導航:首頁 > 創造發明 > 重慶創造者納米材料有限公司

重慶創造者納米材料有限公司

發布時間:2021-06-15 06:14:12

『壹』 納米技術創造的奇跡

納米是一種幾何尺寸的量度單位,長度僅為一米的十億分之一,略等於45個原子排列起來的尺度,一根頭發絲的直徑就有七八萬納米。
在這一尺度范圍內對原子、分子進行操縱和加工的技術稱為納米技術。開發納米技術,就是要生產出能夠在分子水平上治療疾病的手術工具、比人體細胞還小的計算機和具有防污染能力的超高效微型機床等。

科學家們已為我們勾勒了一幅若干年後的藍圖:超強輕型新型材料有可能使太空旅行變得便宜而且容易,甚至像一些作家預測的那樣利用納米技術在火星上製造出大氣。如果新的"納米醫學"能夠在細胞老化時一個分子一個分子地製造出新的細胞,從而把人們的壽命無限地延長,那麼就有必要向太空移民。納米技術已經創造出足夠多的小奇跡,這至少能讓一些科學泰斗們相信這些宏偉的想法也會實現。

納米是長度單位,原稱"毫微米",就是10-9(10億分之一米)。納米科學與技術,有時簡稱為納米技術,是研究結構尺寸在1至100納米范圍內材料的性質和應用。

從具體的物質說來,人們往往用"細如發絲"來形容纖細的東西,其實人的頭發一般直徑為20-50微米,並不細。單個細菌用肉眼看不出來,用顯微鏡測出直徑為5微米,也不算細。極而言之,1納米大體上相當於4個原子的直徑。

納米技術包含下列四個主要方面:

第一方面是納米材料,包括制備和表徵。在納米尺度下,物質中電子的放性(量子力學學性質)和原子的相互作用將受到尺度大小的影響,如能得到納米尺度的結構,就可能控制材料的基本性質如熔點、磁性、電容甚至顏色。而不改變物質的化學成份。用超微粒子燒成的陶瓷硬度可以更高,但不艙裂:無機的超微粒子灰分在加入橡膠後,將粘在聚合物分子的端點上,所做成的輪胎將大大減小磨損和處長壽命。

第二方面是納米動力學,主要是微機械和微電機,或總稱為微型電動機械繫統(MEMS),用於有傳動機械的微型感測器和執行器、光纖通訊系統,特種電子設備、醫療和診斷儀器等。MEMS用的是一種類似於集成電器設計和製造的新工藝。特點是部件很小,刻蝕的深度往往要求數十至數百微米,而寬度誤差很小。這種工藝還可用於製作三相電動機,用於超快速離心機或陀螺儀等。在研究方面還要相應地檢測准原子尺度的微變形和微摩擦等。雖然它們目前尚未真正進入納米尺度,但有很大的潛在科學價值和經濟價值。

第三方面是納米生物學和納米葯物學,如在雲母表面用納米微粒度的膠體金固定DNA的粒子,在二氧化硅表面的叉指形電極做生物分子間互作用的試驗,磷脂和脂肪酸雙層平面生物膜,DNA的精細結構等。有了納米技術,還可用自組裝方法在細胞內放入零件或組件使構成新的材料。新的葯物,即使是微米粒子的細粉,也大約有半數不溶於水;但如粒子為納米尺度(即超微粒子),則可溶於水。

第四方面是納米電子學,包括基於量子效應的納米電子器件、納米結構的光/電性質、納米電子材料的表徵,以及原子操縱和原子組裝等。當前電子技術的趨勢要求器件和系統更小、更快、更冷。"更小"是指響應速度要快。"更冷"是指單個器件的功耗要小。但是"更小"並非沒有限度。

納米技術是建設者的最後疆界,它的影響將是巨大的

在1998年的四月,總統科學技術顧問,Neal Lane 博士評論到,如果有人問我哪個科學和工程領域將會對未來產生突破性的影響,我會說該個啟動計劃建立一個名為納米科技。"大挑戰"機構,資助進行跨學科研究和教育的隊伍,包括為長遠目標而建立的中心和網路。一些潛在的可能實現的突破包括: 把整個美國國會圖書館的資料壓縮到一塊像方糖一樣大小的設備中,這通過提高單位表面儲存能力1000倍使大存儲電子設備儲存能力擴大到幾兆兆位元組的水平來實現。

