,根据富兰克林证明带电导体里面静电力不存在的实验,推得静电力的平方反比定律(英国普列斯特列)。1768年,近代蒸汽机出现(英国瓦特)。1769年,制成第一辆蒸汽推动的三轮汽车(法国柯格诺特)。1771年,发表《用弹性流体试图解释电》(英国卡文迪许)。1775年,发明起电盘(意大利伏打)。1777年,引出重力势函数概念(法国拉格朗日)。1780年,偶然发现火花放电或雷雨能使蛙腿筋肉收缩(意大利伽伐尼)。1782年,发明热空气气球(法国蒙高飞兄弟)。1783年,首次使用氢气作气球飞行(法国雅·查理)。1785年,实验证明静电力的平方反比定律(法国库仑)。1798年,从钻造炮筒发出巨量的热而环境没有发生冷却的现象出发,认为能够连续不断产生出来的热,不可能是物质,反对热素说,主张热之唯动说(英国本·汤普森)。1798年,用扭秤法测定万有引力强度,即牛顿万有引力定律中的比例常数,从而算出地球的质量(英国卡文迪许)。1800年,使用固体推动剂,制造火箭弹,后被用于战争(英国康格瑞夫)。

1801年,观察到太阳光谱中的暗线,错认为是单纯颜色的分界线(英国武拉斯顿)。1801年,提出光波的干涉概念,用以解释牛顿的彩色光环以及衍射现象,第一次近似测定光波波长。提出视觉理论,认为人眼网膜有三种神经纤维分别对红、黄、蓝三色敏感(英国托.杨)。1802年,《声学》出版,总结对弦、杆、板振动的实验研究,发现弦、杆的纵振动和扭转振动,测定声在各种气体、固体中传播的速度(德国舒拉德尼)。1807年,首次把活力叫作能量(英国托.杨)。1809年,发现在两炭棒间大电流放电发出弧形强光,后被用作强光源(英国戴维)。1809年,发现双折射的两束光线的相对强度和晶体的位置有关从而发现光的偏振现象,并认识到这与惠更斯的纵波理论不合(法国马吕斯)。1810年,创制回旋器(德国博能堡格)。1811年,发现反射光呈全偏振时,反射折射两方向成直角,反射角的正切等于折射率(苏格兰布儒斯特)。1811年,发现偏振光通过晶体时产生的丰富彩色现象。后人据此发现用偏振光观测透明体中弹性应变的技术(法国阿拉戈)。1811年,把引力势理论移植到静电学中,建立了计算电势的方程(法国波阿松)。1815年,提出光衍射的带构造理论,把干涉概念和惠更斯的波迹原理结合起来(法国菲涅耳)。1816年,发现玻璃变形会产生光的双折射现象,为光测弹性学的开端(英国布儒斯特)。1819年,发现电流可使磁针偏转的磁效应,因而反过来又发现磁铁能使电流偏转,开始揭示电和磁之间的关系(丹麦奥斯忒)。发现常温下,固体的比热按每克原子计算时,都约为每度六卡。这一结果后来得到分子运动论的解释(法国杜隆、阿.珀替)。证实相互垂直的偏振光不能干涉,从而肯定了光波的横向振动理论,并建立晶体光学(法国菲涅耳、阿拉戈)。1820年,发明电流计(德国许外格)。1821年,发表气体分子运动论(英国赫拉帕斯)。1821年,发现温差电偶现象,即温差电效应(俄国塞贝克)。1822年,发明电磁铁,即用电流通过绕线的方法使其中铁块磁化(法国阿拉戈、盖.吕萨克)。发现方向相同的两平行电流相吸,反之相斥。提出“电动力学”中电流产生磁场的基本定律。用分子电流解释物体的磁性,为把电和磁归结为同一作用奠定基础(法国安培)。从实验结果归纳出直线电流元的磁力定律(法国比奥、萨伐尔)。创用光栅,用以研究光的衍射现象(德国夫琅和费)。推得流体流动的基本方程,即纳维尔-史托克斯方程(法国纳维尔)。1824年,提出热机的循环和可逆的概念,认识到实际热机的效率不可能大于理想可逆热机,理想效率与工质无关,与冷热源的温度有关,热在高温向低温传递时作功等,这是势力学第二定律的萌芽。并据此设想高压缩型自燃热机(法国卡诺)。1826年,修改牛顿声速公式,等温压缩系数换为绝热压缩系数,消除理论和实验的差异(法国拉普拉斯)。实验发现导线中电流和电势差之间的正比关系,即欧姆定律;证明导线电阻正比于其长度,反比于其截面积(德国欧姆)。观察到液体中的悬浮微粒作无规则的起伏运动即所谓布郎运动,是分子热运动的实证(英国罗.布朗)。1830年,利用温差电效应,发明温差电堆,用以测量热辐射能量(意大利诺比利)。1831年,各自发现电磁感应现象(英国法拉第,美国约.亨利)。1832年,用永久磁铁创制发电机(法国皮克希)。1833年,提出天然运动的变分原理(英国哈密顿)。发明电报(德国威.韦伯、高斯)。在法拉第发现电磁感应的基础上,提出感应电流方向的定律,即所谓楞次定律(德国楞次)。1834年,发现温差电效应的逆效应,用电流产生温差,后楞次用此效应使水结冰(法国珀耳悌)。在热辐射红外线的反射、折射、吸收诸实验中发现红外线本质上和光类似(意大利梅伦尼)。提出热的可逆循环过程,并以解析形式表达卡诺循环,用来近似地说明蒸汽机的性能(法国克拉珀龙)。提出动力学的普适方程,即哈密顿正则方程(英国哈密顿)。1835年,推出地球转动造成的正比于并垂直速度的偏向加速度,即科里奥利力(法国科里奥利)。根据波动理论解释光通过光栅的衍射现象(德国薛沃德)。1838年,推出关于多体体系运动状态分布变化的普适定理,后成为统计力学的基础之一(法国刘维叶)。1842年,发现热功当量,建立起热效应中的能量守恒原理进而论证这是宇宙普适的一条原理(德国迈尔)。推知光源走向观测者时收到的光振动频率增大,离开时频率减小的多普勒效应。后在天体观察方向得到证实(奥地利多普勒)。1843年,发明电桥,用以精确测量电阻(英国惠斯通)。创用冰桶实验,证明电荷守恒定律(英国法拉第)。测量证明,用伽伐尼电池通过电流于导线中发出的热量等于电池中化学反应的热效应(英国焦耳)。1845年,发现固体和液体在磁场中的旋光性,即强磁场使透明体中光的偏振面旋转的效应(英国法拉第)。1843-1845年,分别用机械功,电能和气体压缩能的转化,测定热功当量,以实验支持能量守恒原理(英国焦耳)。1845年,推得滞流方程及流体中作慢速运动的物体所受的曳力正比于物体的速度(英国斯托克斯)。发展气体分子运动论,指出赫拉帕斯分子运动论的基本错误(英国华特斯顿)。1846年,认为两电荷之间的力不但和距离有关,也和其运动速度和加速度有关,而电流就是运动着的电荷所组成(德国威.韦伯)。认识到抗磁性的普遍性和顺磁性的特殊性(英国法拉第)。证实并延伸梅伦尼关于热辐射的工作;通过衍射、干涉、偏振诸现象的实验,证明红外辐射和可见光的区别仅在于红外波长比可见光的波长长(德国诺布劳赫)。1847年,提出力学中的“位能”和“势能”概念,给出万有引力场、静力学、电场和磁场的位能表示。明确能量守恒原理的普适意义(德国赫尔姆霍茨)。发现细管道中流体的粘滞流动定律(法国泊肃叶)。1848年,用卡诺循环确立绝对温标。并提出绝对零度是温度的下限的观点(英国汤姆生)。1849年,用转动齿轮,首次实验测定光的传播速度(法国斐索)。1850年,创制稀薄气体放电用玻璃管,呈现放电发光(德国盖斯勒)。试图通过实验建立重力(万有引力)和电之间的关系,但无所得(英国法拉第)。利用旋转镜,证实不同媒质中光的传播速度与媒质的折射率成反比(法国傅科)。发现热力学第二定律,并表述为:热量不能从一个较冷的物体自行传递到一个较热的物体(德国克劳胥斯)。

