Ⅰ 那个发明PCR技术的人,后来怎么样了
PCR (Polymerase Chain Reaction) ,翻译成中文的全称是“聚合酶链式反应”,取名效法“原子核裂变链式反应”。其实际反应效果也是名符其实,在两个短核苷酸 (引物) 和耐热的DNA聚合酶的作用下,首先待扩增DNA模板加热变性解链,随之冷却至某一温度时,引物与待扩增模板序列发上退火,再将温度升高使退火引物在DNA聚合酶作用下得以延伸。这种热变性-复姓-延伸的过程就是一个PCR循环,不断重复,短短数十分钟就可把靶标DNA进行2 n指数倍扩增。PCR以其高灵敏度、高效率扩增靶标DNA的特点,广泛应用于生命科学、医疗诊断、法医检测、食品卫生和环境检测等方面。Kary Mullis因发明PCR技术获得了1993年的诺贝尔化学奖,就是这个发现把生物学划分成两个明显的时代,即PCR的史前生物学时代和后现代生物学时代。PCR的发现无疑是科学技术历史上的一个范示(paradigm)。
Ⅱ pcr的由来
1985年,美国的Mullis等发明了具有划时代意义的PCR技术(Saiki eta1.,1985),使体外大量扩增DNA序列成为现实,这项技术获版得权了1995年的诺贝尔化学奖,也为后来转基因作物的检测方法提供了理论基础。
Ⅲ 求PCR(多聚合酶链反应技术)发展史!有文献的砸上来帮下忙。。
I THINK IT IS GOOD.
AND IT IS BETTER.
PCR技术
王霄鹏 推荐:栗瑞丰
摘要:PCR是分子生物学的关键技术,又是常规技术。它的出现极大地推动了分子生物学的发展,旋即被迅速推广并应用到生命科学的各个领域。
关键词:PCR、发展简史、基本原理、基本操作、主要应用
聚合酶链式反应(polymerase chain reaction , PCR)是体外扩增DNA序列的技术。它与分子克隆和DNA序列分析方法几乎构成了整个分子生物学实验工作的基础。在这三种技术中,PCR方法理论上出现最早,实践中应用也最广泛。PCR技术使对微量的核酸(DNA或RNA)操作变得简单易行,同时还可以使核酸研究脱离活体生物。PCR技术的发明是分子生物学的一项革命,它极大地推动了分子生物学以及生物技术产业的发展。
PCR技术发展简史
人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想。但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。
1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖。
但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。尔后,Saiki等人又从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石。在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。
PCR技术的基本原理和操作
1. PCR的基本原理
PCR的基本工作原理就是以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机理沿着模板链延伸直至完成新的DNA合成。通过不断重复这一过程,可以使目的DNA片段得到扩增。另一方面,新合成的DNA片段也可以作为模板,因而PCR技术可使DNA的合成量呈指数型增长。
2. PCR的基本成分
PCR包括7种基本成分:模板DNA、特异性引物、热稳定DNA聚合酶、脱氧核苷三磷酸(dNTP)、二价阳离子、缓冲液及一价阳离子。
模板DNA:包括基因组DNA、质粒DNA、噬菌体DNA、预先扩增的DNA、cDNA和mRNA分子等几乎所有形式的DNA和RNA都能成为PCR技术反应的模板。除此之外,PCR反应还可以直接以细胞为模板。
特异性引物:是一段与模板DNA链结合的寡核苷酸片段,对于DNA的扩增起到引发的作用。
热稳定DNA聚合酶:这是PCR技术实现自动化的关键。热稳定DNA聚合酶是从两类微生物中分离的:一类是嗜热和高度嗜热的真细菌,另一类是嗜热古细菌。现在又出现了一种兼顾了几种DNA聚合酶特点的混合型酶。