由自小到大的方法製造材料和產品,即從一個原子、一個分子開始製造它們。這種方法將節約原材料和降低污染。

生產出比鋼強度大10倍,而重量只有其幾分之一的材料來製造各種更輕便,更省燃料的陸上、水上和航空用的交通工具。

通過極小的晶體管和記憶晶元幾百萬倍的提高電腦速度和效率,使今天的奔騰Ⅲ處理器已經顯得十分慢了。

運用基因和葯物傳送納米級的MRI對照劑來發現癌細胞或定位人體組織器官

去除在水和空氣中最細微的污染物,得到更清潔的環境和可以飲用的水。

提高太陽能電池能量效率兩倍。

『貳』 尼爾機器紀元游戲創造者機器人怎麼完成

操作如下:

1,這個任務是叫你找BUG,第一個是左邊的牆,一直貼著左邊的牆走就好了,

2,第二個是內不打小怪直接沖BOSS房,第三個好像是一直打小怪,第一次如果通關了第二次在來。

『叄』 納米材料怎麼做

納米材料制備方法:

一、惰性氣體下蒸發凝聚法

通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研製成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法製成金屬、半導體、陶瓷等納米材料。

二、化學方法

水熱法,包括水熱沉澱、合成、分解和結晶法,適宜制備納米氧化物;水解法,包括溶膠-凝膠法、溶劑揮發分解法、乳膠法和蒸發分離法等。

三、綜合方法

結合物理氣相法和化學沉積法所形成的制備方法。其他一般還有球磨粉加工、噴射加工等方法。

(3)重慶創造者納米材料有限公司擴展閱讀:

納米材料的效應有:

一、體積效應

當納米粒子的尺寸與傳導電子的德布羅意波相當或更小時,周期性的邊界條件將被破壞,磁性、內壓、光吸收、熱阻、化學活性、催化性及熔點等都較普通粒子發生了很大的變化,這就是納米粒子的體積效應。

二、量子尺寸

粒子尺寸下降到一定值時,費米能級接近的電子能級由准連續能級變為分立能級的現象稱為量子尺寸效應。Kubo採用一電子模型求得金屬超微粒子的能級間距為:4Ef/3N。

三、量子隧道

微觀粒子具有貫穿勢壘的能力稱為隧道效應。人們發現一些宏觀量,例如微顆粒的磁化強度、量子相干器件的磁通量以及電荷等亦具有隧道效應,它們可以穿越宏觀系統的勢壘產生變化,故稱為宏觀的量子隧道效應。用此概念可定性解釋超細鎳微粒在低溫下保持超順磁性等。

參考資料來源:網路—納米材料

『肆』 避雷針的創造者

富蘭克林 美國科學家

http://ke..com/view/31415.html?wtp=tt

『伍』 納米材料怎麼製作

納米材料制備方法:
(1)惰性氣體下蒸發凝聚法。通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研製成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法製成金屬、半導體、陶瓷等納米材料。
(2)化學方法:1水熱法,包括水熱沉澱、合成、分解和結晶法,適宜制備納米氧化物;2水解法,包括溶膠-凝膠法、溶劑揮發分解法、乳膠法和蒸發分離法等。
(3)綜合方法。結合物理氣相法和化學沉積法所形成的制備方法。其他一般還有球磨粉加工、噴射加工等方法。

『陸』 塑料袋的創造者

這種神奇的材料的「祖先」是植物中最豐富的纖維素。
1845年,居住在瑞士西北部城市巴塞爾的化學家塞伯坦一次在家中做實驗時,不小心碰到了桌上的濃硫酸和濃硝酸,他急忙拿起妻子的布圍裙去擦拭桌上的混合酸。忙亂之後,他將圍裙掛到爐子邊烤乾,不料圍裙「噗」的一聲燒了起來,頃刻間化為灰燼。塞伯坦帶著這個「重大發現」回到實驗室,不斷重復發生「事故」。經過多次試驗,塞伯坦終於找到了原因:原來布圍裙的主要成分是纖維素,它與濃硝酸及濃硫酸的混合液接觸,生成了硝酸纖維素脂,這就是後來應用廣泛的硝化纖維。
攝影中使用的材料之一是「膠棉」,它是一種「硝棉」溶液,亦即在酒精和醚中的硝酸鹽纖維素溶液。當時它被用於把光敏的化學葯品粘在玻璃上,來製作類似於今天照相膠片的同等物。
在19世紀50年代,帕克斯查看了處理膠棉的不同方法。一天,他試著把膠棉與樟腦混合。使他驚奇的是,混合後產生了一種可彎曲的硬材料。帕克斯稱該物質為「帕克辛」,那便是最早的塑料。
帕克斯用「帕克辛」製作出了各類物品:梳子、筆、紐扣和珠寶印飾品。然而,帕克斯不大有商業意識,並且還在自己的商業冒險上賠了錢。20世紀時,人們開始挖掘塑料的新用途。幾乎家庭里的所有用品都可以由某種塑料製造出來。
繼續發展帕克斯的成果並從中獲利就留給其他發明家去做了。約翰·韋斯利·海亞特這個來自紐約的印刷工在1868年看到了這個機會,當時一家製造檯球的公司抱怨象牙短缺。海亞特改進了製造工序,並且給了「帕克辛」一個新名稱—「賽璐珞」(假象牙—譯注)。他從檯球製造商那裡得到了一個現成的市場,並且不久後就用塑料製作出各種各樣的產品。

