⑴ 11位二进制无符号证书可以表示最大十进制数值是
2的11次方
⑵ 什么是电脑的十进制
电脑采用的是二进制,不是十进制。
十进制基于位进制和十进位两条原则,即所有的数字都用10个基本的符号表示,满十进一,同时同一个符号在不同位置上所表示的数值不同,符号的位置非常重要。
人类算数采用十进制,可能跟人类有十根手指有关。亚里士多德称人类普遍使用十进制,只不过是绝大多数人生来就有10根手指这样一个解剖学事实的结果。
(2)十进制证书是扩展阅读
十进制的历史
有学者认为,北京周口店的一万多年前的山顶洞人遗址出土的骨管,以一个圆点代表1,两个圆点并列代表2,三个圆点并列代表3,五个圆点上二下三排列代表5,长圆形可能代表十。中国著名数学史家,国际科学史研究院通讯院士李迪教授认为山顶洞人骨管符号是“一种十进制思想”。
另有学者对中国青海乐都县柳湾出土一千多枚新石器时代骨片进行研究,发现它们分属马厂、半山、齐家和辛店四个中文化型。骨片长度为2-2.4厘米,厚约1毫米。骨片上有刻痕,少的一个,多不超过八个,每个骨片上的刻痕数目不超过十个,他们以此认为新石器时代已有加法运算和十进制。
⑶ 在主程序输入一个十进制证书,用另外一个函数将其转换为十六进制的字符串,字符串
没看明白问题
⑷ 什么是十进制
十进制数用0、1、2、3.........9 , 这十个数来表示。十进制(计数法)是以10为基础数字系统, 是在世界上应用最广泛的进位制。
即满十进一,满二十进二,以此类推;按权展开,第一位权为10^0,第二位10^1……以此类推,第N位10^(N-1),该数的数值等于每位位的数值*该位对应的权值之和。
世界上绝大多数古文明都是使用的十进制,古中国,古印度,古希腊等。当然也有例外,例如苏美尔人使用十二进制,玛雅人使用二十进制,古巴比伦人使用六十进制。
(4)十进制证书是扩展阅读:
一般来说,数源于对物体的累计与计算,一个一个的数,就产生了自然数。今天,国际上最常使用的计数方法是十进制,它已经成为人们生活不可缺少的一部分。
十进制是古印度人发明的。从公元前2500到公元前1750年的哈拉帕文化时期开始,古印度人就采用十进制计数法。他们先是发明了1—9这九个数字符号和定位计数法,后又提出了零的理论和作为演算基点的十进制。
印度人之所以按“逢十进一”的规则进行运算,大概是因为当时他们用10个手指辅助计数。有了十进制,所需要的计数的单数仅为0,1,2,3……9。中亚许多民族都逐渐采用了这个简便的计数方法。
后来,阿拉伯人征服印度,对印度的10个数字加以修改,传到了欧洲,印度数字及其计算方式就逐渐演变成为现今世界通用的阿拉伯计数法了。
我国对计数方法的研究和使用也有悠久的历史。从考古出土的陶片来看,早在五六千年前的原始社会,我国先民就已经掌握了30以内的自然数。
商代中期陶片和甲骨文中已经出现13个数字:分别是一、二、三、四、五、六、七、八、九、十、百、千、万。
在长期的社会实践中,人们发现不同位置的相邻数字非常容易混淆,于是创造了纵式和横式的计算方式。大约在公元前8世纪到公元前3世纪期间,也就是春秋战国时代,我国出现了严格的十进位制。这是中国古代数学的一项伟大创造。一直到15世纪中叶,珠算成为主要的计算工具。
⑸ c语言程序:将一个五符号十进制证书转化为二进制形式,保存在形参数组中
保存在形参数组中,在主函数中输出其二进制形式?