脱氧核苷三磷酸(dNTP):是DNA合成的原料,包括dATP、dGTP、dTTP、dCTP。
二价阳离子:常用到Zn2+和Mg2+,作为构成热稳定性DNA聚合酶的成分之一。
缓冲液:一般使用Tris-Cl缓冲液,标准的为10mmol/L,并将其调节到8.3~8.8之间。
一价阳离子:一般使用50mmol/L的KCl溶液,有利于改善扩增的产物质量。
PCR的基本操作
PCR是一种级联反复循环的DNA合成反应过程。PCR技术的基本反应由三个步骤组成:
1. 变性:通过加热使模板DNA完全变性成为单链,同时引物自身和引物之间存在的局部双链也得以消除;
2. 退火:将温度下降至适宜温度,使引物与模板DNA退火结合;
3. 延伸:将温度升高,热稳定DNA聚合酶以dNTP为底物催化合成DNA链延伸。
以上三部为一个循环,新合成的DNA分子又可以作为下一轮合成的模板,经多次循环后即可达到扩增DNA片段的目的。
PCR的主要应用
最初建立PCR是为了扩增已知序列的靶基因。因为在PCR方法问世以前,要获得一个靶基因,必须建立基因文件库,然后从成千上万的菌落中通过Southern blot 杂交筛选含有靶基因的克隆。这样既费时又费钱,特别是在克隆真核生物基因时难度更大。自从建立了PCR方法以后,使克隆已知序列的基因变得非常容易。为了适应分子生物学的快速发展,PCR方法也得到了不断发展,现在PCR已应用到生命科学的各个领域。
1. 基础研究方面的应用
目前从事分子生物学的实验室和研究人员,几乎每天都在使用PCR,可以说几乎没有一个分子生物学家没有使用过PCR。因此,PCR与分子克隆一样是分子生物学实验室的常规方法,可用于达到以下目的:
l 扩增目的基因和鉴定重组子;
l 克隆基因;
l 基因功能和表达调控的研究;
l 基因组测序;
l 制备单链模板;
l 致突变;
2. PCR在临床上的应用
l 在遗传学上的应用:人类的遗传性疾病是因为某一碱基序列发生了突变,使之缺失或形成某一限制性内切酶的识别位点,通过PCR结合限制片段长度多态性分析(PCR-RFLP),就可以从基因的水平对遗传性疾病进行分析。例如,血友病甲是一种常见的遗传性出血性疾病,患者体内缺乏凝血因子FVIII这是由于基因第14个外显子的第336位氨基酸的编码基因发生了突变,产生了一个新的PstI酶切点,因此可以使用PCR-RFLP对血友病进行诊断。PCR还可以用来检测遗传性耳聋和Leber遗传性视神经病。
l 在肿瘤研究中的应用:PCR已日益广泛应用于肿瘤的病因与发病机理研究以及肿瘤诊断与治疗的研究中。例如,差异显示PCR技术能针对不同肿瘤寻找其特异而敏感的标志物,并用于肿瘤早期诊断、判断预后及疗效评估。另一方面,在使用普通放疗、化疗的同时可结合定量PCR技术检测微小残留病灶,以进一步改进治疗方案。此外,由于癌症的发生在一定意义上是单个细胞分子发生变化,因而可以使用单细胞PCR技术对癌症的发病机理进行研究。
l 检测病原体
l 在基因分型中的应用:当进行器官移植时并须先组织配型工作,此时常应用序列特异性寡核苷酸多态性PCR(PCR-sequence specific oilgonucleotide polymorphism,PCR-SSOP)对人类白细胞抗原(human leukocyte antigen,HLA)进行分型,使移植成功率大大提高。此外PCR-限制性片段长度多态性也可以用于对HLA的分型。
3. 在法医学中的应用
例如:最早应用DNA限制性片段长度多态性结合PCR-RFLP来进行法医学个体识别和亲子鉴定。目前发现在真核生物基因组编码和非编码序列中的短串联重复序列的重复次数在个体间存在着差异,因此可以使用短串联重复PCR技术对其进行分析。使用PCR技术进行法医鉴定的优点是样品用量小并且适于对高度降解材料的检测。除刚才提到的之外,可变数目串联重复序列(variable number tandem repeat,VN-TR)PCR也可以用于法医学个体识别和亲子鉴定。
所以,综上所述,PCR的确是一种分子生物学研究的基础技术。在它30多年的发展中衍生出了诸如PCR-RFLP、PCR-SSOP、VN-TR,以及免疫PCR、致突变PCR和定量PCR等十几种不同的技术方法。PCR技术可以为基因工程提供目的基因,并广泛地应用于个体识别、亲子鉴定、免疫配型、疾病诊断等方面。可以说,PCR已经渗透到了生命科学的各个领域。21世纪是生物工程的世纪。我相信,在今后的发展中PCR技术会不断地得到扩充和完善,PCR技术也将发挥着越来越重要的作用。
