导航:首页 > 创造发明 > 数学再创造举例

数学再创造举例

发布时间:2021-06-19 01:53:13

① 如何引导小学生进行数学“再创造

数学教育的“再创造”教学方法,是荷兰数学家和数学教育家费赖登塔尔提出来的。他批评版传统的教法“将权数学作为一个现成的产品来教”、“只是一种模仿的数学”。我国传统的教法也是一题为一例,通过例题示范让学生模仿。这种“模仿数学”培养出来的学生往往只能“模仿”而不利于“创造”,费赖登塔尔说:“将数学作为一种活动来进行解释和分析,建立在这基础上的教学方法.我称之为再创造方法。”他强调:学习数学的唯一正确方法是让学生进行“再创造”,也就是由学生本人把要学的数学知识自己去发现或者创造出来;教师的任务是引导和帮助学生去进行这种“再创造”。

② 什么是数学再创造

由世界著名教学教育权威弗赖登塔尔提出的“再创造”的论述内容相当丰富,他认为:

1)数学是最容易创造的一种学科。它实质上是人们常识的系统化。教师不必将各种规则、定律灌输给学生,而是应该创造合适的条件,提供很多具体的例子,让学生在实践的过程中,自己去发现或是“再创造”出各种运算法则和各种定律。

2)每个人都应该按照自己的特点重新创造数学知识。个人学习数学的进程和数学发展的历史有着相似之处。每个人在学习过程中都可以根据自己的体验,用自己的思维方式重新创造有关的数学知识。

3)每个人有不同的“数学现实”,因而可达到不同的水平。这里“数学现实”是指客观现实与人们的数学认识的统一体。是人们用数学概念、数学方法对客观事物的认识的总体。其中既含有客观世界的现实情况,也包含学生个人用自己的数学水平观察这些事物所获得的认识。教师应当针对各个学生数学现实和思维水平的不同,通过适当的启发,引导学生加强反思,使学生的创造活动由不自觉的状态,发展为有意识的活动。

4)“再创造”应当贯穿于数学教育的全过程。数学教育的整个过程学生都应该积极参与,教师的任务就是为学生提供广阔的天地,听任各种不同的思维、不同的方法自由发展,绝不可以对内容作任何限制,更不应对其发现设置任何预先的圈套。

更多请参考 http://learning.sohu.com/20060417/n242808119.shtml
望采纳,谢谢!!

③ 数学老师简短评语

1、 理解题意,才能得出正确的结论!
2、 头脑要清醒!
3、数学知识必须经过自己的再创造,才能真正领会!
4、有效的方法和灵活的思维,是学习数学必不可少的
5、你的失误,往往让人怀疑你的数学水平!
6、你做重了题,难道就没有感觉吗?
7、上课要专心听讲!
8、学习是一种责任!
9、灵活的思维方法,可以使复杂的问题简单化!
10、只有不断地追求,才能登上数学的顶峰!
11、经常回顾与反思,对于理解和掌握学方法很有帮助!
12、上课专心听讲与用心思考,就是用功的最好表现!13、学习数学,首先要做一个“思者”!
14、相信你能把字写得再规范一些!
15、理解是记忆的前提!
16、上课时,坐姿要端正!
17、注意保持“一尺一寸一拳头”!
18、粗心大意是数学的大敌!
19、战胜自己的弱点,就能战胜一切!
20、学习是一种自觉的行为!
21、有志,更要有智!
22、记住某些格式与要求,也是必不可少的!
23、注意:头脑简单,数学就不简单了!
24、数学的灵活性,缘于积极的思考!
25、丢三落四是粗心大意的表现!
26、把每次作业当成检验自己对相关数学知识的理解与应用水平,你的成绩就会很优秀!
27、注意:学如逆水行舟,不进则退!28、做作业,一要独立思考,二要独立完成!
29、计算也要灵活!
30、失误缘自用心不够专注!
31、要想取得进步,首先要注意专心听讲!
32、假设法也是一种不错的数学方法!
33、学习要有自信心!
34、学会思考,才能真正地掌握数学方法!
35、数学需要严密!
36、多一些回顾与反思,你就会变得聪明起来!
37、经常反思与回顾,你的成绩肯定会有很大进步!
38、用心才能理解!
39、“会学”比“学会”更重要!
40、多动脑,才能把数学知识变成自己的东西!
41、提出问题比解决问题更有价值!
42、只有想不到的,没有做不到的!
43、举例是一种有效的数学方法!
44、我们 周围有很多例子,可以帮助我们解决数学问题!
45、数学知识是有联系的!
46、学过的知识要灵活运用!
47、听懂,才能更好的理解!
48、抬头听讲,老师会感到你脸上表现出很多信息!
49、数学规律要用心去发现!
50、数学的魅力,就在于探索与发现

