1. 槍斃槍斃拉出去拉出去是誰說的
是小英雄雨來里鬼子軍官說的
2. 函數是誰發明的
函數不是誰發明的,它是一個數學概念! 1673年,萊布尼茲首次使用函數一詞表示「冪」18世紀中葉,達朗貝爾與歐拉先後引出了「任意的函數」的說法在函數概念發展史上,法國數學家富里埃的工作影響最大1834年,俄國數學家羅巴切夫斯基提出函數的定義1.國際著名數學大師,沃爾夫數學獎得主,陳省身2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人,華羅庚 3.僅次於哥德爾的邏輯數學大師,王浩4.著名數學家力學家,美國科學院院士,林家翹5.我國泛函分析領域研究先驅者,曾遠榮6.我國最早提倡應用數學與計算數學的學者,趙訪熊7.著名數學家,數學教育家,吳大任8.著名數學家,北大教授,庄圻泰9.著名數學家,數學教育家,四川大學校長,柯召10.中央研究院院士,首批學部委員,許寶騄11.中科院院士,原北大數學系主任,段學復 12.我國拓撲學的奠基人 江澤涵
3. 你最想把哪些科學家拖出去槍斃五分鍾,包括歷史上的
萊布尼茨,牛頓,阿基米德,
4. 函數是誰發明的我砍死他!!!還有立體幾何和數列...........
如果沒有人進行函數、立體幾何、數列等數學知識的研究,一切科技成果都將歸零,你也無法使用互聯網。
5. 函數是誰發明的
二次函數運算中有著名的「韋達定理」,數學家韋達對此貢獻一定不少 二次函數:y=ax^2 bx c (a,b,c是常數,且不等於0) a>0開口向上 a<0開口向下 a,b同號,對稱軸在y軸左側,反之,再y軸右側 |x1-x2|=根號下b^2-4ac除以|a| 與y軸交點為(0,c) b^2-4ac>0,ax^2 bx c=0有兩個不相等的實根 b^2-4ac<0,ax^2 bx c=0無實根 b^2-4ac=0,ax^2 bx c=0有兩個相等的實根 對稱軸x=-b/2a 頂點(-b/2a,(4ac-b^2)/4a) 頂點式y=a(x b/2a)^2 (4ac-b^2)/4a 函數向左移動d(d>0)個單位,解析式為y=a(x b/2a d)^2 (4ac-b^2)/4a,向右就是減 函數向上移動d(d>0)個單位,解析式為y=a(x b/2a)^2 (4ac-b^2)/4a d,向下就是減 當a>0時,開口向上,拋物線在y軸的上方(頂點在x軸上),並向上無限延伸;當a<0時,開口向下,拋物線在x軸下方(頂點在x軸上),並向下無限延伸。|a|越大,開口越小;|a|越小,開口越大. 4.畫拋物線y=ax2時,應先列表,再描點,最後連線。列表選取自變數x值時常以0為中心,選取便於計算、描點的整數值,描點連線時一定要用光滑曲線連接,並注意變化趨勢。 二次函數解析式的幾種形式 (1)一般式:y=ax2 bx c (a,b,c為常數,a≠0). (2)頂點式:y=a(x-h)2 k(a,h,k為常數,a≠0). (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2 bx c=0的兩個根,a≠0. 說明:(1)任何一個二次函數通過配方都可以化為頂點式y=a(x-h)2 k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2 k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點. (2)當拋物線y=ax2 bx c與x軸有交點時,即對應二次方程ax2 bx c=0有實數根x1和 x2存在時,根據二次三項式的分解公式ax2 bx c=a(x-x1)(x-x2),二次函數y=ax2 bx c可轉化為兩根式y=a(x-x1)(x-x2). 求拋物線的頂點、對稱軸、最值的方法 ①配方法:將解析式化為y=a(x-h)2 k的形式,頂點坐標(h,k),對稱軸為直線x=h,若a>0,y有最小值,當x=h時,y最小值=k,若a<0,y有最大值,當x=h時,y最大值=k. ②公式法:直接利用頂點坐標公式(- , ),求其頂點;對稱軸是直線x=- ,若a>0,y有最小值,當x=- 時,y最小值= ,若a<0,y有最大值,當x=- 時,y最大值= . 6.二次函數y=ax2 bx c的圖像的畫法 因為二次函數的圖像是拋物線,是軸對稱圖形,所以作圖時常用簡化的描點法和五點法,其步驟是: (1)先找出頂點坐標,畫出對稱軸; (2)找出拋物線上關於對稱軸的四個點(如與坐標軸的交點等); (3)把上述五個點按從左到右的順序用平滑曲線連結起來. 不曾。放棄 2008-07-08 12:41 檢舉 未知數的最高次冪數是2。 三種表達形式 一般式:y=ax^2 bx c(a,b,c為常數,a≠0) 頂點式:y=a(x-h)^2 k [拋物線的頂點P(h,k)] 對於二次函數y=ax^2 bx c 其頂點坐標為 (-b/2a,(4ac-b^2)/4a)</CA> 交點式:y=a(x-x
6. 是誰發明的函數
伽俐略、笛卡爾、牛頓、萊布尼茲等人,這是最早的,那個時候還不叫函數。
7. 有沒有人知道函數是哪個人發明的!