参考书目:黄留玉,PCR最新技术原理、方法及应用,北京,化学工业出版社,现代生物技术与医药科技出版中心,2005年
Ⅳ 求Kary Mullis也就是PCR技术发明者在science上发表的那篇获得诺贝尔奖的文章
Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase
Ⅳ 穆利斯的K.Mullis 和 PCR的故事
前言:在某个年代的美国,实验室里可以狎妓,嬉皮士可以拿学位,《自然》杂志也很水,凡错误越多,成功也就越近,当然假设是正确率一定,而错误多说明尝试次数也很多。
天晓得这家伙是不是找到了自己的内心……
末代沙皇尼古拉二世、1918年的流行性感冒病毒、电影《侏罗纪公园》,以及辛普森杀妻案,这四件事情到底有什么相关?答案是没有。只不过近十几年来生物技术的一项新发明,把它们给连在一块了。这项技术就是“聚合酶链反应”(polymerase chain reaction,PCR)。
PCR的最大特点,是能将微量的DNA大幅增加。因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中凶手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。这也是“微量证据”的威力之所在。
PCR的原理及做法其实不难,它利用DNA双链复制的原理,将一条DNA序列不断加以复制,使其数量以几何级数方式增加,就可用来做定性的分析及各式各样的应用。DNA双螺旋结构于1953年发现,自此确立了它就是细胞里携带遗传信息的分子。第一个细胞内用来复制DNA所需的聚合酶(polymerase,即PCR之P),也早在1956年分离成功。几十年来,在试管内复制DNA已是许多实验室的例行工作,但就是没有人想到以PCR 方法大量复制DNA,就算想到也不认为可行,直到1983年。
DNA在复制时,其中两条以氢键结合的互补链必须先行分开,才能各自作为复制的模板;而打开双螺旋的最简单方法就是加热。在高温下,双股DNA链会分离成单股,等温度降低后,互补的两条DNA链又可以恢复成双股。虽然DNA分子能耐高温,但进行DNA复制所需的聚合酶是蛋白质,在高温下会失去活性。这也是之前的研究人员不认为这种方法可行的原因之一。再有,要在千万条DNA当中,以一小段已知序列制成的引物,“钓”出所需的片段,进行复制,也跟大海捞针差不多,这是另一个让人却步的理由。
PCR的发明人,一般公认是穆里斯(K. Mullis),他也因此获得了1993年的诺贝尔化学奖。穆里斯在好些写作中,包括1990年在《科学美国人》上的一篇文章,及1998年的自传《心灵裸舞》(Dancing Naked in the Mind Field),都曾提到PCR这个构想的起源。然而,PCR从构想到实现,真的就是穆里斯一人之功吗?PCR究竟是在什么样的环境下诞生的呢?
穆里斯的出身是生物化学家,1972在加州大学伯克利分校取得博士学位,专长有机合成。一早他就表现出桀骜不驯的性格,在那嬉皮的年代,吸食自制的迷幻药不算太稀奇,穆里斯也乐于此道。更让人难以想象的是,他在经历迷幻药之旅的过程中,居然想出了某个解释大爆炸宇宙学的理论,写了出来投稿到《自然》周刊,居然登了出来。他也因此通过了博士资格考试,因为有文章发表在《自然》周刊的教授已然不多,学生更是少见。至于他的博士论文,也是用“带点幽默的口语化写成”(穆里斯自己的说法),要不是宽容的指导老师帮他讲话,只怕要重写。
穆里斯另一个毫不掩饰的爱好是女人,这也给他的生涯带来许多转折。博士学位到手后,他随着新婚的第二任妻子来到堪萨斯州,因妻子的关系进了该州的医学院就读,他也在那儿的心脏科找到与其学位并不相称的工作。不久他就感到厌恶,因为实验需要宰杀许多老鼠。1975年,他与妻子仳离,又与后来的第三任妻子回到加州湾区,在第一任妻子所有的一家糕饼店当了近两年的经理。1977年,才又回到旧金山加州大学医学院的药物化学实验室,走的仍然不是学术的正途,也同样在不久以后,对新工作感到厌烦。