提出经典统计力学基础的系统理论(美国吉布斯)。发现β射线的质量随速度而增加,试图据此区分电子的固有质量和随速度改变的电磁质量(德国考夫曼)。各自证实1873年麦克斯韦电磁波理论所预见的辐射压强关系(俄国彼.列别捷夫,美国尼科尔斯、基.哈尔)。1900-1902年,发展滑翔飞行技术(美国赖特兄弟)。1901年,试图观测地球相对于“以太”的运动使充电电容器转动的效应,但无结果(英国特鲁顿)。发现光电效应的经验规则,波动说不能解释(德国勒纳)。发现金属发射热电子的经验定律,为热离子学的基础,并于次年用自由电子理论作出解释(英国理查森)。1903年,自制轻便内燃机,第一次成功实现用螺旋桨飞机飞行。于1907年,越过英伦海峡,1927年由林德堡单飞越过大西洋,飞机开始成为战争和交通的工具(美国赖特兄弟)。证实α粒子是带正电的氦原子,β射线是近于光速的电子(英籍新西兰人厄.卢瑟福)。提出放射元素的蜕变理论,打破原子不可改变的旧观念(英籍新西兰人厄.卢瑟福)。提出运动电子的刚球模型理论,推得电子质量随速度而变的公式,后来同相对论公式存在长期的争论(德国阿勃拉罕)。提出气体中电子碰撞的电离理论和气体放电的击穿理论(爱尔兰汤逊德)。1904年,提出电子浸于均匀正电球中的原子模型(英国汤姆逊)。提出围绕核心转动的电子环的原子模型(日本长冈半太郎)。提出时空坐标的罗伦兹变换,试图解释电磁作用和观察者在“以太”中的运动无关(荷兰罗伦兹)。首次应用经典统计学发展金属自由电子理论(荷兰罗伦兹)。提出电动力学的相对性原理,并根据观测记录认为速度不能超越光速(法国彭加勒)。发明热电子二极真空管,用于整流(英国约.弗莱明)。提出物体运动于粘滞流体中的边界层理论(德国普兰特耳)。1905年,提出光量子假说,并用以解释光电效应(瑞士、美籍德国人爱因斯坦)。各自提出布朗运动的理论解释,这是涨落的统计理论的开始,后经实验证实。使分子运动论得到直观的证明(瑞士、美籍德国人爱因斯坦,波兰斯莫卢曹斯基)。提出狭义相对论(瑞士、美籍德国人爱因斯坦)。提出磁性的电子理论(法国郎之万)。发明一万大气压的超高压装置,用以研究物性(美国布里奇曼)。提出飞翼举力的环流和涡旋理论(英国兰彻斯特)。提出宇宙起伏说,认为宇宙中存在着偶然出现的地区,那里发生着违背热力学第二定律的过程(奥地利波尔茨曼)。1906年,用量子概念初步解释固体比热在温度趋于绝对零度时也趋于零(瑞士、美籍德国人爱因斯坦)。各自提出飞机翼举力的环流理论(俄国儒可夫斯基,德国库塔)。发展波尔茨曼统计,确定热力学几率和“绝对熵”表示式(德国普朗克)。实验研究交混回响现象,创立早期建筑声学理论(美国萨拜恩)。发现硅晶体的整流作用,用以作无线电检波器(美国皮卡德)。首次实现调制无线电波收发音乐和讲演,无线电由之诞生,1910年开始用于广播(美国费森登)。确定狭义相对论的质能关系是体系(包括电磁在内)的重心运动守恒定律成立的必要与充分条件(瑞士、美籍德国人爱因斯坦)。发明热电子三极管,用以检测无线电波,是真空管技术的先驱(美国德福雷斯特)。1906-1913年,从低温化学反应的研究,提出热力学第三定律,即绝对零度不能达到原理(德国能斯脱)。1907年,提出铁磁性的原子理论(法国韦斯)。各自提出用阴极射线接收无线电传像原理,是近代电视技术的理论基础(俄国罗申克,英国坎普贝尔.史文顿)。1908年,实验证实电子质量随速度增加的罗伦兹关系式(德国布克瑞)。提出狭义相对论的四维空间形式表示法(德国闵可夫斯基)。人工液化氦,达到接近绝对零度(荷兰卡茂林.翁纳斯)。发明探测α粒子的气体放电计数管(德国盖革)。提出的动量统一定义,奠定相对论性力学,肯定质能关系普遍成立(德国普朗克)。发明回转罗盘,不受钢、铁影响,是指向技术的重大改进(德国舒勒等人)。1908-1912年,通过观察树脂粒子在重力场中的分布,证实满足爱因斯坦方程,是道尔顿以来首次通过观察求得阿佛加德罗常数和原子、分子的近似大小,打击了唯能论(法国贝林)。1908年,根据统计力学中流体密度起伏理论,解释了临界点附近大起伏导致的光散射增强的乳光现象(波兰斯莫卢曹斯基)。创制T型汽车,使汽车开始成为人类交通的常用工具(美国福特)。根据原子光谱数据,提出谱线频率的并合原则,是巴尔默发现的推广(瑞士里兹)。1909年,首次观测α粒子束透过金属薄膜后在各方向的散射分布情况,促使卢瑟福于次年提出α散射理论(德国盖革,英国马斯登)。提出光量子的动量公式,指出辐射基元过程有一定方向(瑞士、美籍德国人爱因斯坦)。发明用钨丝作白炽灯、电子管及X光管,促成了它们的工业发展(美国柯里奇)。发明油封转动抽气机(德国盖达)。发明精确测定电子电荷的油滴法,证明电荷有最小单位(美国米立根)。