楼主是不是把题目弄错了,保存到形参数组中?形参的改变不能使实参改变!也就是说,无论形参数组a[16]中存的是什么,在主函数中,都不能将其输出(因为调用完函数后,主函数中的数组无任何变化)。
像这样的问题,一般都是用指针解决的(或者在fun()函数中输出数据也可解决问题,但这样的程序不够标准)。
所以函数原型应该是:void fun(unsigned x,int *a);
程序:
#include <stdio.h>
void fun(unsigned x,int *a);
int main(void)
{ int i,a[16];
unsigned int x;
scanf("%d",&x);
fun(x,a);
for(i=0;a[i]!=0;i++) printf("%c",a[i]);
printf("\n");
}
void fun(unsigned x,int *a)
{ int i,j,b[16];
if(!x) { a[0]='0';a[1]=0; }
else
{ for(i=0;x!=0;x/=2) b[i++]='0'+x%2;
for(j=0;i!=0;j++) a[j]=b[--i];
a[j]=0;
}
}
⑹ 十进制是什么意思
十进制是根据“逢十进一”的法则进行计数时,每十个相同的单位组成一个和它相邻的较高的单位,这种计数法叫做十进制计数法,简称十进制,其书写原则是位置原则。
人类算数采用十进制,可能跟人类有十根手指有关。亚里士多德称人类普遍使用十进制,只不过是绝大多数人生来就有10根手指这样一个解剖学事实的结果。
(6)十进制证书是扩展阅读
十进制基于位进制和十进位两条原则,即所有的数字都用10个基本的符号表示,满十进一,同时同一个符号在不同位置上所表示的数值不同,符号的位置非常重要,基本符号是0到9十个数字。要表示这十个数的10倍,就将这些数字左移一位,用0补上空位,即10,20,30,...,90;
要表示这十个数的10倍,就继续左移数字的位置,即100,200,300,...。要表示一个数的1/10,就右移这个数的位置,需要时就0补上空位:1/10位0.1,1/100为0.01,1/1000为0.001。
参考资料来源:网络-十进制
⑺ 设任意一个十进制证书D,转换成对应的无符号二进制整数B,那么就这两个数字的长度(即位数)而言,
虽然问题是任意一个十进制整数,但只需要考察一位十进制整数D就可以说明问题。
一位十进制整数D可以表示0~9,而将0~9转换成二进制数B却是0~1001,那么,除了十进制整数0和1转换成二进制整数仍然为0和1之外,其它二进制整数的位数都要大于相同数值的十进制整数。一位十进制整数尚且如此,那么任意长度的十进制数就更是如此了。
因此,答案D:“B的数字位数大于或等于D的数字位数”是上述4种选择中的唯一正确的答案。
⑻ 无符号的二进制整数10111转换成十进制证书的值十好多
1+2+4+16=23
⑼ 下列4个无符号十进制证书中,能用8个二进制表示的是
答案B
解析:八位2进制表示的数的范围是(0~255),只有B满足。
⑽ 十进制是什么
十进制,英文名称为Decimal System,来源于希腊文Decem,意为十。十进制计数是由印度教教徒在1500年前发明的,有阿拉伯人传承至11世纪。
十进制基于位进制和十进位两条原则,即所有的数字都用10个基本的符号表示,满十进一,同时同一个符号在不同位置上所表示的数值不同,符号的位置非常重要。基本符号是0到9十个数字。要表示这十个数的10倍,就将这些数字左移一位,用0补上空位,即10,20,30,...,90;要表示这十个数的10倍,就继续左移数字的位置,即100,200,300,...。要表示一个数的1/10,就右移这个数的位置,需要时就0补上空位:1/10位0.1,1/100为0.01,1/1000为0.001
十进制计数法:
十进制计数法是相对二进制计数法而言的,是我们日常使用最多的计数方法(俗称“逢十进一”),它的定义是:“每相邻的两个计数单位之间的进率都为十”的计数法则,就叫做“十进制计数法”。 所周知,计算机内部使用二进制表示数,二进制与十进制的转换是比较复杂的。比如我们要让计算机计算50+50=?,那么首先要把十进制的50转换成二进制的“50”——110010,这个过程要做多次除法,而计算机对于除法的计算是最慢的。把十进制的50转换成二进制的110010还不算完,计算出结果1100100之后还要再转换成十进制数100,这是一个做乘法的过程,对计算机来说虽然比除法简单,但计算速度也不快。本来一步完成的事,却白白浪费了好多步骤,究其原因,就是人们使用的十进制不适应现代化信息设备,不是最佳信息计数法。如果人们使用二进制来表示数,不仅与计算机的交流变得简便,而且只需要记得怎样写0和1就能够记数了,比用十进制需要学习十个数字简单了80%。这还不是全部,举个例子来说,比如十进制的小数0.8,在二进制里怎样表示呢?要写成0.11001100...后面还有无数个1100,或者换句话说,十进制的有限小数转换成二进制不能保证能精确转换,二进制小数转换成十进制也遇到同样的问题。这也为信息处理带来了很大的不便。甚至为了能够较快的转换十进制数和二进制数,在设计处理器的时候加入了专门的电路和语句来完成这个过程,造成了处理器设计的浪费。因此,可以说十进制不适应现代化信息设备。
十进制的意义:
十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。