1979年,穆里斯进了湾区一家名叫“西特斯”(Cetus)的私人生物技术公司任职。当年,生物技术公司还处于萌芽阶段,很少学术界人士愿意离开象牙塔的庇荫到私人企业工作。就算是到有规模的大药厂,同样也得不到多数同行的认可与祝福,认为是学术生涯的终点。然而西特斯却是一个极为特殊的所在,这家公司集结了一批有能力、有梦想的科学家,在自由开放的风气下,共同朝既定的目标前进。这和一般学院里各大教授及实验室的主持人关起门来各行其是的做法,相当不同。西特斯聘用穆里斯,是想借重他有机化学合成的专长,负责合成寡核苷酸(短链的DNA分子),以供实验所需。
自1970年代起,由于发现选择性切割及接合DNA分子的限制性内切酶,可将DNA分子加以重组,因此引发了基因工程的开展,才出现生物技术这个产业。于是,西特斯公司从1970年代以制造维生素及抗生素为主的公司转型,进入1980年代以基因产品为主的研发。生长激素、胰岛素、凝血因子、干扰素、白介素等,都是西特斯的研发对象。1981年,西特斯正式成为上市公司,筹措到大笔资金。
穆里斯就是在这股氛围下进入西特斯的。其实他做的工作,不算什么研究,只是设法改进寡核苷酸合成的效率而已。穆里斯花了很多时间玩当时刚流行的个人电脑(还不是IBM的),也经常提出古怪的想法,其中大部分都是错的。他争强好斗、不接受批评的个性,也令他到处结怨。他在工作单位与异性的关系,更惹出许多麻烦,甚至要劳动主管出面解决。1981年,他升任寡核苷酸合成部门的主管。为了提高产量及节省时间,他省略了品质管理的步骤,引起使用单位的不满,声称品质不佳的寡核苷酸使得他们的研究出现问题,穆里斯则反击说是使用单位本身的能力不足所致。
PCR的点子,也就是在这样的情况下诞生的。根据穆里斯自己的说法,那是在1983年春天的一个周五晚上,他开车带着女友前往乡间的小屋度周末。在蜿蜒的乡间公路上开着车,一段DNA反复复制的景像,在他的脑海里冒了出来。穆里斯原以为这样简单的想法,应该有人提出过,但搜索文献后却发现没有。在“顿悟” 之后的三到五个月间,穆里斯并没有任何行动,原因如今也不清楚。该年8月,穆里斯首次在公司里正式作了有关PCR原理的报告,听者反应冷淡。一来,大家已经习惯了他的胡思乱想;再者,多数人的想法是,这个原理太简单了,如果可行的话,一定早有人做过,否则,里头一定有它不可行之处,但也没有人明确说得出来,为什么不可行。
于是,穆里斯得着手证明这个构想的可行性。从1983年9月起,穆里斯陆续进行了一些实验,换过几个DNA模板,也尝试不同的加热、降温周期,结果都不够肯定,顶多只在电泳凝胶上形成一条若有若无的线条,未能说服旁人PCR发挥了增幅的功效。1984年6月,穆里斯在公司又因男女关系惹出事端,引起众怒,濒临被开除的命运。结果是引荐他进入公司的上司为他说情,只免除了他的主管职务,并予转组,同时限定他在一年内把PCR建立起来。
任何研究方法从概念提出到实际应用之间,所需投入的精力与时间,大多为一般人所低估。由于穆里斯本身没有分子生物学的训练,公司派了技术员协助,前后一共有三位。这些人在PCR的发展上,发挥了重要的作用。1984年11月,穆里斯的技术员首次取得可信的结果,证明了PCR的可行。于是在1985年初,公司决定让技术精湛的日裔技术员才木(Randall Saiki)加入工作,这是一项正确的决定。在自动化的仪器出现之前,PCR是个劳动密集型的实验方法,需要长时间的反复操作,手脚不利落的人是做不来的。才木的结果则干净漂亮,让人无从置疑。
到了1985年春天,西特斯的高级主管已经对PCR的潜力信服,也开始担心消息外泄(穆里斯自己是个大嘴巴),而让旁人取得先机。3月里,他们送出了第一个专利申请,也准备在10月举行的美国遗传学会年会上报告成果,但之前必须将正式的论文写好投送才保险。他们决定写两篇文章,一篇关于PCR的理论,由穆里斯执笔先行发表,第二篇则集中在PCR的应用上,以才木的实验结果为主,随后推出。结果整个夏天,穆里斯都在玩电脑,一再拖延论文的写作。到9月下旬另一篇应用文章写好投送时,穆里斯还没有动静。因此,第一篇提到PCR这个方法的论文,于1985年12月20日发表在《科学》周刊上,共有七位作者,才木排头名,穆里斯则排第四。