1911年,用光散射法验证流体临界点附近的密度起伏公式(荷兰刻松)。提出了原子有核的模型,原子中的正电荷集中在核上,对粒子散射实验作出解释,否定了汤姆逊的均匀模型(英藉新西兰人厄.卢瑟福)。发明记录α、β等带电粒子轨迹的云雾室照相装置,证实X射线的电离作用(英国查.威尔逊)。发现宇宙射线(奥地利维.赫斯)。发现汞、铅、锡等金属的超导电现象(荷兰卡茂林.翁纳斯)。由分子运输理论预见气体中的热扩散规律(瑞典恩斯考克)。1912年,提出流体流过阻碍物在尾流中形成两列交错涡旋(即涡旋街)的稳定性理论,后被用于飞机和火箭的设计中(匈牙利冯.卡门)。发现氖的同位素,为首次发现非放射性元素的同位素(英国约.汤姆逊)。固体比热的量子理论首次成功,发现低温比热的温度立方律。提出用有极分子解释介电常数和温度有关的统计理论(荷兰德拜)。

1921年发明利用原子束在不均匀磁场中偏转的方法测量原子的磁矩,为量子论中空间方向量子化原理提供了证据(德国斯特恩、盖拉赫)。首次发现类似于铁磁现象的所谓铁电现象(美国瓦拉塞克)。1922年实验第一次精确证实重力加速度和落体成分无关(德国厄缶)。提出液体中密度热起伏引起光散射的理论,后被用到液体声测量中(法国布里渊)。提出用石英压电效应调制电磁振荡的频率(美国卡第)。1923年提出物质粒子的波粒二象性概念,标志着新量子论的开始(法国德布罗意)。提出经典统计力学中的准备态历经假说,用以代替不能成立的各态历经假说(意大利费米)。用旧量子论研究原子谱线的反常塞曼效应,发现角动量决定谱线分裂的g因子公式(德国朗德)。在X射线散射实验中发现波长改变的效应,提出自由电子散射光子的量子理论(美国康普顿)。提出空间周期性引起粒子动量改变的量子规则,用以解释光栅对一束辐射的衍射效应(美国杜安)。1924年首次用德拜-体克耳电解质理论研究电离化气体(英国罗斯兰德)。发现光量子(光子)服从的统计法则,据此用统计方法推出普朗克的辐射公式(印度玻色)。发现服从玻色统计法则的体系在温度为绝对零度附近时,其粒子都迅速降到基态上的现象,即所谓爱因斯坦凝结(瑞士、美籍德国人爱因斯坦)。推出光折射率的量子论公式,即克雷默兹-海森堡色散公式(荷兰克雷默兹,德国海森堡)。各自发现磁控电子管能自动发生高频电磁振荡,随着性能良好的磁控管问世,引出微波技术的发展(德国哈邦,捷克查契克)。1925年在气体放电研究中发现等离子体静电振荡,引起的电子反常散射现象(美国兰米尔)。提出矩阵力学,一种强调可观察量的不连续性的新量子论(德国海森堡)。提出电子自己有自旋角动量和磁矩的概念,用以解释光谱线的精细结构(荷兰乌仑贝克、古兹米特)。提出两个电子不能共处于同一量子状态上的不相容原理,用以解释光谱线在强磁场中的反常分裂(奥地利泡里)。发明符合计数法,用以确定宇宙射线的方向和性质,用符合计数法,证实光子电子碰撞过程中能量守恒律、动量守恒律都成立(德国玻蒂)。发明光电显像管,是近代电视照像术的先驱(美籍苏联人兹渥里金)。提出铁磁性的短程作用模型,假定影响磁化的仅是最邻近原子之间的相互作用(美国伊兴)。