『柒』 納米技術怎樣製作納米晶元

2002年7月份,曾在幾年前宣布摩爾定律死刑的這一定律的創始人戈登·摩爾接受了記者的采訪。不過,這次他表現得很樂觀,他表示:「晶元上晶體管數量每18個月增加二倍的速度雖然目前呈下降趨勢,但隨著納米技術的發展,未來摩爾定律依然會繼續生效。」看來,摩爾本人也把希望放到了納米技術上。下面就讓我們來看看納米技術怎樣製造納米晶元。

我們知道目前的計算機晶元是用半導體材料做的。20世紀可以說是半導體的世紀,也可以說是微電子的世紀,微電子技術是指在半導體單晶材料(目前主要是硅單晶)薄片上,利用微米和亞微米精細結構技術,研製由成千上萬個晶體管和電子元件構成的微縮電子電路(稱為晶元),並由不同功能的晶元組裝成各種微電子儀器、儀表和計算機。晶元可以看做是集成電路塊。集成電路塊從小規模向大規模發展的歷程,可以看做是一個不斷向微型化發展的過程。20世紀50年代末發展起來的小規模集成電路,集成度(一個晶元包含的元件數)為10個元件;20世紀60年代發展成中規模集成電路,集成度為1000個元件;20世紀70年代又發展了大規模集成電路,集成度達到10萬個元件;20世紀肋年代更發展了特大規模集成電路,集成度超過100萬個元件。1988年,美國國際商用機器公司(1BM)已研製成功存儲容量達64兆的動態隨機存儲器,集成電路的條寬只有0.35微米。目前實驗室研製的新產品為0.25微米,並向0.1微米進軍。到2001年已降到0.1微米,即100納米。這是電子技術史上的第四次重大突破。今天,晶元的集成度已進一步提高到1000萬個元件。集成電路的條寬再縮小,將出現一系列物理效應,從而限制了微電子技術的發展。為了解決這個挑戰,已經提出納米電子學的概念。這一現象說明了:隨著集成電路集成度的提高,晶元中條寬越來越小,因此對製作集成電路的單晶硅材料的質量要求越來越高,哪怕是一粒灰塵也可能毀掉一個甚至幾個晶體管,這也是為什麼摩爾本人幾年前宣判摩爾定律「死刑」的原因。

據有關專家預測,在21世紀,人類將開發出徽處理晶元與活細胞相結合的電腦。這種電腦的核心元件就是納米晶元。晶元是電腦的關鍵器件。生命科學和材料科學的發展,科學家們正在開發生物晶元,包括蛋白質晶元及DNA晶元。

蛋白質晶元,是用蛋白質分子等生物材料,通過特殊的工藝制備成超薄膜組織的積層結構。例如把蛋白質制備成適當濃度的液體,使之在水面展開成單分子層膜,再將其放在石英層上,以同樣方法再制備——層有機薄膜,即可得到80~480納米厚的生物薄膜。這種薄膜由兩種有機物薄膜組成。當一種薄膜受紫外光照射時,電阻上升約40%左右,而用可見光照射時,又恢復原狀。而另一種薄膜則不受可見光影響,但它受到紫外光照射時,電阻便減少6%左右。據介紹,日本三菱電機公司把兩種生物材料組合在一起,製成了可以光控的新型開關器件。這種薄膜為進一步開發生物電子元件奠定了實驗基礎,並創造了良好的條件。