④ 如何引领学生实现数学知识的再创造

数学教育的“再复创造”教制学方法,是荷兰数学家和数学教育家费赖登塔尔提出来的。他批评传统的教法“将数学作为一个现成的产品来教”、“只是一种模仿的数学”。我国传统的教法也是一题为一例,通过例题示范让学生模仿。这种“模仿数学”培养出来的学生往往只能“模仿”而不利于“创造”,费赖登塔尔说:“将数学作为一种活动来进行解释和分析,建立在这基础上的教学方法.我称之为再创造方法。”他强调:学习数学的唯一正确方法是让学生进行“再创造”,也就是由学生本人把要学的数学知识自己去发现或者创造出来;教师的任务是引导和帮助学生去进行这种“再创造”。

⑤ 如何自主探索,让学生“再创造”数学

关于“再创造”,荷兰著名数学教育家H.Freudenthal是这样解释的:“将数学作为一种活动来进行解释和分析,建立在这一基础上的教学方法,教师称之为再创造方法。”也就是说,数学知识应由学生本人在数学活动中去发现或创造出来,而不是由教师“灌”给学生。学生学习数学的过程应该是学生自身的探索、发现与创造的过程,而不是被动的接受过程。

因此,当学生对某种感兴趣的事物产生疑问并急于了解其中的奥秘时,教师不能简单地把自己知道的知识直接传授给学生,令他们得到暂时的满足,而应该充分相信学生的认知潜能,鼓励学生自主探索,积极从事观察、实验、猜测、推理、交流等数学活动,去大胆地“再创造”数学。

教师要经常告诉学生:“课堂是你的,数学课本是你的,三角板、量角器、圆规等这些学具也是你的,这节课的学习任务也是你的。老师和同学都是你的助手,想学到更深的知识就要靠你自己。”这样,在课堂上,学生始终处于不断发现问题、解决问题的过程中,他们经过自主探索,“再创造”了数学知识,其成功后的喜悦定然也能激励他们去“再创造”新的数学知识。相信,这些乐于自主探索的孩子,成功会越来越多,认识会越来越深。