1.早期函數概念——幾何觀念下的函數
十七世紀伽俐略(G.Galileo,意,1564-1642)在《兩門新科學》一書中,幾乎全部包含函數或稱為變數關系的這一概念,用文字和比例的語言表達函數的關系。1673年前後笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個變數對另一個變數的依賴關系,但因當時尚未意識到要提煉函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函數的一般意義,大部分函數是被當作曲線來研究的。
1673年,萊布尼茲首次使用「function」 (函數)表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量。與此同時,牛頓在微積分的討論中,使用 「流量」來表示變數間的關系。
2.十八世紀函數概念──代數觀念下的函數
1718年約翰
8. 有沒有人知道函數是哪個人發明的
1.早期函數概念——幾何觀念下的函數
十七世紀伽俐略(G.Galileo,意,1564-1642)在《兩門新科學》一書中,幾乎全部包含函數或稱為變數關系的這一概念,用文字和比例的語言表達函數的關系。1673年前後笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個變數對另一個變數的依賴關系,但因當時尚未意識到要提煉函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函數的一般意義,大部分函數是被當作曲線來研究的。
1673年,萊布尼茲首次使用「function」 (函數)表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量。與此同時,牛頓在微積分的討論中,使用 「流量」來表示變數間的關系。
2.十八世紀函數概念──代數觀念下的函數
1718年約翰??貝努利(Bernoulli Johann,瑞,1667-1748)在萊布尼茲函數概念的基礎上對函數概念進行了定義:「由任一變數和常數的任一形式所構成的量。」他的意思是凡變數x和常量構成的式子都叫做x的函數,並強調函數要用公式來表示。
1755,歐拉(L.Euler,瑞士,1707-1783) 把函數定義為「如果某些變數,以某一種方式依賴於另一些變數,即當後面這些變數變化時,前面這些變數也隨著變化,我們把前面的變數稱為後面變數的函數。」
18世紀中葉歐拉(L.Euler,瑞,1707-1783)給出了定義:「一個變數的函數是由這個變數和一些數即常數以任何方式組成的解析表達式。」他把約翰??貝努利給出的函數定義稱為解析函數,並進一步把它區分為代數函數和超越函數,還考慮了「隨意函數」。不難看出,歐拉給出的函數定義比約翰??貝努利的定義更普遍、更具有廣泛意義。
3.十九世紀函數概念──對應關系下的函數
1821年,柯西(Cauchy,法,1789-1857) 從定義變數起給出了定義:「在某些變數間存在著一定的關系,當一經給定其中某一變數的值,其他變數的值可隨著而確定時,則將最初的變數叫自變數,其他各變數叫做函數。」在柯西的定義中,首先出現了自變數一詞,同時指出對函數來說不一定要有解析表達式。不過他仍然認為函數關系可以用多個解析式來表示,這是一個很大的局限。
1822年傅里葉(Fourier,法國,1768——1830)發現某些函數也已用曲線表示,也可以用一個式子表示,或用多個式子表示,從而結束了函數概念是否以唯一一個式子表示的爭論,把對函數的認識又推進了一個新層次。
1837年狄利克雷(Dirichlet,德,1805-1859) 突破了這一局限,認為怎樣去建立x與y之間的關系無關緊要,他拓廣了函數概念,指出:「對於在某區間上的每一個確定的x值,y都有一個或多個確定的值,那麼y叫做x的函數。」這個定義避免了函數定義中對依賴關系的描述,以清晰的方式被所有數學家接受。這就是人們常說的經典函數定義。
等到康托(Cantor,德,1845-1918)創立的集合論在數學中佔有重要地位之後,維布倫(Veblen,美,1880-1960)用「集合」和「對應」的概念給出了近代函數定義,通過集合概念把函數的對應關系、定義域及值域進一步具體化了,且打破了「變數是數」的極限,變數可以是數,也可以是其它對象。
4.現代函數概念──集合論下的函數
1914年豪斯道夫(F.Hausdorff)在《集合論綱要》中用不明確的概念「序偶」來定義函數,其避開了意義不明確的「變數」、「對應」概念。庫拉托夫斯基(Kuratowski)於1921年用集合概念來定義「序偶」使豪斯道夫的定義很嚴謹了。
1930 年新的現代函數定義為「若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x)。元素x稱為自變元,元素y稱為因變元。」
術語函數,映射,對應,變換通常都有同一個意思。
但函數只表示數與數之間的對應關系,映射還可表示點與點之間,圖形之間等的對應關系。可以說函數包含於映射。當然,映射也只是一部分。 都是這么走過來的
9. 誰發明函數
函數不是誰發明的,它是一個數學概念!