這種蛋白質晶元,體積小、元件密度高,據測每平方厘米,可達1015~1016個,比硅晶元集成電路高上萬倍,表明這種晶元製成的裝置其運行速度要比目前的集成電路快得多。由於這種晶元是由蛋白質分子組成的,在一定程度上具有自我修復能力,即成為一部活體機器,因此可以直接與生物體結合,如與大腦、神經系統有機地連接起來,可以擴展腦的延伸。有人設想,將蛋白質晶元植入大腦,將會出現奇跡。如視覺先天缺陷或後天損傷可以得到修復,使之重現光明等。

雖然目前生產與裝配上述分子元件還處於探索階段,而且天然蛋白質等生物材料不能直接成為分子元件,必須在分子水平上進行加工處理,這有很大難度,但前途是光明的。據介紹,日本已制定了開發生物晶元的10年計劃,政府計劃投入100億日元做各項研究。世界上一些大公司,如日立、夏普等都看好生物晶元的前景,十分重視這項研究工作。

人的大腦約有140億個神經細胞,掌管著思維、感覺及全身的活動。雖然電腦已面世多年;但其精細程度和人腦相比,仍然差一大截。為了使電腦早日具有人腦的功能和效率,科學家近年致力研究開發人工智慧電腦,並已取得不少進展。人工智慧電腦是以生物晶元為基礎的。生物晶元有多種,血紅蛋白集成電路就是新型的生物晶元之一。

美國生物化學家詹姆士·麥克阿瑟,首先構想把生物技術與電子技術結合起來。他根據電腦的二進制工作原理,發現血紅蛋白也具有類似「開」和「關」的雙穩態特性。當改變血紅蛋白攜帶的電荷時,它會出現上述兩種變化,這就有可能利用生物的血紅蛋白構成像硅電子電路那樣的邏輯電路。麥克阿瑟首先利用生物工程的重組DNA技術,製成了血紅蛋白「生物集成電路」,使研製「人造腦袋」取得了突破性進展。此後,生物集成電路的研究便逐步展開。美國科學家在硅晶片上重組活細胞組織獲得成功。它具有硅晶片的強度,又有生物分子活細胞那樣的靈活和智能。德國科學家所研製成的聚賴氨酸立體生物晶片,在1立方毫米晶片上可含100億個數據點,運算速度更達到10皮秒(一千億分之一秒),比現有的電腦快近100萬倍。

DNA晶元又稱基因晶元,DNA是人類的生命遺傳物質脫氧核糖核酸的簡稱。因為DNA分子鏈是以ATGC(A-T、G-C)為配對原則的,它採用一種叫做「在位組合合成化學」和微電子晶元的光刻技術或者用其他方法,將大量特定順序的稤NA片段,有序地固化在玻璃或者矽片上,從而構成儲存有大量生命信息的DNA晶元。DNA晶元,是近年來在高新科技領域出現的具有時代特徵的重大技術創新。

每一個DNA就是一個微處理器。DNA計算速度是超高速的,理論上計算,它的運算速度每小時可達1015次數,是硅晶元運算速度的1000倍。而且,DNA的存儲量是很大的,每克DNA可以儲存上億個光碟的信息。不過,目前的主要難點是解決DNA的數據輸出問題。

DNA晶元有可能將人類的全部約8萬個基因集約化地固定在1平方厘米的晶元上。在與待測樣品的DNA配對後,DNA晶元即可檢測出大量相應的生命信息。例如尋找基因與癌症、傳染病、常見病和遺傳疾病的關系,進一步研究相應葯物。目前已知有6000多種遺傳病與基因相關,還有環境對人體的影響,例如花粉過敏和對環境污染的反應等都與基因有關。已知有200多個與環境影響相關的基因,對這些基因的全面監測,對生態、環境控制及人類健康均有重要意義。

DNA晶元技術既是人類基因組研究的重要應用課題,又是功能基因研究的嶄新手段。例如單核苷酸的多態性,是非常重要的生命現象,科學家認為,人體的多樣性和個性取決於基因的差異,正是這種單核苷酸多態性的表現,如人的體形、長相與500多個基因相關。通過DNA晶元,原則上可以斷定人的特徵,甚至臉形、長相、外貌特點,生長發育差異等。