『肆』 公元前300年开始到明朝结束 物理的发展史

公元前4~前3世纪 《庄子》中记载瑟弦的共鸣作声,并归之于“音律同矣”
公元前287~前212年 阿基米德发现了流体的浮力原理和
斜面、杠杆、滑轮原理
公元前221年 秦始皇统一中国后,立即推行“一法度衡石丈尺……”颁发了统一度量衡诏书,制定了一套严格的管理制度
公元前110年 落下闳始创浑天之法,从此在中国开始了长达千年之久的关于宇宙结构的“浑盖之争”
公元前1世纪上半叶 卢克莱修的《物性论》阐述了古代原子论,记载了磁石间相吸或相斥作用
公元100年左右 《尚书纬·考灵曜》中载有“地恒动而人不知,譬如闭舟而行不觉舟之运也”,说明当时对运动的相对性已有认识
公元132年 张衡制造了世界上第一个地动仪
公元274年 荀勖首次提出律笛管口校正的一种方法,并以管作正律器
公元1030年左右 伊本·海赛木发表光学著作记述了眼睛构造的知识;视觉与光线的关系;提出曲面镜成像等数学问题
公元1075年 沈括制成新计时器“玉壶浮漏”,直接量度了太阳视行速度变化引起的每日时差
公元1086~1095年 沈括著《梦溪笔谈》,记载了一种人工磁化方法,地磁的磁偏角,指南针的四种安置方法(水浮法、指甲法、碗唇法、丝悬法),针孔成像与球面镜成像,用纸人显示声音振动的方法等
公元1300年前后 赵友钦著《革象新书》,记载了大量的针孔成像实验,讨论了小孔、光源、像、物距、像距这些因素之间的关系,研究了照度和离光源距离间的定性关系
公元1584年 朱载堉著《律吕精义》,以等比数列创立了“十二平均律”
公元1586年 S.斯蒂文发现了力的分解原理
公元1589年 利玛窦来华,后《明史》正式记录了他的学术活动,并介绍了西方的地球中心说
公元1589~1592年 伽利略用物体的斜面运动进行了自由落体加速运动的研究,确认了物体在重力作用下的运动规律和物体的重量无关;他还用实验结果阐述了物体惯性的概念
公元1590~1609年 Z.詹森和H.李普希发明显微镜
公元1600年 W.吉伯的《论磁性》出版。记载了磁极必然成对出现;地球是个大磁石和地磁现象;许多物质经摩擦后有吸引小物体的性质
公元1608年 H.李普希发明望远镜
公元1609和1619年 J.开普勒先后发表行星运动第一定律(1609)、第二定律(1609)和第三定律(1619)
公元1621年前后 W.斯涅耳发现光的折射定律
公元1632年 伽利略《关于托勒密和哥白尼两大世界体系的对话》出版,支持了地动学说,首先阐明了运动的相对性原理
公元1638年 伽利略的《两门新科学的对话》出版,讨论了材料抗断裂、媒质对运动的阻力、惯性原理、自由落体运动、斜面上物体的运动、抛射体的运动等问题,给出了匀速运动和匀加速运动的定义
公元1676年 O.C.罗默发表他根据木星卫星被木星掩食的观测,推算出的光在真空中的传播速度
公元1678年 R.胡克阐述了在弹性极限内、表示力和形变之间的线性关系的定律(即胡克定律)
公元1687年 I.牛顿在《自然哲学的数学原理》中,阐述了牛顿运动定律和万有引力定律
公元1690年 C.惠更斯出版《光论》,提出光的波动说,导出了光的直线传播和光的反射、折射定律,并解释了双折射现象
公元17世纪下半期 王夫之以烧柴、煮水和焙烧汞的试验为例,定性地阐述了物质不灭的思想;还阐述了运动不灭的思想和关于运动的绝对性、静止的相对性的看法
公元1701年左右 J.索弗尔研究了拍、谐音,并确定绝对频率
公元1714年 D.G.华伦海特改良水银温度计,定
出第一个经验温标
公元1717年 J.伯努利提出了虚位移原理
公元1738年 D.伯努利的《流体动力学》出版,提出了描述流体定常流动的伯努利方程;设想气体的压力是由于气体分子与器壁碰撞的结果,导出了玻意耳定律
公元1742年 A.摄尔西乌斯提出摄氏温标
公元1743年 J.L.R.达朗伯在《动力学论文》中阐述了后以他的姓氏命名的达朗伯原理
公元1744年 P.-L.M.de莫培督提出了最小作用量原理
公元1745年 E.G.von 克莱斯特发明了储存电的方法;次年P.van穆申布鲁克在莱顿又独立发明,后人称之为莱顿瓶
公元1747年 B.富兰克林发表电的单流质理论,提出“正电”和“负电”的概念
公元1755年 L.欧拉建立了无粘流体力学的基本
方程(即欧拉方程)
约公元1760年 J.布莱克发明冰量热器,并将温度和热量区分为两个不同的概念
公元1761年 J.布莱克提出潜热概念,奠定了量热学基础
公元1775年 法国科学院宣布不再审理永动机的设计方案
约公元1780年 L.伽伐尼发现生物电现象
公元1784年 R.J.阿维发表晶体是由一些相同的“基石”重复、规则地排列而成的学说
公元1785~1789年 C.A.de库仑用扭秤证明静电和静磁力的平方反比定律
公元1788年 J.L.拉格朗日的《分析力学》出版
公元1798年 朗福德通过实验指出热质说的错误,说明热只能是运动的一种表现
H.卡文迪什用扭秤测定了万有引力常数
公元1799年 H.戴维用摩擦冰块,使冰融化的实验,支持了“热是运动”的学说
公元1800年 A.伏打发明伏打电堆
公元1801年 T.杨作杨氏干涉实验,提出光波干涉原理
约公元1802年 W.H.渥拉斯顿发现太阳光谱暗线
公元1808年 Ε.-L.马吕斯发现光的偏振现象
公元1811年 A.阿伏伽德罗根据气体化学反应中的倍比容积定律提出了后以他的姓氏命名的阿伏伽德罗定律
公元1814年 J.von 夫琅和费发现了太阳光谱中的大量暗线(夫琅和费线),并测出了它们的波长
公元1815年 A.-J.菲涅耳以杨氏干涉实验原理补充了惠更斯原理,形成了惠更斯-菲涅耳原理,圆满地解释了光的直线传播和光的衍射问题
公元1818年 P.L.杜隆和A.T.珀替发现固体热容的经典定律(即杜隆-珀替定律)
公元1820年 H.C.奥斯特发表关于电流磁效应的论文
A.-M.安培发现二根通有同向电流的平行导线相吸,反向电流的则相斥
D.F.J.阿喇戈发现通电的螺线管能吸引铁屑
J.-B.毕奥、F.萨伐尔由实验得出长直载流导线对磁极作用力的定律(即毕奥-萨伐尔定律)
公元1821年
J.赫拉帕司提出气体的“原子”以很大的速度在各方向运动,热是由这些“原子”的运动引起的,而温度则正比于其速度等假说
A.-J.菲涅耳发表光的横波理论
约公元1821年 J.von夫琅和费发明光栅
公元1822年 T.J.塞贝克发现温差电现象
C.-L.-M.-H. 纳维发表了粘性流体的运动方程
J.B.J.傅里叶的《热的分析理论》出版,详细研究了热在媒质中的传播问题
公元1824年 S.卡诺提出后以他的姓氏命名的卡诺循环
公元1826年 G.S.欧姆发表后以他的姓氏命名的欧姆定律