⑥ 文学鉴赏中的再创造具体表现在哪些方面

在文学鉴赏活动中,欣赏者要把作品中的艺术形象变成自己头脑中的艺术形象,就要进行“再创造”。“再创造”的心理过程,主要表现为想象活动和情感体验。读者的想象和体验,是文学作品所塑造的艺术形象能够以小见大、寓实于虚、借形传神的重要原因之一。要是鉴赏者不善于进行积极的想象或缺乏必要的生活体验,就不可能对作品的意境有深切的感受,也就发现不了作品中的那些弦外之音、韵外之致。特别是文学作为语言艺术,其形象具有间接性,不象造型艺术、表演艺术、综合艺术那样直接塑造视觉形象和听觉形象,这就更需要鉴赏者的想象力,更需要鉴赏者进行“再创造”。它要求鉴赏者善于通过语言的媒介,想象出作品所塑造的艺术形象和生活境界,并进而领会其思想内容。 文学鉴赏活动同时也是对作家在作品中已经作出评价的生活进行“再评价”。作家的主观评价是结合自己的思想感情对客观生活所作的评价,而鉴赏者的“再评价”则是结合鉴赏者的思想感情对作家所反映的生活加以重新认识的结果。这种评价可能和作者的评价完全一致,也可能高于作者或低于作者的评价;可能违犯作者正确的评价,也可能纠正作者错误的评价。这种评价是鉴赏者接受或不接受作品思想内容的必经过程。 文学鉴赏中还有一种复杂而常见的现象,即共鸣。“共鸣”是指在“再创造”和“再评价”的基础上,鉴赏者的思想感情同作品作者的思想感情达到了基本一致,甚至契合无间,或在某些方面、某一点上拥符、相似,爱其所爱,憎其所憎,发生了思想感情的交流。共鸣需要有相同或相近的思想感情和心理经验为基础。一般地说,作者与鉴赏者之间需要具有大体一致或接近的阶级立场、社会理想、生活经历,才会发生共鸣。所以共鸣现象大量表现在同时代同阶级的作家作品与鉴赏者之间。但是读者鉴赏不同时代、不同阶级的文学作品发生共鸣的现象也是存在的。由于某些共同的社会历史原因,不同时代、不同阶级之间,除了时代、阶级差别之外,在某些时候和某种情况下也会有某些思想感情相通之处,在某些生活方面或某些问题上,也会有某些相一致或相接近的地方。比如,古代封建阶级进步作家,在他们的作品中不同程度地揭露了社会黑暗,反映了人民的疾苦和斗争,曲折地表现了人民的愿望和要求,就能给今天的人民群众以感染,乃至使他们产生共鸣。又如,在古代文学作品中反映的古人的高尚精神品格与道德情操,虽有其阶级性的一面,但也有可以继承的一面,象古人的爱国主义精神与民族气节,就很容易打动处于类似社会环境中的现代人们的思想感情,激起共鸣。但应指出,这种共鸣并非是绝对的一致,而是矛盾的统一。因为今人与古人总有时代与阶级的距离,不可能完全契合,所以今人通常只是与古代作品的某一方面发生共鸣。可以与其中的积极因素发生共鸣,也可以与其中的消极因素发生共鸣,这又跟鉴赏者的主观因素有关。总之,共鸣是文学作品影响读者思想感情,发生社会作用的一种重要现象。

希望采纳

⑦ 《艺术欣赏》分析题20分 如何理解艺术欣赏的“再创造”,请举例说明并加以分析。

大体跟你说两句, 艺术欣赏再创造就是根据艺术作品的本质进行个人的加工与改变从而形成另回外一个艺术答作品的过程 。可以理解为模仿,但是艺术形象是欣赏者发挥想象的客观基础,无论欣赏者的“再创造”怎样发挥想象,“再创造”的对象其本质不会发生变化。举例真不好弄,我个人认为对小说的改编可能是。比方说外国歌剧图兰朵根据中国茉莉花改编,带有艺术家的个人主观特点,而不是单纯的模仿,就是再创造。

⑧ 跪求:举三个例子,说明数学不仅用于自然科学和工程技术,也广泛的应用于各种人文科学。

数学和哲学,社会学,艺术等人文科学都有关!

1.数学和哲学有关

例子
数之魂与婴儿的目光
尽管古希腊的艺术是人类的苦难和悲剧的最早形式化,但是,古希腊的哲学却充满乐观主义的进取精神,即便是悲观主义的哲学家也用出世主义、享乐主义的态度冲淡了他们的苦难体验。古希腊的两位杰出人物对智慧的不同理解,分别代表古希腊的悲剧意识和哲学意识。悲剧大师埃斯库罗斯在《阿伽门农》中感叹道:智慧来自苦难。大哲亚里士多德在《形而上学》中欣喜地说:智慧来自好奇和闲暇。前者升华出谦卑,后者演化为狂妄。

的确,古希腊哲学从神化自然到神化人,带有原始文化余韵的神话和悲剧释放出的那种阴森、恐怖、神秘的气氛,被进入文明时代的形而上学的明朗、自信、清晰所代替,这是人类思维方式进化的结果,是一次了不起的飞跃。从原始人的神话-想象型思维到文明人的哲学-理智型思维,伴随着抽象能力的出现,人类开始了全新的思维方式和生存方式。大千世界在人的头脑中化为简单、清晰、精确的抽象概念,并被纳入环环相扣的逻辑关系,于是,参差不齐和充满冲突的万物,被哲学思维变成和谐有序的乐曲,宇宙在人的眼中又一次变得新鲜欲滴,人类又一次为自己的智慧而骄傲,甚至会为这种由混沌一片到井井有条的清晰而手舞足蹈,自以为找到了万能的金钥匙,可以一劳永逸地完成上帝的使命。

