A. 刘徽和祖冲之父子的成就表明了什么
刘徽和祖冲之父子的成就表明中国人的数学才能是卓越的。如果历史能够使下一代人在他们成就的基础上连续地研究,就会使数学进入崭新的领域,但古代社会常常不能保证这一点。
B. 刘徽取得的重大成就及历史地位
主要成就:清理中国古代数学体系 ,提出牟合方盖、重差术等方法。
代表作品:《九章算术注》,《海岛算经》。
《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。
传本《九章算术》有刘徽注和唐李淳风等的注释。刘徽是中国古代杰出的数学家,他生活在三国时代的魏国。《隋书·律历志》论历代量制引商功章注,说“魏陈留王景元四年(263)刘徽注《九章》。”他的生平不可详考。刘徽的《九章》注不仅在整理古代数学体系和完善古算 理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。
刘徽在算术、代数、几何等方面都有杰出的贡献。例如,他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。
C. 陶渊明的诗歌有何风格,刘徽在数学方面有何成就
刘徽是魏晋时期的数学家,虽然他比赵爽(勾股弦图的发明者)晚出生了四十几年,但是他的成就在我国数学史,乃至世界数学史上都是举世瞩目的。
魏末晋初,在长期独尊儒术之后,学术界思辨之风再起,以阮籍、嵇康为首的“竹林七贤”成为不拘礼法、清静无为的典型代表,他们崇尚自然,不问世事,喜好清谈或是玄谈。在这种独特的“魏晋风骨”影响下,中国的数学界也掀起了论证的风潮。经历了由混乱到大一统的变迁的刘徽,受此影响,对《九章算术》里面的一些问题与解法进行了论证与注释。
《九章算术》是《算经十书》中最重要的一本,它是由先秦至西汉的众多学者编撰所成的一部经典著作,组成方式类似西方基督教的经典著作——《圣经》。它的涉及面很广,记载了方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等9类246个与生产、生活实践有联系的应用问题。
这样说大家可能听得不是很明白,简单解释一下,像方田、少广、商功就是现在的面积、体积等几何问题,粟米、衰分、均输就是我们现在所说的比例问题,盈不足就是现在的盈亏问题,这个在小学奥数就已经在学了,方程与勾股比较好理解,中学生应该都懂。
《九章算术》在许多方面都做出了精彩的范例和解答:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。但因解法比较原始,缺乏必要的证明。而刘徽就是对此均作了补充证明,写成了长达10卷的《九章算术注》,并在这些证明中,显示了他在众多方面的创造性贡献。
刘徽之所以能在数学上取得如此巨大的成就,主要有以下几点原因:
首先,刘徽是个富有批判精神的人。刘徽研究数学会借鉴前人之路,但不会迷信前人的定论。他批评那种墨守成规的思想,指出:“学者踵古,习其缪失。”正是这种批判精神,支持着刘徽深入研究《九章算术》,并在此基础上写出了名垂千古的《九章算术注》。
其次,刘徽是个善于发现问题本质的人。刘徽面对《九章算术》的九章264个问题,按照自己的想法给予归类,并且给出了自己的解决方式,比如:他用出入相补法来解决几何图形问题,用重差法解决各种测量问题,用今有术来解决比例问题……做到“事类相推,各有攸归。”
最后,刘徽是个善于借助工具的人。面对枯燥、空洞的数学问题,刘徽善于借用图形来解决实际问题。不论是前面的割圆术,还是在《九章算术注》记载的棋验法(即立体几何模型法),又或者是在各种几何图形涂上色,这一切都是刘徽善于借助工具,化抽象为直观的表现。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。而由于他在数学史上的突出贡献,也有人称他为“中国数学史上的牛顿”。
D. 简述刘徽,牛顿,莱布尼茨对微积分发现的贡献
数学家刘徽
生平
(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.