公元1827年 R.布朗用显微镜观察到悬浮在液体中的微粒的无规则涨落运动(即布朗运动)
公元1831年 M.法拉第发现电磁感应现象
C.F.高斯、W.E.韦伯将绝对单位制引入磁学
公元1831~1840年 M.法拉第以及其后的J.J.汤姆孙、J.S.E.汤森德等人相继研究了气体放电现象,标志着等离子体实验研究的开端
公元1833年 M.法拉第证明电(伏打电、摩擦起电)的同一性
公元1833~1834年 M.法拉第发表了关于电解的两条定律
公元1834年 Э.Χ.楞次 发表确定感应电流方向的楞次定律
B.-P.-E.克拉珀龙导出相变的克拉珀龙方程
W.R.哈密顿提出了正则方程和用变分法表示的哈密顿原理
公元1836年 J.F.丹聂耳制成第一个实用电源,即丹聂耳电池
公元1840年 J.P.焦耳公布实验发现的电流的热效应定律
公元1841年 C.F.高斯阐明了高斯光学的理论
公元1842年 J.C.多普勒发现了后以他的姓氏命名的多普勒效应
J.R.迈尔提出热功当量的概念和能量守恒的基本思想,后焦耳用大量实验测定热功当量,并确定能量守恒与转换定律
公元1843年 M.法拉第作冰桶实验,证明电荷守恒定律
公元1845年 M.法拉第发现磁致旋光现象,并发现大多数物质具有抗磁性
J.J.沃特斯顿根据分子运动论假说,导出了理想气体状态方程,并提出能量均分定理
G.G.斯托克斯证明并完善了C.-L.-M.-H.纳维所提出的粘性流体的运动方程,后称为纳维-斯托克斯方程
公元1845~1848年 G.R.基尔霍夫建立了稳恒电路的两条定律,为分支电路的运算奠定了基础
公元1846年 J.G.伽勒根据U.-J.-J.勒威耶用牛顿力学算出的结果发现了海王星,J.C.亚当斯于1845年也作过类似的计算和预言
公元1848年 开尔文提出热力学温标,指出绝对零度是温度的下限
公元1849年 A.H.L.斐索用旋转齿轮法首次在实验室中测定了光速
公元1850年 A.布喇菲首先推证出晶体只可能有14种点阵
R.克劳修斯提出热力学第二定律的定性表述,次年开尔文提出另一种表述
J.B.L.傅科用旋转镜片作了测定水与空气中光速这一判定性实验
公元1851年 J.B.L.傅科设计了证实地球自转的装置(即傅科摆)
公元1852年 J.P.焦耳和W.汤姆孙(即开尔文)做气体自由膨胀实验,发现了后以他们的姓氏命名的焦耳-汤姆孙效应
公元1853年 G.H.维德曼和R.夫兰兹发现,在一定温度下,许多金属的热导率和电导率的比值都是一个常数(即维德曼-夫兰兹定律)
公元1855年 J.B.L.傅科发现涡电流(即傅科电流)
公元1856年 W.E.韦伯、R.H.A.科尔劳施测定电荷的静电单位和电磁单位之比,发现该值接近于真空中的光速
公元1858年 R.克劳修斯引进气体分子的自由程概念
公元1859年 J.C.麦克斯韦提出气体分子的速度分布率
G.R.基尔霍夫证明一切物体的辐射本领和吸收本领之比与物体特性无关,只是温度和波长的函数
G.R.基尔霍夫和R.W.E.本生发现了金属的发射光谱和吸收光谱
公元1860年 J.C.麦克斯韦发表气体中输运过程的初级理论
公元1861年 J.C.麦克斯韦引进位移电流概念
公元1863年 H.von亥姆霍兹的《音的生理基础》出版,在解剖学的基础上研究人耳的听觉;他利用共鸣器分离并加强声音的谐音,指出了声音音色的特点
公元1864年 J.C.麦克斯韦提出电磁场的基本方程组(后称麦克斯韦方程组),并推断电磁波的存在,预测光是一种电磁波,为光的电磁理论奠定了基础
公元1865年 R.克劳修斯创用“熵”这个词
公元1868年 L.玻耳兹曼推广麦克斯韦的分子速度分布律,建立了平衡态气体分子的能量分布律——玻耳兹曼分布律
公元1869年 T.安德鲁斯由实验发现气-液相变的临界现象
公元1872年 L.玻耳兹曼提出输运方程(后称为玻耳兹曼输运方程)、H定理和熵的统计诠释
公元1873年 J.D.范德瓦耳斯提出实际气体状态方程
公元1876~1878年 J.W.吉布斯提出了化学势的概念、相平衡定律,建立了粒子数可变系统的热力学基本方程
公元1877年 瑞利的《声学原理》出版,为近代声学奠定了基础
公元1879年 J.斯忒藩建立了黑体的面辐射强度与绝对温度关系的经验公式,制成辐射高温计,测得太阳表面温度约为6 000℃;1884年L.玻耳兹曼从理论上证明了此公式,后称为斯忒藩-玻耳兹曼定律
公元1880年 P.居里和J.居里发现晶体的压电效应
公元1883年 O.雷诺提出粘性流体中的重要无量纲数——雷诺数
公元1884~1885年 J.H.坡印廷证明电磁场的能流可以用电场强度和磁场强度表示
公元1885年 J.J.巴耳末发表已发现的氢原子可见光波段中4根谱线的波长公式,推动了氢原子光谱的研究工作
公元1887年 S.A.阿伦尼乌斯发表电解质离解理论
H.R.赫兹用实验证明位移电流的存在,发现光电效应
A.A.迈克耳孙和E.W.莫雷用迈克耳孙干涉仪测“以太风”,得到否定的结果
公元1888年 H.R.赫兹从1886年起持续进行了关于电磁波的实验,证实电磁波的存在,于1888年公布了实验结果,并用实验证明光波和电磁波的同一性
F.赖尼策尔发现液晶
公元1890年 J.R.里德伯发表碱金属和氢原子光谱线通用的波长公式
公元1890~1895年 E.C.费奥多罗夫(1890)、A.M.熊夫夫利(1891)和W.巴洛(1895)各自建立了晶体的对称性的群理论
公元1893年 W.维恩导出黑体辐射强度分布与温度关系的位移定律
公元1895年 H.A.洛伦兹发表电磁场对运动电荷作用力的公式,后称该力为洛伦兹力
W.K.伦琴发现X 射线
P.居里发表关于铁磁体转变温度的研究结果后称居里定律
约公元1895年 A.C.波波夫、G.马可尼分别进行了无线电报的实验
公元1896年 W.维恩发表适用于短波范围的黑体辐射的能量分布公式
P.塞曼发现原子光谱线在磁场中分裂的现象(即塞曼效应)
C.T.R.威耳孙发明用云室探测带电粒子
H.A.洛伦兹创立经典电子论
A.-H.贝可勒尔发现铀的放射性,标志着原子核物理学的开始
公元1897年 J.J.汤姆孙指出阴极射线是由带负电荷的粒子即电子组成,导致电子的发现
公元1898年 居里夫妇研究放射性物质后发现了钋和镭
公元1898~1900年 E.李开(1898)和P.K.L.德鲁德提出金属自由电子气模型
公元1899年 P.阿佩尔出版了《理性力学》,提出了非完整系统动力学方程(即阿佩尔方程)
公元1900年 W.C.赛宾提出混响时间公式,开创了建筑声学的研究
瑞利发表适用于长波范围的黑体辐射公式
M.普朗克提出了符合整个波长范围的黑体辐射公式,并用能量量子化假设从理论上导出了这个公式