初次运用抽象符号和逻辑推理的人,必然对理智的魔力有种类似于宗教感的执迷确信,并伴有孩童初见世界的惊奇和喜悦。古希腊的形而上学就是这种确信和惊奇的果实,它最初来自数学的抽象和演绎。古巴比伦和古埃及的实用数学,经过思维天才的智慧游戏而变成古希腊的纯数学。

可以想象,毕达格拉斯,这位创造世界上第一种纯数学的思维天才,肯定比任何人都热衷于对“数”的研究,并陶醉于“数”的魔力之中,那种痴迷,类似于第一次看见大千世界的婴儿目光,免不了幼稚和狂妄,将一切现象与思维的初恋——“数”——联系起来。毕达格拉斯把音乐的和谐作为宇宙的和谐,而音乐的和谐来自数学的和谐。他为人类贡献出伟大的抽象数学方法,也把智慧的狂妄这一人性瘟疫遗传给后人。从此,人类有了完全超越经验的纯粹智力游戏,有了非实用超功利的纯精神发现,有了在物质温饱之外追求精神满足的超越性,同时,也有了追求绝对完美和绝对真理的万能意识,有了把人为臆造的无限和永恒强加于有限而短暂的尘世欲望,有了把思维中的抽象本质强加于具体的万千现象,甚至有了终极理想并为实现之而不择手段。狂妄对谦卑的僭越,让人类付出了漫长而巨大的代价。

毕达格拉斯将数学方法加以无限制扩张,变成解释宇宙和人类的万能钥匙。对“数的本源性”的迷恋及其论证,甚至带有神话和宗教相混合的神秘性;他对万能之“数”的相信,甚至到了难以分辨是迷信还是虔诚的地步。而这一切,恰恰为后来的纯哲学(形而上学)奠定了基础,众所周知,古希腊形而上学的方法论是建立在数学与几何学之上的,甚至像柏拉图这样的直观-体验型哲学家,也深为数学和几何学的奇妙而感叹,在他的学院门口挂上了“不懂几何学的人禁止入内”的牌子,并把幼稚甚至可笑的计算应用于他的政治学和伦理学。这也难怪毕达哥拉斯把数学变成一种神秘的宗教。数学是古希腊的形而上学和西方的理性主义的哲学之魂,正像物理学是近代经验主义哲学和现代科学哲学之魂一样。

在本体论的意义上,原始的图腾与形而上学的“实体”并无实质性区别,它们都是终极性主宰。原始文化和古希腊哲学的区别只在于:原始人对图腾只有情感上信仰上的虔诚,图腾只是拟人化想象力的产物,而没有理智抽象,更没有逻辑论证。而数学为古希腊的形而上学提供了抽象概念和逻辑演绎的论证方法,这就使人类不仅相信且自认为可以理由充足地相信形而上学本体的真实性。当那么复杂、那么巨大、那么深邃、那么神秘的宇宙,变成人类思维中的几个简洁的数学等式之时,变成象由数字标记的音乐一样和谐美妙的图景之时,人类怎么能够抑制住那种成为主宰者和征服者的喜悦呢?怎么能够怀疑自己的幻想仅仅是幻想呢?

古希腊的乐观精神来自对智慧的热爱和自信,“认识你自己”的潜台词,是我们能够通过理智来认清自己和世界。不论能否实现,但是内心的坚信总会使人找到生命的支点。即便一个实际上已经走投无路的人,只要他在精神上相信总会有路,他就不至于绝望,他仍然能够乐观地对待自己的处境。“阿Q精神”确实是人类早期生命中的先天素质。中国人的“阿Q精神”之可悲在于:它不只是远古时代和古代社会的国民性,而且是贯穿中国的有文字记载的全部历史的人格。当西方人开始面对现实并意识到人自身的局限之时,东方人仍然沉浸于精神臆造的幻觉之中,并保持着“老子天下第一”的自以为是。

不论古希腊哲学在人类思想史上占有多么重要的地位,也不论那些哲学史的研究者们给其冠以多么高贵的头衔,我还是固执地认为古希腊哲学是幼稚的、天真的、甚至就是盲目的,是一种哲学化的宗教。我这样说并非苛求于古人,而只想中肯地确定它在我的知识谱系中的地位。古希腊哲学的全部价值、意义和谬误都在于这一点:它刚刚出生,是个婴儿。尽管脆弱,但它是一个全新的完整的生命。它的目光还很稚嫩,它的幻想有些不着边际,它的自信也膨胀为狂妄,它在“认识你自己”时,颇有些自我欣赏的自作多情。但它本真、纯洁、具有开创性,是人类智慧的最丰富的源头。