「晶元巨人」英特爾公司於2000年12月公布,英特爾公司用最新納米技術研製成功30納米晶體管晶元。這一突破將使電腦晶元速度在今後5~10年內提高到2000年的10倍,同時使硅晶元技術向物理極限更近一步。新型晶元的運算速度已達目前運算速度最快晶元的7倍。它能在子彈飛行30厘米的時間內運算2000萬次,或在子彈飛行25毫米的時間內運算200萬次。晶體管門是計算機晶元進行運算的開關,新晶元是以3個原子厚度的晶體管「門」為基礎,比目前計算機使用的180納米晶體管薄很多。要製造這種晶元的障礙是控制它產生的熱量。晶元的運行速度越快,產生的熱量就越多。過多的熱量會使製造計算機晶元所用的材料受到損壞。英特爾公司經過了長期的研究,解決了這一問題。這種原子級晶體管是用新的化學合成物製成的,這種新材料可以使晶元在運行時溫度不會過高。這種晶元的出現將為研製模擬以人的方式,可以和人進行交流的電腦創造條件。英特爾公司說,他們開發出的這種迄今世界上最小最快的晶體管,厚度僅為30納米。這將使英特爾公司可以在未來5~10年內生產出集成有4億個晶體管、運行速度為每秒10億次,工作電壓在1伏以下的新型晶元。而目前市場上出售的速度最快的晶元「奔騰4代」集成了4200萬個晶體管。英特爾公司稱,用這種新處理器製造的產品最早將在2005年以後投放市場。

英特爾公司的一位工程師說:「30納米晶體管的研製成功使我們對硅的物理極限有了新看法。硅也許還可以使用15年,此後會有什麼材料取代硅,那是誰也說不準的事。」他又說:「更小的晶體管意味著更快的速度,而運行速度更快的晶體管是構築高速電腦晶元的核心模塊,電腦晶元則是電腦的『大腦』。」英特爾公司預測,利用30納米晶體管設計出的電腦晶元可以使「萬能翻譯器」成為現實。比如說英語的人到中國旅遊,就可以通過隨身攜帶的翻譯器,將英語實時翻譯成中文,在機場、旅館或商店不會有語言障礙。在安全設施方面,這種晶元可以使警報系統識別人的面孔。此外,將來用幾千元人民幣就可以買一台高速台式電腦,其運算能力可以跟現在價值上千萬元的大型主機媲美。

單位面積上晶體管的個數是電腦晶元集成度的標志,晶體管數量越多,說明集成度越高,而集成度越高,處理速度就越快。30納米晶體管將開始出現在用0.07微米技術產品上,目前英特爾公司使用的是0.18微米技術,而1993年的「奔騰」處理器使用的是0.35微米技術。在晶元上「刻畫」電路,0.07微米技術用的是超紫外線光刻技術,比2001年最先進的深紫外線光刻技術更為先進。如果在紙上畫線,深紫外線光刻使用的是鈍鉛筆,而超紫外線光刻使用的是削尖了的鉛筆。

晶體管越來越小的好處主要有兩方面:一是可以用較低,的成本提高現有產品性能;二是工程師可以設計原來不可能的新產品。這兩個好處正是推動半導體技術發展的動力,因為企業提高了利潤,就有可能在研發上投入更多。看來,納米技術的確可以延長摩爾定律的壽命,這也正是摩爾本人和眾多技術人員把目光放到納米技術之上的原因所在。

『捌』 創造者移動電源怎麼樣

1、看電芯。18650和聚合物電芯,首選聚合物電芯,較輕,不爆炸;18650,重,且有爆炸可能。
如何區分移動電源使用的是哪種電芯?
可從移動電源外觀區分2種電芯:由於18650是圓柱形,並且是鋼殼,所以形狀沒得改,厚度很大,而聚合物軟包則可任意形狀,做到很薄。所以扁平型的,個性的一般都是鋰聚合物電池,大塊頭的、很厚的基本都是18650。
2、看轉換率。一個電源能夠給手機充電幾次取決於電路板轉換率和電芯容量,電芯容量大,電路板轉化率低充電次數一樣會比較少,反之電芯容量小,電量板轉化率高,充電次數一樣會多。
想要知道轉換率就要先了解移動電源的工作原理:
電芯所輸出的能量通過移動電源內部的電路板的升壓或者降壓操作,最後到達輸出端,根據不同電源內部電路板的設計、做工用料不同,其轉換能力也存在一定的差距,並且在整個電能轉換中會損耗掉一部分電能。
移動電源轉化率:根據移動電源的工作原理可知,轉換率主要受移動電源保護板影響。目前,移動電源的轉換率一般在85%左右,算是比較優秀的。
輸出容量:移動電源容量*3.7V*轉換百分比/5V,如5000mAh容量的移動電源以標準的轉換率85%計算的話,5000*3.7*0.85/5=3145mAh
3、看用料:移動電源內部結構中關鍵零部件是進口還國產材料,比如升壓系統、電容等。
電容:
會嚴重影響電源輸出的紋波,紋波變大會導致手機失靈,甚至燒掉手機。
電解電容壽命短,易爆漿;鉭電容壽命雖長卻有爆炸可能;MLCC陶瓷電容安全長壽耐高溫,而市面上大多牌子都用電解電容和鉭電容。