『伍』 傅科的个人生平

傅科是法国物理学家。1819年9月18日生于巴黎,1868年2月11日卒于巴黎。
傅科早年学习外科和显微医学,后转向照相术和物理学方面的实验研究。1853年由于光速的测定获物理学博士学位,并被拿破仑三世委任为巴黎天文台物理学教授。因为他博学多才,有多项发明创造,因此受各国科学界垂青,1864年当选为英国皇家学会会员,以及柏林科学院、圣彼得堡科学院院士。1868年被选为巴黎科学院院士。
傅科最初学医,后转向实验物理。早年跟随法国物理学家A.-H.-L,斐索从事热学和光学测量。1851年,傅科在67米长钢丝下面挂一个重28千克的铁球,组成一个单摆,他利用摆平面的转动证实了地球有自转。演示地球有自转的这种单摆后称为傅科摆。他还用陀螺仪证实了地球的自转。1855年,他因上述两项实验获英国皇家学会科普利奖章,并被任命巴黎皇家天文台物理助理。在物理学其他领域中,他证实了光在水中的传播速度比在空气中小,并测得误差在百分之一以内的光速值。他发现铜盘在强磁场中运动时出现涡流,并对望远镜装置作过改进。

『陆』 简述物理学的发展简史

物理学发展史与各年代成就物理学是研究物质运动和相互作用的规律的科学,是除数学外最基本的一门学科。
物理运动是自然界最普遍的一种现象。

因此物理学研究的对象和内容就是宇宙间各种物质的性质、存在状态、各种物理运动形式及其转化现象、物质的内部结构及这些内部结构的组成部分,物理领域的各种基本相互作用及其规律。由于一切物理现象都在时间、空间中表现出来和发生运动和转化,所以物理学也要研究时间和空间的性质、联系等。

进行物理学研究,首先是观察各种客观物理现象;或是进行试验,通过变革研究对象以观察因而产生的运动和转化状况中,找出规律;再从许多表象性的规律中,揭示基本规律,建立较为系统的理论。 物理学研究除了要依靠好的科学方法外,还要取决于认知工具。工具越先进,研究效率越高,成果越显著。 物理学在发展过程中形成了一套完整的科学方法,它对其他学科的研究,乃至哲学发展,都有重要意义.

