导航:首页 > 创造发明 > 谁创造的缀术

谁创造的缀术

发布时间:2021-06-11 23:37:45

A. 数学中π是谁发明

巴比伦人定出π大概等于31/8(3.125),埃及人测量结果稍为逊色,是大概3.16。

在公元前三专世纪,希腊数学家属阿基米德可可以是首个用科学方法计算π人,算出大概等于3.14。


拓展资料:

祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。

祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。

B. 缀术的作者

《缀术》是祖冲之所作,还是祖暅之所作,中国数学史界至今没有定论,在可以预见的将来,也不可能有定论。不过,有两点是可以肯定的:一,它是祖冲之父子的著作。二,它是中国自汉魏至隋唐水平最高的数学著作。李淳风高度评价了祖冲之的数学贡献,认为“指要精密,算氏之最者也”。他所著的《缀术》,因“学官莫能究其深奥,是故废而不理”。[1]遂失传。稍前于李淳风的王孝通却对《缀术》横加指责,他说:“其祖暅之《缀术》,时人称之精妙,曾不觉方邑进行之术全 错不通,刍亭[2]、方亭之间,于理未尽。”[3]那么,到底是《缀术》“全错不通”,还是王孝通“莫能究其深奥”?这一问题虽未引起广泛的讨论,学术界却一直有不同的看法。笔者认为:“王孝通对缀术的指责表明王氏不能理解祖家父子的数学创造,而不是相反。”[4]然而,当时对这种看法的理由说得不充分,现阐述如下。

C. 祖冲之发明了什么

祖冲之的成就发明:

1、数学上编制《缀术》

他写的《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,成为当时世界上最先进的成就。

2、天文上创制了《大明历》

祖冲之创制了《大明历》,最早将岁差引进历法;采用了391年加144个闰月的新闰周;首次精密测出交点月日数(27.21223),回归年日数(365.2428)等数据,还发明了用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法。

3、机械制造

他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》。是历史上少有的博学多才的人物。

4、完善历法

采用“闰月”的办法。在若干年内安排一个闰年,在每个闰年中加入一个闰月。每逢闰年,一年就有十三个月。由于采用了这种闰年的办法,阴历年和阳历年就比较符合了。

除了改革闰法以外,祖冲之在历法研究上的另一重大成就,是破天荒第一次应用了“岁差。”

资料拓展:

祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。

祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

D. π是谁发明的

祖冲之发明的;祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一。

直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。

祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

拓展资料

圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

E. 刘徽是怎么发明的割圆术

刘徽是魏晋期间伟大的数学家,我国古典数学理论的奠基者之一。他取得了许回多数学方面的成就答,其中在圆周率方面的贡献,同样源于他的潜心钻研。有一次,刘徽看到石匠在加工石头,觉得很有趣,就仔细观察了起来。石匠一斧一斧地凿下去,一块方形石料就被加工成了一根光滑的圆柱了。

谁会想到,原本一块方石,经石匠师傅凿去4个角,就变成了八角形的石头。再去8个角,又变成了十六边形。这在一般人看来非常普通的事情,却触发了刘徽智慧的火花。他想:“石匠加工石料的方法,可不可以用在圆周率的研究上呢?”

于是,刘徽采用这个方法,把圆逐渐分割下去,一试果然有效。刘徽独具慧眼,终于发明了“割圆术”,在世界上把圆周率计算精度提高到了一个新的水平。

F. 缀术是什么朝代的

http://ke..com/view/538170.htm?fr=ala0_1

G. 请问古代的计数单位是由谁创造出来的

现传本虽记为汉徐岳著,甄鸾注,但实际很可能就是甄鸾自著自注的。
此书版甚短,除了关于大数权记法的讨论之外,还列举了14种不同的记数法,其中包括古代通用的筹算。
《数术记遗》本不属唐代立于官学的十部算书,南宋刻书时因《缀术》已失传,它便被补入充数。

H. 圆周率是谁发明的

圆周率是指平面上圆的周长与直径之比。
祖冲之通过艰苦的努力,他在世界数学内史上第一次将圆容周率(Л)值计算到小数点后七位,即3.1415926到3.1415927之间。他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”。他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他编制的《大明历》,第一次将“岁差”引进历法。提出在391年中设置144个闫月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家。重新造出早已失传的指南车、千里船等巧妙机械多种。此外,他对音乐也有研究。著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,均早已遗失。