凡是真诚地相信自己已经看清并懂得了一切的人,肯定还处在浓厚的迷雾之中。

在这点上,二千多年之后的人类,并不比古希腊人成熟多少。难道不是吗?二十世纪的人类还在轰轰烈烈地实验着柏拉图的理想国,而这种试验的破产,刚刚发生在眼前,回想起来,就如同昨天刚亲历过的雪崩。

2.数学还和社会学有关(主要是政治,比如选举)

(1)政治系统研究

本世纪中叶以来,西方出现了许多运用系统分析方法或结构功能分析方法研究各种政治系统的论著。1957年,美国政治学家莫顿·A.卡普兰(Morton A.Kaplan)在他的《国际政治的系统和过程》一书中运用系统论、对策论和数学模型方法研究国际政治。他在前言中指出:"本书试图从理论的角度来系统地分析国际政治。因而,它是近来学术界想把大量资料整理为一套相对有序的命题的一系列努力的一部分。"
"严格地讲,一种理论应包括一套基本术语、定义和公理,在这个基础上,推导出成体系的定理。这些定理应该具有逻辑上的一致性。最终得出的定理或命题的解释应该使其中的术语都能有一个明确的经验依据。最后,这些定理应当能够被有控实验或系统观所驳倒或所证实。如果从这种严格意义上来解释'理论',那么本书还构不成一种理论。""如果放松对于理论的某些要求,不要求体系的完整性,不要求逻辑上的一致性,不要求对术语作出明确解释并用实验室的方法来证实,那么本书就是一种理论,或者至少包含着一种理论。这种理论可以看作是国际政治的雏形理论或者是引玉之砖。"从上述引文不难看出,作者实际上是仿照数学公理化的思想与方法来研究国际政治系统的,虽然在国际政治的演变与发展过程中存在着许多偶然的及人为的因素,因而无法满足数学公理化的一致性等方面的要求。

1973年,法国政治学家莫里斯·迪韦尔热(Maurice Duverger)在《政治社会学一一政治学要素》一书中运用社会学中的一些概念和方法,从社会现象的总体中去考察、比较、分析各种政治现象,并试图把现代数学和控制论的研究方法渗透到社会科学中去。作者认为,社会科学比自然科学发展缓慢,但迟早也要走上共同的发展道路,遵循共同的规律,即从描述阶段到归纳阶段,到推理阶段,最后到公理阶段。他说:"极有可能的是,社会科学将日益走上数学分析途径,再过几十年将走上形式化道路,而这种方向部分地决定了社会科学的进展。

(2)冲突与合作策略

各种冲突、对抗、竞争广泛存在于政治、商业、军事、体育比赛等各项事务之中。对策论是运筹学的重要分支,最早研究的问题是对抗或竞争中的各方所应采取的策略以及由此得到的结果,并给出策略优劣的分析。研究方法是:先构造出所论冲突的数学模型,然后用数学方法加以分析、比较、计算,根据所得结果对原来所论冲突作出相应的解释。对策论诞生于1927年,由大数学家冯·诺伊曼创立。冯·诺伊曼认识到经济与政治中的某些决策条件在数学上与某些策略对策等价,所以从分析这些对策中所学到的东西可以直接应用于现实生活中的决策。

一个典型问题是1948年《美国数学月刊》提出的。甲、乙、丙三人参加一个掷镖游戏,每人各持一气球,只要气球不破,就可以继续参赛,优胜者属于唯一保持气球完好的参赛者。每轮投掷中参赛者都以抽签决定掷镖顺序,然后依次投掷一支飞镖。已知甲的命中率为80%;乙的命中率为60%;丙的命中率为40%。每位参赛者应采用什么策略?