成就
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
①在数系理论方面
②在筹式演算理论方面
③在勾股理论方面
④在面积与体积理论方面。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
①割圆术与圆周率
②刘徽原理
③“牟合方盖”说
④方程新术
⑤重差术
(Gottfriend Wilhelm von Leibniz,1646.7.1.—1716.11.14.)德国最重要的自然科学家、数学家、物理学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人.他博览群书,涉猎网络,对丰富人类的科学知识宝库做出了不可磨灭的贡献.
17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了.
微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法.1665年牛顿创始了微积分,莱布尼茨在1673—1676年间也发表了微积分思想的论著.
以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的.卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的.
只有莱布尼茨和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算.而这是微积分建立的关键所在.只有确立了这一基本关系,才能在此基础上构建系统的微积分学.并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则.因此,微积分“是牛顿和莱布尼茨大体上完成的,但不是由他们发明的”.
然而关于微积分创立的优先权,在数学史上曾掀起了一场激烈的争论.实际上,牛顿在微积分方面的研究虽早于莱布尼茨,但莱布尼茨成果的发表则早于牛顿.
莱布尼茨1684年10月在《教师学报》上发表的论文《一种求极大极小的奇妙类型的计算》,是最早的微积分文献.这篇仅有六页的论文,内容并不丰富,说理也颇含糊,但却有着划时代的意义.
牛顿在三年后,即1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家莱布尼茨的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法.他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外”(但在第三版及以后再版时,这段话被删掉了).
因此,后来人们公认牛顿和莱布尼茨是各自独立地创建微积分的.
牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨.莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的.
莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一.因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响.1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性.
E. 刘徽和祖冲之在圆周率上取得了怎样的成就
刘徽利用“幂”和“差幂”来代替对圆的外切近似,巧妙地避开了对外切多边形的计算,在计算圆面积的过程中收到了事半功倍的效果。
刘徽首创“割圆术”的方法,可以说他是我国古代极限思想的杰出代表,在数学史上占有十分重要的地位。他所得到的结果在当时世界上也是很先进的。
在刘徽之后,祖冲之所取得的圆周率数值可以说是圆周率计算的一个跃进。
据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值在这两个近似值之间。成为当时世界上最先进的成就。
隋书
F. 刘徽和祖冲之等著名古代数学家的成就有什么重要意义
刘徽和祖冲之父子的成就表明中国人的数学才能是卓越的。如果历史能够使下一代人在他们成就的基础上连续地研究,就会使数学进入崭新的领域,但古代社会常常不能保证这一点。在数学方面还应提到北魏人张丘建所撰的《张丘建算经》、北周人甄鸾所撰的《五曹算经》和《五经算术》。这三部书都在算经十书之列。其中张丘建在他的著作中提到了前代的名著《孙子算经》。
G. 刘徽的数学成就大致可以归纳为哪几个方面
刘徽的数学成就大致可以归纳为两个方面:一是清理我国古代数学体系并奠定了它的理论基础;二是在继承的基础上提出了自己的创见。
刘徽在古代数学体系方面的成就,集中体现在《九章算术注》中。此作实际上已经形成了一个比较完整的理论体系。
在数系理论方面,刘徽用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
在筹式演算理论方面,刘徽先给率以比较明确的定义,又以遍乘、通约、齐同等基本运算为基础,建立了数与式运算的统一的理论基础。他还用“率”来定义我国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
H. 刘徽的数学成就是什么
刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。
刘徽的主要著作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。
刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
刘徽的《九章算术》是我国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。
《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。
《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。
《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。
《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。
刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。
刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
I. 刘徽的成就体现在他的哪两部著作中
刘徽的成就体现在他的《九章算术注》和《海岛算经》两部著作中。《九章算术注》成书的263年正是魏国大将邓艾(197~264)攻破成都灭亡蜀国之时。《海岛算经》在唐代被列入国家学校的算经十书中。
J. 刘徽一生最大的成就是什么
刘徽最大的成就是他注释了《九章算术》,在这一过程中,刘徽取得了许多创造性的成就。经他作注的《九章算术》对我国数学的发展产生了深远的影响,成为东方数学的代表作之一。