I. 圆周率是谁发明的

应该说是祖冲之最先研究 古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。 π:3. 5359408128 4811174502

J. 缀术的理由

其次,与第一点相联系的,我们考察一下李淳风、王孝通对刘徽、祖冲之父子的指责。先看李淳风等对刘徽的指责,主要有三处。第一处是《九章算术》方田章方田术注释中,李淳风等针对刘徽注关于“凡广从相乘谓之幂”的定义,一方面说“观斯注意,积幂义同”;一方面又由幂字的本义,说“循名责实,二者全殊”,指责刘徽关于幂的定义“全乖积步之本义”,表示要“存善去非,略为料简,遗诸后学”。[9]这种指责是没有道理的。《九章算术》没有幂的概念,它所使用的积,既可以是面积,又可以是体积。刘徽则在积中划出广从相乘这一种,称为幂,也就是现在所说的面积。显然,幂是积的一种。换言之,幂是积,而积不一定是幂。在逻辑上,幂是种,积是属,广从相乘是种差。刘徽关于幂的定义符合逻辑学中定义等于属加种差的要求,是十分严谨的。李淳风既看不出积、幂的相同之处,又看不出它们的区别,指责正确的刘徽,恰恰暴露了自己逻辑修养和数学水平的低下,起码远远低于刘徽。[10]
第二处是方田章圆田术注释,李淳风等说,对周三径一,“刘徽将以为疏,遂乃改张其率。但周、径相乘,数难契合。徽虽出斯二法,终不能究其纤毫也。祖冲之以其不精,就中更推其数。今者修撰,捃摭诸家,考其是非,冲之为密。故显之于徽术之下,冀学者之所裁焉。”[11]李淳风等表彰祖冲之求圆周率的成绩是完全正确的,然而贬斥刘徽则是十分错误的。祖冲之与刘徽,没有是与非的问题,只有圆周率精确度的问题。在中国数学史上,是刘徽首先创造了在正确的数学理论基础之上的求圆周率的程序。科学的理论、正确的方法的建立,其意义远比它们的应用重要。祖冲之求圆周率的程序没有流传下来,比较可靠的看法是,他使用了刘徽的方法,而在计算上更加精确。钱宝琮指出:“李淳风缺少历史发展的认识,有意轻视刘徽割圆术的伟大意义,徒然暴露他们自己的无知。”[12]钱宝琮的看法非常中肯。李淳风不懂刘徽证明圆面积公式时所使用的无穷小分割方法和极限思想。
第三处在少广章开立圆术注释中,李淳风等在引用祖暅之的开立圆术之前说:“祖暅之谓刘徽、张衡二人皆以圆qun为方率,丸为圆率。”在引用了祖氏开立圆术之后说:“张衡放旧,贻哂于后。刘徽循故,未暇校新。夫其难哉,抑未之思也。”[13]这里的所谓“祖暅之谓”恐是李淳风等未准确反映祖氏的意思。刘徽否定了《九章算术》的开立圆术,设计了牟合方盖,提出球与方盖的体积之比为 π∶4 这一正确的论断,指出了解决球体积的正确途径。刘徽未能求出牟合方盖的体积,实事求是地记下了自己的困惑,并寄希望于后学,表示“以俟能言者”,[14]表现了一位真正的科学家的宽广胸怀。刘徽多次阐发并应用了截面积原理,为祖暅之原理的最后完成作了充分准备。[15]刘徽还批评了张衡开立圆术“欲协其阴阳奇偶之说而不顾疏密”[16]的错误。祖氏父子继承刘徽的工作,提出祖暅之原理,求出了牟合方盖的体积,最终解决了球体积问题。以祖冲之父子之实事求是和严谨的学风,是不可能在开立圆术问题上将刘徽与张衡等量齐观,并且指责刘徽与张衡一样“以圆qun为方率,丸为圆率”的。显然是李淳风等以自己的思想篡改了祖氏的意思。在这里,李淳风等同样不理解刘徽推翻《九章算术》开立圆术,设计牟合方盖的重大理论意义和实践意义。