到了该年12月,穆里斯才将论文写好,并投给《自然》周刊。但穆里斯忘了附上一封给编辑的信,当然也就没有说明该文与《科学》周刊上的那篇有何不同,结果遭到退稿。震惊之余,他转投《科学》周刊,并由西特斯的主管帮助写了封信给编辑,结果仍然遭到退稿。这时,穆里斯把怒气转向公司,认为那是公司的阴谋,想要窃取他发明PCR的功劳。科学发明的优先权及功劳之争,科学史上可谓不绝于书,也常是公婆都有些道理,不细察背景与经过,只凭后人记载的片言只语,是很难了解真相的。至于PCR的概念是穆里斯的结晶,没有什么人有异议,只不过将概念实现的过程,就复杂得多了。
穆里斯的文章两度遭退稿后,公司里有人建议投给《酶学方法》(Methods of Enzymology),主要是因为有人与该刊主编吴瑞相熟,较好沟通,同时PCR的性质也适合该强调方法学的刊物。于是,穆里斯的文章终于得到发表,只不过整整晚了一年,到1987年初才问世。这篇文章只有穆里斯及另一位技术员两人挂名。
为了表示他们并无意争功,西特斯的主管向冷泉港实验室的沃森(DNA双螺旋结构的发现人之一)推荐穆里斯在1986年5月举行的“人类分子生物学”专题研讨会中,报告PCR的原理及实际应用结果。这是穆里斯生平第一次受邀演讲,分子生物学界有头有脸的人也都在场。结果他表现不错,建立了往后人们的印象: PCR是穆里斯一手发明的。冷泉港专题研讨会的专刊于1986年底出版,还在《酶学方法》的文章之前,穆里斯挂头名。
自此,PCR之名及其强大的应用性就广为人知了。然而,将PCR变成真正成熟技术的临门一脚,则是耐高温DNA聚合酶的引进。
先前提到,PCR的操作过程中,需要反复加热与降温的步骤,而前一次循环所使用的大肠杆菌DNA聚合酶在高温下就变性了,因此在每一次冷热循环之后,都要加入新鲜的聚合酶。这个做法不但烦琐,并且昂贵。按当时的价格,一次循环所需的聚合酶值1美元,30个循环下来就是30美元,循环更多次就更不得了。因此,1986年春,穆里斯首度提出使用耐高温酶的想法。经过文献搜寻,果然找到了两篇有关文献,较早的一篇是在美国做的,另一篇则是俄国科学家的成果,以俄文发表。
第一篇报道分离耐高温DNA聚合酶的工作,是一位来自台湾的年轻科学家初试啼声之作。1973年,钱嘉韵随着留学热潮到俄亥俄州的辛辛那提大学生物系就读。她的指导老师崔拉(J. Trela)对一种黄石公园的热泉里发现的嗜热菌(Thermus aquaticus)感到好奇,就让钱及另一位美国学生以该细菌为论文研究的主题。在另一位老师的指导下,钱学会了从细胞中分离蛋白质,成功分离出该细菌耐高温的Taq DNA聚合酶。
1975年获硕士学位后,钱转往衣阿华州立大学取得神经生物学博士学位,1982年回到阳明医学院神经科学研究所任教,至今已满20年。那篇历史性作品,发表于1976年的《细菌学杂志》(Journal of Bacteriology),她是第一作者,只不过用了英文名字Alice,再加上她后来挂了夫姓(Chang),以至没有太多人知道,该篇被广为引用的文章的作者A. Chien就是钱嘉韵。
穆里斯虽然提出将Taq DNA聚合酶应用到PCR的建议,但当时并没有现成的可用,他得想办法自己分离。西特斯有全套分离蛋白质的装备,也有人愿意指导,但穆里斯是个拖延成性的人。等了几个月后,公司其他人只有自己动手,按着先前钱等人发表的步骤,三个星期就分离出纯化的Taq DNA聚合酶。1986年6月,才木首度将其应用于PCR,效果就好得惊人,可说是一战成功。Taq DNA聚合酶不但大大简化了PCR工作,同时专一性及活性都比之前使用的酶更强,背景杂讯也几乎都消除了。自此,PCR取得了完全的成功。
穆里斯与西特斯的关系此后更加恶化,他完全不认为自己在发表文章的过程中有任何疏失,并要求未来五年内有关PCR发表的文章,都由他挂头名。他还在公开场合批评公司其他人士。终于,穆里斯于1986年9月离开了西特斯。西特斯给了他五个月的薪水及一万美元奖金,但按产业惯例,PCR的专利权属于西特斯公司。
离开西特斯后,穆里斯继续担任过一些生物技术公司的顾问,但再没有发表过一篇正式论文。以他的说法,PCR就是他一人发明的,得了诺贝尔奖的肯定后,也更听不到太多其他的声音。1991年12月,霍夫曼罗氏药厂据称以三亿美元购得了西特斯的PCR技术专利,西特斯公司也走进了历史。直到最近几年,由于之前钱嘉韵等人已经发表的工作,Taq DNA聚合酶的专利权遭到挑战,连带使PCR的专利也受到影响,不过那又是另外一个故事了。