物理学发展史(从1638年至1962年)

公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。

公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。

公元1646年,法国科学家帕斯卡实验验证大气压的存在。

公元1654年,德国科学家格里开发明抽气泵,获得真空。

公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。

公元1663年,格里开作马德堡半球实验。

公元1666年,英国科学家牛顿用三棱镜作色散实验。

公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。

公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。

公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。

公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。

公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。

公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。

公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。

公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。

公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。

公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。

公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。

公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。

公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。

公元1801年,英国科学家托马斯·杨用干涉法测光波波长。

公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。

公元1808年,法国科学家马吕斯发现光的偏振现象。

公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。

公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。

公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。

公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。

公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。

公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。

公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。

公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。

公元1830年,诺比利发明温差电堆。

公元1831年,法拉第发现电磁感应现象。

公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。

公元1835年,美国科学家亨利发现自感,1842年发现电振荡放电。

公元1840年,英国科学家焦耳从电流的热效应发现所产生的热量与电流的平方、电阻及时间成正比,称焦耳-楞茨定律(楞茨也独立地发现了这一定律)。其后,焦耳先后于1843,1845,1847,1849直至1878年测量热功当量,历经四十年,共进行四百多次实验。

公元1842年,法国科学家勒诺尔从实验测定实际气体的性质,发现与波义耳定律及盖·吕萨克定律有偏离。

公元1843年,法拉第从实验证明电荷守恒定律。

公元1845年,法拉第发现强磁场使光的偏振面旋转,称法拉第效应。

公元1849年,法国科学家斐索首次在地面上测光速。

公元1851年,法国科学家傅科做傅科摆实验,证明地球自转。

公元1852年,英国科学家焦耳与威廉·汤姆逊发现气体焦耳-汤姆逊效应(气体通过狭窄通道后突然膨胀引起温度变化)。

公元1858年,德国科学家普吕克尔在放电管中发现阴极射线。

公元1859年,德国科学家基尔霍夫开创光谱分析,其后通过光谱分析发现铯、铷等新元素,他还发现发射光谱和吸收光谱之间的联系,建立了辐射定律。

公元1866年,德国科学家昆特做昆特管实验,用以测量气体或固体中的声速。

公元1869年,德国科学家希托夫用磁场使阴极射线偏转。

公元1871年,英国科学家瓦尔莱发现阴极射线带负电。

公元1875年,英国科学家克尔发现在强电场的作用下,某些各向同性的透明介质会变为各向异性,从而使光产生双折射现象,称克尔电光效应。

公元1876年,德国科学家哥尔德茨坦开始大量研究阳极射线的实验,导致极坠射线的发现。

公元1879年,英国科学家克鲁克斯开始一系列实验,研究阴极射线。

公元1879年,奥地利科学家斯忒藩发现黑体辐射经验公式。

公元1879年,美国科学家霍尔发现电流通过金属时,在磁场作用下产生横向电动势的霍尔效应。

公元1880年,法国科学家居里兄弟发现晶体的压电效应。

公元1881年,美国科学家迈克耳逊首次做以太漂移实验,得到零结果。由此产生迈克耳逊干涉仪,灵敏度极高。

公元1885年,迈克耳逊与莫雷合作改进斐索流水中光速的测量。

公元1887年,迈克耳逊与莫雷再次做以太漂移实验,又得零结果。

公元1887年,德国科学家赫兹作电磁波实验,证实了英国科学家麦克斯韦的电磁场理论。同时,赫兹发现光电效应。

公元1890年,匈牙利科学家厄沃作实验证明惯性质量与引力质量相等。

公元1893年,德国科学家勒纳德研究阴极射线时,在射线管上装一薄铝窗,使阴极射线从管内穿出进入空气,射程约l厘米,人称勒纳德射线。

公元1895年,P.居里发现居里点和居里定律。

公元1895年,德国科学家伦琴发现x射线。

公元1896年,法国科学家贝克勒尔发现放射性。

公元1896年,荷兰科学家塞曼发现磁场

『柒』 傅科的介绍

傅科(Jean-Bernard-Léon Foucault,1819~1868) 法国物理学家。1819年9月18日生于巴黎,1868年2月11日卒于巴黎。他最著名的发明是显示地球自转的傅科摆。除此之外他还曾经测量光速,发现了涡电流。他虽然没有发明陀螺仪,但是这个名称是他起的。在月球上有一座以他命名的撞击坑。傅科的“知识权利”哲学思想也有很大影响。

『捌』 谁第一个用实验测定出光速

最早人们认为光速是无限的.后来有人对此提出质疑,并用天文方法估计光速,但都不甚准确.第一个在地面用实验的方法测量出光速的人是法国物理学家阿曼德·斐索(Armand Hippolyte Louis Fizeau).以下内容摘自维百,有改动:
--------------------------------------------------------------------------------------------------
1849年,阿曼德·斐索用旋转齿轮法求得
c = 3.153×10^8 m/s.
他是第一位用实验方法,测定地面光速的实验者.实验方法大致如下:
光从半镀银面反射后,经高速旋转的齿轮投向反射镜,再沿原路返回.如果齿轮转过一齿所需的时间,正好与光往返的时间相等,就可透过半镀银面观测到光,从而根据齿轮的转速计算出光速.
1862年,莱昂·傅科(Jean Bernard Léon Foucault)用旋转镜法测空气中的光速,原理和斐索的旋转齿轮法大同小异,他的结果是
c = 2.98 × 10^8 m/s.
第三位在地面上测到光速的是考尔纽(M.A.Cornu).1874年他改进了斐索的旋转齿轮法,得到
c = 2.9999 × 10^8 m/s.
阿尔伯特·迈克耳孙(Albert Abraham Michelson)改进了傅科的旋转镜法,多次测量光速.1879年,得到
c = (2.99910±0.00050) ×10^8 m/s;
1882年得到
c = (2.99853±0.00060) × 10^8 m/s.
后来,他综合旋转镜法和旋转齿轮法的特点,发展了旋转棱镜法,1924~1927年间,得到
c = (2.99796±0.00004) × 10^8 m/s.
迈克耳孙在推算真空中的光速时,应该用空气的群速折射率,可是他用的却是空气的相速折射率.这一错误在1929年被伯奇发觉,经改正后,1926年的结果应为
c = (2.99798±0.00004) × 10^8 m/s = 299798±4 km/s.
后来,由于电子学的发展,用克尔盒、谐振腔、光电测距仪等方法,光速的测定,比直接用光学方法又提高了一个数量级.60年代雷射器发明,运用稳频雷射器,可以大大降低光速测量的不确定度.1973年达0.004 ppm,终于在1983年第十七届国际计量大会上作出决定,将真空中的光速定为精确值.