答案似乎很明显:每位参赛者都应当把目标对准较强对手的气球,因为如果把它击中,他所要面对的只是较弱的对手。然而如果3位参赛者全都采用这种切合实际的策略,概率计算将显示,最差的选手丙取胜的机会最大(37%)。而最好的选手甲获胜的机会最低,为30%。乙的获胜机会也只有33%。

问题就在于,甲和乙互相拼斗时,丙几乎不受到任何威胁。于是,对于甲和乙来说,最佳策略是在除掉丙之前彼此不进行争斗,而丙的最佳对抗策略仍然是把镖掷向较强的对手甲。这样一来,甲和乙获胜的机会分别增加到44%和46.5%,而丙获胜的机会则戏剧性地下降到9.1%,然而这种局面可能是不稳定的。因为它需要甲与乙合作。虽然甲是最佳选手,但他还没有取胜的最佳机会,他可能想欺骗乙。但是如果他不能用欺骗的飞镖把乙击败,乙就可能回击,三人的获胜机会将再次发生变化。
如果甲不与乙合作,不论他是否可以欺骗乙,他可能试用另一-种策略:向丙声明,只要丙不向他掷镖,他也不向丙掷镖,如果丙向他掷镖,他必将还击。于是可能形成一种局面,使甲与乙处于拼斗状态,但丙不向甲掷镖,而是把镖掷向乙。概率计算表明,此时丙的最佳作法是向乙的气球掷镖,如果乙也攻击甲,则甲的总获胜机会仍为44%,乙则为20%,丙却是35.6%,甲虽然未能增加其获胜机会,却成了竞争中的领先者。如果乙也对丙发生威胁,面对两个对手的威胁,丙的最佳策略是不对两者中的任何一位攻击,把镖掷向空中,只要没有人攻击丙,他在游戏第一阶段中的唯一目标就是增加在第二阶段中与对抗的机会,而不是与甲对抗。此时甲获胜的机会是38.1%,乙为25.7%,丙为36.2%。不过这还不是定论。如果甲扩大了威胁面,使丙不再向空中掷镖,局面就会变得愈加奇妙。
这个问题的基本前提是每位参赛者都是有理性的,而且都力图为自身利益考虑。容易理解,气球战的原理与多位候选人政治竞选或多个公司商业竞争的情况颇为相似,其中的一项教益在于,显而易见的策略并不一定是好策略。另一项教益是,在缺乏有关竞争者能否联络、共谋、进行威胁或达成有约束力并可以实施的协议等信息的情况下,对可能的解法是不能进行正确评估的。
另一个涉及冲突与合作的例子是著名的"囚徒悖论"

设甲、乙二人为同一案件的两名罪犯,他们被隔离并被告知:如果他们都招供,可得到较轻的判处,如每人监禁5年(5,5);如果一人招供而另一人顽抗,前者因立功而只判3个月监禁,后者则受到10年监禁的加倍惩罚(0.25,10)或(10,0.25);如果二人均不招供,则由于缺乏证据只能各判处1年监禁的轻刑(1,1)。从总体上看,如果甲乙二人能相互合作,共同顽抗,就能争取到各判一年监禁的最佳结果。但是,对于他们中的任何一人而言,无论对方是否招供,自己招供似乎都是最佳选择;而当双方都这样考虑时,他们只能获得每人监禁5年的结果。实际上,对策论的一般研究结果表明,当利害冲突涉及到多人的场合,对个体最优的选择,往往并不能实现总体最优,而要想指出合理的行动又往往是十分困难的,"囚徒悖论"只不过是较为突出的一个,其中的原理既可以运用于国内外市场上的经济竞争,又可以用于研究世界和平与国际争端。

(3)名额分配中的难题

在人类的社会生活中,各种分配问题极为常见,针对不同的实际情形建立合理的分配原则受到经济学家、政治学家、法学家当然还有数学家等的共同关注,而名额分配则是其中十分典型的一类,有关的实质性内容早在18世纪就开始被美国的一些政治家们认真地加以讨论了。

美国宪法第一条第二款规定:每个州派往众议院的代表人数应与本州人口成比例,谁能想到这条看上去既简单又合理的规定永远也不可能真正实行呢?