Ⅵ PCR是由谁提出来的 汉语名字 ,谢谢!
Polymerase Chain Reaction聚合酶链式反应
1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发版明了PCR技术,并权在Science杂志上发表了关于PCR技术的第一篇学术论文。
Ⅶ PCR传奇:一个生物技术的故事
本书依据大l量第一手文献和访谈材料,n生动揭示了当代重大生物技术发明PCR的动人内幕,v深入考察了wPCR从理论概念孕育到实用工具开发的曲折历C程,充分展现了西特斯公司科学家在20世纪80年代挑战学院科学JI体制,造就高风险、高回报的风险资本环境的开拓创新精神。本书尤其R传神地再现了1993年诺贝尔化学奖得主穆利斯发Y明PCR的富有传奇色彩的历险记,探讨了生物技术产f业发展的科学、技术、文化、社会、经济、
Ⅷ PCR发明者的一些有趣的故事
呵呵,网络一下《小混混得了诺贝尔奖》
网络教育团队【海纳百川团】为您解答。
感谢您的采纳 O(∩_∩)O 。如有疑问,欢迎追问。
Ⅸ mulis发明了pcr技术,是在哪一年获得了诺贝尔化学奖
1995年。
1995年,美国科学家Mulis因发明了PCR技术而获得了诺贝尔化学奖。PCR和生物体内DNA的复制都必需的条回件包括DNA聚合酶答、模板DNA、能量、游离脱氧核苷酸等。
诺贝尔化学奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔(1833-1896)的部分遗产作为基金创立的5项奖金之一。诺贝尔奖包括金质奖章、证书和奖金支票。
诺贝尔奖的奖金数视基金会的收入而定,其范围约从11000英镑(31000美元)到30000英镑(72000美元)。奖金的面值,由于通货膨胀,逐年有所提高,最初约为3万多美元,60年代为7.5万美元,80年代达22万多美元。
不同奖项、奖章的背面饰物不同。每份获奖证书的设计也各具风采。颁奖仪式隆重而简朴,每年出席的人数限于1500人至1800人之间,其中男士要穿燕尾服或民族服装,女士要穿严肃的夜礼服,仪式中的所用白花和黄花必须从圣莫雷空运来,这意味着对知识的尊重。
Ⅹ pcr技术的出现是哪几个故事促成的
PCR的最大特点,是能将微量的DNA大幅增加。因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中凶手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。这也是“微量证据”的威力之所在。
PCR的原理及做法其实不难,它利用DNA双链复制的原理,将一条DNA序列不断加以复制,使其数量以几何级数方式增加,就可用来做定性的分析及各式各样的应用。DNA双螺旋结构于1953年发现,自此确立了它就是细胞里携带遗传信息的分子。第一个细胞内用来复制DNA所需的聚合酶(polymerase,即PCR之P),也早在1956年分离成功。几十年来,在试管内复制DNA已是许多实验室的例行工作,但就是没有人想到以PCR方法大量复制DNA,就算想到也不认为可行,直到1983年。
DNA在复制时,其中两条以氢键结合的互补链必须先行分开,才能各自作为复制的模板;而打开双螺旋的最简单方法就是加热。在高温下,双股DNA链会分离成单股,等温度降低后,互补的两条DNA链又可以恢复成双股。虽然DNA分子能耐高温,但进行DNA复制所需的聚合酶是蛋白质,在高温下会失去活性。这也是之前的研究人员不认为这种方法可行的原因之一。再有,要在千万条DNA当中,以一小段已知序列制成的引物,“钓”出所需的片段,进行复制,也跟大海捞针差不多,这是另一个让人却步的理由。
PCR的发明人,一般公认是穆里斯(K. Mullis),他也因此获得了1993年的诺贝尔化学奖。穆里斯在好些写作中,包括1990年在《科学美国人》上的一篇文章,及1998年的自传《心灵裸舞》(Dancing Naked in the Mind Field),都曾提到PCR这个构想的起源。然而,PCR从构想到实现,真的就是穆里斯一人之功吗?PCR究竟是在什么样的环境下诞生的呢?