『玖』 傅科摆是如何发明的

胡克曾在1679年给牛顿去信,询问地球表面上落体的轨迹。他问牛顿:如果考虑地球在公转之外还有自转,空中一物体下落的轨迹是怎样的?如果在地球内部物体落在地心附近又会怎样?牛顿在复信中回答:由于地球自西向东转,空中一物体向地心落下的轨迹应向东偏离垂直线,至地心附近沿一螺旋线落向地心。胡克对牛顿的回答很不满意。再次去信指出:根本不类似于一螺旋线,不如说是某种椭圆,沿与赤道平面成51°32′的斜面向东南方向落下。胡克这一提示使牛顿吃了一惊,认识到自己对地球的运动了解得不够清楚。胡克这一很有分量的提示不是凭空提出来的,他详细研究过落体运动。

据说,他曾做过子弹从高处下落的实验,并证明了子弹落点总要落到通过垂直悬吊着的同样的子弹所求出的垂直点的东南方向。如果这一传闻属实,胡克的落体实验应该算是最早能证明地球自转的实验了。

这样的实验直到19世纪还有人在做。因为自从哥白尼提出日心说以来,虽然经过长期的论证,人们对地球的运动已经深信不疑,但还缺少直接的实验以证明地球的自转。这类实验是很有价值的,因为由此可以进一步研究与地球自转有关的许多自然现象。

不少人致力于用落体证明地球的自转。例如:1791年加格利耳米尼(G.B.Guglielmini)从波洛尼亚的塔上、1802年本岑伯(J.F.Bengenberg)从汉堡的塔上都做了落体实验,专门研究这个问题。1833年德国的莱希更进一步找了一个矿井做落体实验。这个矿井在德国萨克森,井深188米。莱希在106次独立的观测中得到的平均偏离为28毫米,方向是东偏南。但是,所有这些实验都无法直接向广大观众演示,因为偏离过于微小,气流的干扰会严重影响实验结果。

以实验方法为地球自转提供直接证据的是傅科(J.B.L.Foucault)的摆锤实验,也就是有名的傅科摆。

傅科是法国著名实验物理学家,他学过医学,当过几年医生,后来转向物理学的实验研究。1845年任《辩论》报的科学记者,经常为科学专栏撰稿,介绍当代科学的新进展。同时,他也在自己家中开展物理实验。他研究过照相术,并用之于天文摄影。他对摆和地球自转问题的兴趣,正是起因于天文观察。1845年,他和斐索(A.H.L.Fizeau)合作,曾拍摄到太阳的照片,后来又想拍摄星体照片,这就需要进行长时间的曝光,望远镜系统在拍摄过程应能连续保持指向天空中的目标。为了控制望远镜系统的运动,使它能跟踪目标,傅科依照17世纪惠更斯未曾实现的圆锥摆钟的设计方案,做了一台特殊的钟。他用一根钢棒支撑摆锤。在实验过程中,他注意到,当把钢棒夹在车床的卡子上,用手转动车床时,钢棒振动总是要维持它原来的振动平面,不随车床转动。

这一不期而遇的现象,引起了傅科的兴趣,使他想到可不可以用类似的方法做一个表演来证明地球的自转。他知道这是一个很有价值的实验。

1851年1月8日,傅科在他家里的天花板下用2米长的钢丝吊一个5千克重的摆锤,组成可沿任意方向摆动的摆。在摆动的最高处用一根丝线拉住,然后用火烧断丝线,摆就开始摆动。傅科发现,摆动平面不断旋转,逐渐转向“天球昼夜运动的方向”。随后,傅科又在巴黎天文台的大厅里,用11米长的摆锤重复这一实验。1851年2月3日,傅科向法国科学院报告了他的发现,宣布摆动平面所描绘的圆的大小与纬度的正弦成反比。这个实验不久又按比例扩大规模,搬到巴黎的伟人祠去做。一个28千克的重球用67米长、1.4毫米粗的金属丝挂起。伟人祠挤满了观众,这个实验引起人们极大的兴趣。

傅科是一位很有才华的实验物理学家。他还在光速的测量上有过重大的发明创造。

『拾』 可否介绍一下傅科的生平和傅科摆实验的过程

傅科(Foucault,JeanBernandLeon,1819—1868)是19世纪中叶法国杰出的实验物理学家.起初学习医学,后来放弃学医从事实验研究,做了许多重要的物理实验和技术发明.傅科一生设计和完成的仪器装置,在科学和技术领域解决了许多实际问题.他的工作不仅促进了物理学的发展,而且在技术的发展中起了十分重要的作用.他的名字和功绩在物理学发展史上留下了光辉的一页.
傅科摆实验的过程http://bd.tjjy.com.cn/gzdl/Article_Show.asp?ArticleID=38

阅读全文

与傅科发明的第一个百有多少场相关的资料

热点内容
轮子什么时候发明 浏览:151
马鞍山陶世宏 浏览:16
马鞍山茂 浏览:5
通辽工商局咨询电话 浏览:304
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532
基层公共卫生服务技术题库 浏览:497
中国城市老年体育公共服务体系的反思与重构 浏览:932
网络著作权的法定许可 浏览:640