美国现有50个州,各州的人口数量之间又没有整数倍,在一个特定规模的众议院,每个州的理想代表人数是按该州人口与总人口的比率乘众议院总成员数得出的。这个理想数字可能是个分数,而各州的代表名额却必须是整数,于是就需要有一套分配代表名额的合理方法。

在美国建国初期,一些著名政治家包括亚力山大·汉密尔顿、托马斯·杰佛逊和丹尼尔·韦伯斯特,都曾提出他们各自的解决方法,财政部长汉密尔顿的方法最容易理解,他的方法于1792年经国会通过但紧接着被乔治·华盛顿否决。按照他的方法,开始时先给每个州一个代表数,与其理想的代表人数的整数部分相等,舍弃其分数部分。换言之,如果佛蒙特州理想的代表人数为3.62它就有3个代表。在这个基础分配的代表人数上计算出代表总数,如果总数没有达到众议院要求的人数,就取那些舍弃了的最大分数值的州的代表,进众议院。1975年,《美国数学月刊》刊登了迈克尔·巴林斯基和H.佩顿·扬的文章"按比例分配的定额法"其中根据汉密尔顿的按比例分配方法虚构了如下的例子。在一个拥有5个州的国家中,要成立一个有26个席位的众议院。下表显示了各州的人口和根据汉密尔顿的方法每个州所能获得的代表人。
在汉密尔顿的方法至少符合一个平等的原则:它给每一个州能够就近上下浮动的理想的代表数。换句话说,如果D州的理想代表数为3.319.他的方法总会给D州3个或4个代表,永远不会2或5个代表.符合这个自然准则的方法据说能满足定额,并且是人们所希望的一种被认为是公平的按比例分配方法的最低定额。可是,汉密尔顿的方法违背另一个更难理解的公平准则。在上述5个州的例子里,设想众议院的规模由26个席位增加到27个:在27席位的众议院,A、B、C、D和E各州分别获得9、8、6、3和1个代表数。奇怪的是,虽然总人口和D州的人口都没有变,众议院人数增加了,D州的代表人数现在反而减少了。数学上一种令人痛苦的扭曲,叫做亚拉巴马悖论,使D州处于双重的不利境地(因为这种悖论最初是在牵涉到亚拉巴马州的计算中发觉的)

(4)公平的选举是可能的吗?