总之,李淳风等对刘徽的三处指责,正确的都是刘徽,错误的都是李淳风等,反映出李淳风等无法理解刘徽的无穷小分割方法和极限思想,反映出李淳风等的理论水平和逻辑修养远远在刘徽之下。
我们再分析王孝通对刘徽和祖冲之父子的评价。比较起来,王孝通对刘徽比对祖冲之父子客气一些。他说:“魏朝刘徽笃好斯言,博综纤隐,更为之注。徽思极毫芒,触类增长,乃造重差之法,列于终篇。虽即未为司南,然亦一时独步。”[17]王孝通没有挑出刘徽什么毛病,却只把刘徽看成一个“思极毫芒”的聪明人,称刘徽为魏晋数学的“独步”,但其思想和方法又不能成为数学家的指南。要求王孝通象我们一样认识刘徽的业绩,是强人所难。因为,即使刘徽本人对自己的思想和成就在中国数学史上的地位,也不会有我们这么清楚。不过,王孝通没有理解刘徽的数学思想和成就的精髓,尤其是没有理解他的无穷小分割方法和极限思想,则是无疑的。他贬斥了以往几乎所有的数学家,而没有被贬斥的刘徽又不能成为“司南”,言外之意,只有他自己才有资格做“司南”。这种居高临下,以为自己比刘徽高明的态度,当然是我们不能接受的。
王孝通对祖冲之父子的指责在前面已引出。在王孝通看来,《缀术》是有严重错误的。由于《缀术》失传,人们难以拿出确凿的证据证明王说之不确。但是,我们可以从侧面,从对祖冲之父子的其他著作的分析中推翻王孝通的看法。流传到今天的完整的祖冲之的著作,只有关于《大明历》的《上大明历表》、《大明历法》和《大明历议》(今常称为《驳议》),而祖暅之的著作则只有开立圆术等片段。这些著作的共同特点是实事求是,言之有据,推理严谨,逻辑清楚,没有空穴来风,或者数字神秘主义的东西。按照我们今天的认识水平,可以批评他们的论述这里不足,那里有局限性,但是,按照南北朝时代人们的认识水平,却难以发现什么错误。中国古代的数学家和天文学家的著作中,大都存在或多或少的错误,或者数字神秘主义的内容。刘徽和祖冲之父子大约是错误最少的。刘徽的《九章算术注》除图之外,被完整地保存了下来。遍查整个刘徽注,除反驳《九章算术》宛田术时,有一个推理失误[18]外,没有发现任何错误。钱宝琮词曰:“谁是刘徽私淑?都说祖家父子,成就最辉煌。”[19]祖冲之父子除了继承刘徽求圆周率和球体积的工作外,他们实事求是的科学态度,“知之为知之,不知为不知”的严谨学风,缜密的逻辑推理,以及不迷信古人,敢于创新的进取精神,都是与刘徽相通的。因此,《缀术》尽管已失传,无法了解它的具体内容,但是,可以肯定地说,除了其成就比刘徽更大,理论更深刻外,其严谨、缜密方面,应该与刘徽的《九章算术注》大体相当。就是说,《缀术》可能有“于理未尽”的地方,但是,不会有“全错不通”的内容。我们认为,是王孝通“莫能究其深奥”,又过于自负,才说它“全错不通”。上面已经指出,虽然刘徽《九章算术注》未失传,但王孝通、李淳风等只能理解其中通俗的内容,无法理解其高深的内容和严密的逻辑,更无法理解其无穷小分割方法和极限思想。事实上,唐初以降,一千多年间,人们一直未理解刘徽的这些贡献,而其中几个无穷小分割和极限过程,是20世纪才搞清楚的,有的延宕至70年代末80年代初才弄明白。只是它与《九章算术》一体行世才未失传。我们可以设想,如果《缀术》在刘徽的无穷小分割思想和极限思想的基础上再向前迈一步,哪怕是一小步,那么,王孝通、李淳风和当时的学官们是无论如何也理解不了的。笔者认为,这也许是“学官莫能究其深奥,是故废而不理”,导致《缀术》失传的根本原因;也是王孝通指责它“全错不通”的根本原因。 在学术品格上,王孝通是与刘徽和祖冲之父子根本相反的。