先前提到,PCR的操作过程中,需要反复加热与降温的步骤,而前一次循环所使用的大肠杆菌DNA聚合酶在高温下就变性了,因此在每一次冷热循环之后,都要加入新鲜的聚合酶。这个做法不但烦琐,并且昂贵。按当时的价格,一次循环所需的聚合酶值1美元,30个循环下来就是30美元,循环更多次就更不得了。因此,1986年春,穆里斯首度提出使用耐高温酶的想法。经过文献搜寻,果然找到了两篇有关文献,较早的一篇是在美国做的,另一篇则是俄国科学家的成果,以俄文发表。
第一篇报道分离耐高温DNA聚合酶的工作,是一位来自台湾的年轻科学家初试啼声之作。1973年,钱嘉韵随着留学热潮到俄亥俄州的辛辛那提大学生物系就读。她的指导老师崔拉(J. Trela)对一种黄石公园的热泉里发现的嗜热菌(Thermus aquaticus)感到好奇,就让钱及另一位美国学生以该细菌为论文研究的主题。在另一位老师的指导下,钱学会了从细胞中分离蛋白质,成功分离出该细菌耐高温的Taq DNA聚合酶。
1975年获硕士学位后,钱转往衣阿华州立大学取得神经生物学博士学位,1982年回到阳明医学院神经科学研究所任教,至今已满20年。那篇历史性作品,发表于1976年的《细菌学杂志》(Journal of Bacteriology),她是第一作者,只不过用了英文名字Alice,再加上她后来挂了夫姓(Chang),以至没有太多人知道,该篇被广为引用的文章的作者A. Chien就是钱嘉韵。
穆里斯虽然提出将Taq DNA聚合酶应用到PCR的建议,但当时并没有现成的可用,他得想办法自己分离。西特斯有全套分离蛋白质的装备,也有人愿意指导,但穆里斯是个拖延成性的人。等了几个月后,公司其他人只有自己动手,按着先前钱等人发表的步骤,三个星期就分离出纯化的Taq DNA聚合酶。1986年6月,才木首度将其应用于PCR,效果就好得惊人,可说是一战成功。Taq DNA聚合酶不但大大简化了PCR工作,同时专一性及活性都比之前使用的酶更强,背景杂讯也几乎都消除了。自此,PCR取得了完全的成功。
穆里斯与西特斯的关系此后更加恶化,他完全不认为自己在发表文章的过程中有任何疏失,并要求未来五年内有关PCR发表的文章,都由他挂头名。他还在公开场合批评公司其他人士。终于,穆里斯于1986年9月离开了西特斯。西特斯给了他五个月的薪水及一万美元奖金,但按产业惯例,PCR的专利权属于西特斯公司。
离开西特斯后,穆里斯继续担任过一些生物技术公司的顾问,但再没有发表过一篇正式论文。以他的说法,PCR就是他一人发明的,得了诺贝尔奖的肯定后,也更听不到太多其他的声音。1991年12月,霍夫曼罗氏药厂据称以三亿美元购得了西特斯的PCR技术专利,西特斯公司也走进了历史。直到最近几年,由于之前钱嘉韵等人已经发表的工作,Taq DNA聚合酶的专利权遭到挑战,连带使PCR的专利也受到影响,不过那又是另外一个故事了。