① 贡多赛(Condorcet)投票悖论。假设在某一选区有3名候选人(记为x,y,z)让三位选民(记为A,B,C)来选举,用1、2、3来表示选民对候选人的偏好优先顺序,结果如右表。
由此表可知,三分之二的选民认为A比B好,三分之二的选民认为B比C好,按照人类理性思维的习惯,似乎应该是A比C好。然而,投票的结果恰好也有三分之二即多数选民认为C比A好。A、B、C之间的顺序于是变得无法确定。这就是所的贡多赛投票悖论。
现实生活中的选举过程往往是:先在两名候选人中按照"少数服从多数"的原则选出一名,获选者再与另一名候选人进入下一轮的竞选。但采取这种选举方法,候选人之间不同的竞选顺序将会导致截然不同的最终结果。在上面的例子中,若第一轮表决在x与y之间进行,则x获胜并与z进行第二轮的角逐,最后的获胜者,若让y与z先竞选,则x将赢得最后的胜利,而y也可以稳操胜选,关键在于选举的顺序。
②波达(Borda)投票悖论。波达的投票方法是用数值来表示选民对候选人的偏好顺序,例如规定1表示最好,2表示次之,依此类推。把全体选民对某个候选人的偏好顺序数加起来,就得到该候选人?quot;波达数"。通过比较各个候选人的波达数(这里波达数小对应优先程度高),便可以得到社会对全部候选人的偏好顺序。在上面的例子中,3名候选人的波达数都是6,所以社会对他们的评价都是一样的,没有优劣之分。
波达投票法避免了贡多赛投票悖论。却产生了新的矛盾。假设在上面的例子中,候选人z由于某种原因临时宣布退出竞选,选举只在x与y之间进行。如果人们对x和y保持各自的偏好顺序不变,则有右表所示:
根据波达数,社会认为候选人x优于候选人y,这与候选人z没有退出时x和y没有差别的结果显然不同。可见,波达投票法的最终结果竟然与候选人的数目有关。这就是波达投票悖论。
③"扩大委员会悖论"与"离任委员悖论"。荷兰数学家施达灵(Mike Staring)1986年发表了题为"委员会选举的两个悖论"的文章,其中给出了另外两个有关选举的悖论:
一个众所周知的选举程序允许每个选民拥有与委员会中有待补充的缺额同等数量的投票权。这种被普遍使用的、用以处理两次相继选举的空缺的程序,可能导致某些奇怪的现象。考虑这样的情形:有12位选民(编号从1到12),他们要从9位候选人(A至I)中选出一个委员会,在只有两个空缺需要补充时,每位选民投票给对他(她)来说排在最前面的两位候选人。当每位选民对于候选人的个人偏好如下表所示时,投票总数将有如下结果:候选人
A和B都获得四票,而H和I各得三票,其余候选人每人均得两票。因此,A和B将当选。
然而,如果有三个空缺而不是两个,每个选民就必须投三票。结果被选上的将是C,D和E,因为他们每人都将获得五票,而其余每个候选人都只获得四票或三票。类似的计算导致这样的结论:如果有四个空缺,那么既没有二人委员会中的成员、也没有三人委员会中的成员能够当选;事实上,当选者将是F、G、H和I!
因此,这将被概括为"扩大委员会悖论":一个候选人可以被选进一个由N个成员组成的委员会,而当这个委员会由N+1个成员组成时他却未必能够当选。事实上,N人委员会与N+1人委员会的成员可能毫无关系。
当委员会的一个已当选的成员在两次相继的选举期间退出了,就可能发生第二个现象。通常,在发生这样的事情时并不进行.实际的选举,而是简单地指定在上一次选举时票数仅次于最后一名当选者的候选人入选。这似乎是合理的,但是,假设有12位选民,他们要从5位候选人中逃出一个由两人组成的委员会。每位选民对于候选人的个人偏好如下表所示。如果每位选民必须投两票,投票结果是,委员会将由A(获得12票)和B(获得5票)组成,候I选人C(得3票)以及D和E(均得2票)将不能当选。如果几天后A退出了委员会,而且所有选民对候选人的个人偏好保持原来的状态,一轮新的投票将导致获胜是D和E,各得8票。然而,指定第一次选举时票数仅次于最后一名当选者的候选人以代替离任委员A的程序,将导致候选人C当选。于是委员会将由B和C组成,而不是D和E。这一结论就?quot;离任委员悖论":在有一名已当选的委员退出委员会(因此,他也不再是候选人)时指定第一次选举时栗数仅次于最后一名当选者的候选人当选的程序,可能将产生一个这样的委员会,它与如果选民有机会再次投票而将产生的委员会毫无关系。
由以上的分析不难看出:数学方法在合理地设计各种政治系统并保证其正常运作方面有着至关重要的作用,以致许多西方学者认为,寻求合理的民主控制方法、建立有效的政治协商机制本质上是一个很困难的纯数学问题

3.数学和艺术有关

这个,⊙﹏⊙b汗,就不用举例子了吧!
几何和绘画。。。。。。。还有高中学的一种几何绘画方式和美术上的那个透视有关……
建筑艺术方面和数学关联的就更多了!
非要例子的话看这个!http://blog.sina.com.cn/s/blog_3e1bf0390100j1mi.html

答了这么多,分给我吧!
虽然都是在网上找的资料,但是筛选和整理也费了我一段时间的!

选我的答案呗!

⑨ 如何引导学生实现数学知识的“再创造”

数学教育的“再创造”教学方法,是荷兰数学家和数学教育家费赖登塔尔提出来的。他批评传统的教法“将数学作为一个现成的产品来教”、“只是一种模仿的数学”。我国传统的教法也是一题为一例,通过例题示范让学生模仿。这种“模仿数学”培养出来的学生往往只能“模仿”而不利于“创造”,费赖登塔尔说:“将数学作为一种活动来进行解释和分析,建立在这基础上的教学方法.我称之为再创造方法。”他强调:学习数学的唯一正确方法是让学生进行“再创造”,也就是由学生本人把要学的数学知识自己去发现或者创造出来;教师的任务是引导和帮助学生去进行这种“再创造”。

⑩ 1数学课标提倡让学生经历”数学化”与”再创造”的过程,形成自己对数学概念的理解. ( )

判断题?
对的吧。

阅读全文

与数学再创造举例相关的资料

热点内容
麻城工商局领导成员 浏览:52
乡级公共卫生服务绩效考核方案 浏览:310
乐聚投诉 浏览:523
轮子什么时候发明 浏览:151
马鞍山陶世宏 浏览:16
马鞍山茂 浏览:5
通辽工商局咨询电话 浏览:304
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532