『玖』 納米技術是誰發明的

1959年,著名物理學家、諾貝爾獎獲得者理查德·費曼預言,人類可以用小的機器製做更小的機器,最後將變成根據人類意願,逐個地排列原子,製造產品,這是關於納米技術最早的夢想。

20世紀70年代,科學家開始從不同角度提出有關納米科技的構想,1974年,科學家唐尼古奇最早使用納米技術一詞描述精密機械加工。

1982年,科學家發明研究納米的重要工具——掃描隧道顯微鏡,揭示了一個可見的原子、分子世界,對納米科技發展產生了積極的促進作用。

1990年7月,第一屆國際納米科學技術會議在美國巴爾的摩舉辦,標志著納米科學技術的正式誕生。

1991年,碳納米管被人類發現,它的質量是相同體積鋼的六分之一,強度卻是鋼的10倍,成為納米技術研究的熱點。諾貝爾化學獎得主斯莫利教授認為,納米碳管將是未來最佳纖維的首選材料,也將被廣泛用於超微導線、超微開關以及納米級電子線路等。

1993年,繼1989年美國斯坦福大學搬走原子團「寫」下斯坦福大學英文名字、1990年美國國際商用機器公司在鎳表面用36個氙原子排出「IBM」之後,中國科學院北京真空物理實驗室自如地操縱原子成功寫出「中國」二字,標志著我國開始在國際納米科技領域佔有一席之地。

1997年,美國科學家首次成功地用單電子移動單電子,利用這種技術可望在20年後研製成功速度和存貯容量比現在提高成千上萬倍的量子計算機。

1999年,巴西和美國科學家在進行納米碳管實驗時發明了世界上最小的「秤」,它能夠稱量十億分之一克的物體,即相當於一個病毒的重量;此後不久,德國科學家研製出能稱量單個原子重量的秤,打破了美國和巴西科學家聯合創造的紀錄。

到1999年,納米技術逐步走向市場,全年納米產品的營業額達到500億美元。

近年來,一些國家紛紛制定相關戰略或者計劃,投入巨資搶占納米技術戰略高地。日本設立納米材料研究中心,把納米技術列入新5年科技基本計劃的研發重點;德國專門建立納米技術研究網;美國將納米計劃視為下一次工業革命的核心,美國政府部門將納米科技基礎研究方面的投資從1997年的1.16億美元增加到 2001年的4.97億美元。

『拾』 納米材料怎麼製造的

納米材料制備方法:
(1)惰性氣體下蒸發凝聚法。通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研製成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法製成金屬、半導體、陶瓷等納米材料。

(2)化學方法:1水熱法,包括水熱沉澱、合成、分解和結晶法,適宜制備納米氧化物;2水解法,包括溶膠-凝膠法、溶劑揮發分解法、乳膠法和蒸發分離法等。

(3)綜合方法。結合物理氣相法和化學沉積法所形成的制備方法。其他一般還有球磨粉加工、噴射加工等方法。

閱讀全文

與重慶創造者納米材料有限公司相關的資料

熱點內容
郴州學府世家糾紛 瀏覽:197
馬鞍山ok論壇怎麼刪除帖子 瀏覽:242
馬鞍山恆生陽光集團 瀏覽:235
麻城工商局領導成員 瀏覽:52
鄉級公共衛生服務績效考核方案 瀏覽:310
樂聚投訴 瀏覽:523
輪子什麼時候發明 瀏覽:151
馬鞍山陶世宏 瀏覽:16
馬鞍山茂 瀏覽:5
通遼工商局咨詢電話 瀏覽:304
誰發明的糍粑 瀏覽:430
國家公共文化服務示範區 瀏覽:646
pdf設置有效期 瀏覽:634
廣告詞版權登記 瀏覽:796
基本公共衛生服務考核方案 瀏覽:660
公共服務平台建設領導小組 瀏覽:165
人類創造了那些機器人 瀏覽:933
公共文化服務保障法何時實施 瀏覽:169
遼寧育嬰師證書領取 瀏覽:735
劃撥土地使用權轉讓能轉讓嗎 瀏覽:97