前已指出,刘徽、祖冲之父子既不迷信古人,敢于创新,又谦虚谨慎,虚怀若谷,寄希望于后学。而王孝通呢,他对刘徽、祖冲之父子的轻视、贬低,一如前述。对他人呢,在评论刘徽和祖暅之之间,他说:“贺循、徐岳之徒,王彪、甄鸾之辈,会通之数无闻焉耳。但旧经残驳,尚有阙漏。自刘(徽)以下,更不足言。”[20]可以说是全盘否定,一片漆黑。就是说,对他以前的数学家,除表彰《九章算术》的成就,客观叙述张苍删补的事实,有保留地肯定刘徽之外,一无是处。这种虚无主义的态度,在古算经的序言中,是绝无仅有的。
王孝通对自己是怎样评价呢?他自述说:“钻寻秘奥,曲尽无遗。代乏知音,终成寡和。”对自己的《缉古算经》,他要求皇上“请访能算之人,考论得失。如有派其一字者,臣欲谢以千金。”[21] 就是说,他的工作已经尽善尽美,天衣无缝了,同代人无法与之唱和。其故步自封,狂妄之态可掬。焦循评论说:“刘氏之(《九章算术》)注,极精至巧,令而通之,已足括孕此书(《缉古算经》)。且以其义核王氏之术,可排者正不止一字。”[22] 有的学者认为提出“千金排其一字”,反映了王孝通严谨的学风,对此,笔者不敢苟同。
王孝通怎样看待后学呢?他在描述自己写《缉古算经》的心情时说:“臣昼思夜想,临书浩叹,恐一旦瞑目,将来莫睹。” [23]《缉古算经》第1问的数学计算并不复杂,王孝通说:“臣每日夜思量,常以此理屈滞,恐后代无人知者。” [24]将自己的知识贡献给社会,是学者的责任。但是,以为只有自己才能达到最高峰,后来人不可能达到、更不可能超过自己的水平,与刘徽“以俟能言者”的精神境界形成了鲜明的对照,徒然暴露了自己目空一切的心态。
王孝通在天文历法上是保守的,在数学方面,对三次方程的解法有贡献。但是,据钱宝琮考证,祖冲之已能解负系数三次方程。[25]总之,王孝通贬低前辈,蔑视同辈,轻视后学,以为自己是前无古人,后无来者。一个科学家不必做谦谦君子,但也不能狂妄到如此地步。在这种心态支配下,不是不能做一些创造性的工作,然而,一般说来,不可能做出象刘徽、祖冲之那样水平的工作来。正是在这种目空一切的心态支配下,王孝通对自己不懂的东西,不是去虚心学习,认真研究,而是斥之以“全错不通”。实际上,王孝通的数学成就和理论水平不仅比刘徽、祖冲之差得远,《缉古算经》的编纂思想甚至不如《九章算术》的主体部分。[26]
看不懂前人的东西,而指斥前人有错,在中国数学史上不乏其例。明朝数学家顾应祥看不懂元朝李冶《测圆海镜》中的天元术,谓李冶“止以天元一互算而漫无下手之处”,[27] 著《测圆海镜分类释术》,买椟还珠,将天元术尽行删除,贻千古不知而作之讥。笔者认为,王孝通对《缀术》的指责,类似于顾应祥与《测圆海镜》的关系。如果有一天《缀术》重新面世,那么,王孝通在中国数学史上的地位不会比顾应祥高。缀术在唐朝时被用做学校的课本。

阅读全文

与谁创造的缀术相关的资料

热点内容
学校矛盾纠纷排查化解方案 浏览:752
卫生院公共卫生服务绩效考核总结 浏览:490
郴州学府世家纠纷 浏览:197
马鞍山ok论坛怎么删除帖子 浏览:242
马鞍山恒生阳光集团 浏览:235
麻城工商局领导成员 浏览:52
乡级公共卫生服务绩效考核方案 浏览:310
乐聚投诉 浏览:523
轮子什么时候发明 浏览:151
马鞍山陶世宏 浏览:16
马鞍山茂 浏览:5
通辽工商局咨询电话 浏览:304
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169