1. 当今数学界的最新成就
希尔伯特的二十三个问题:
在1900年8月巴黎国际数学家代表大会上,希尔伯专特发表了题为《数学问属题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。
成就的话应该就是这其中一些问题的解决,比如庞加莱猜想。
2. 陈景润的重大数学成果是啥
证明了2+1=3,离
哥德巴赫猜想
又近了一步
3. 中国现代数学成果
中国是世界文明古国之一。16世纪(明代中叶)以前,在数学的许多分支领域里,我国一直处于遥遥领先的 地位。
只是后来在封建制度的束缚下,我国包括数学在内的整个科学技术领域都逐渐落后了。而欧洲则在经历了文艺复兴之后,很多学科一跃超过了东方。
"戊戌变法"后,国家废科举,一些有识之士兴学堂,开始传播西方的科学文化。到"五四"时期,一批学子把西方科学移植到中国,为今天中国的科学奠定了坚实的基础。
熊庆来便是其中杰出的一员。他于1921年从法国留学归来,即将近代数学引进中国,创建了中国第一个数学系(当时称算学系),培养了大量的数学人才。他是中国现代数学辛勤的开拓者。
周恩来总理于1955年视察云南大学时,还特别提到这位当时尚在国外的大数学家、大教育家。他说:"熊庆来培养了华罗庚,这些具有真才实学的人,我们要尊重他们。"
熊庆来,字迹之,1893年9月11日(农历)出生于云南省弥勒县朋普镇息宰村。这是一个只有七八十户人家的偏僻山村,熊庆来的启蒙教育就是在这里完成的。
1907年,婚后不满一个月,酷爱学习的熊庆来到昆明考入方言学堂,两年后,又升入云南英法文专修科,学习法语不到一年,他便能流畅地同法籍教师对话。
1913年,他以优异成绩考取云南省教育司主持的留学比利时的公费生,1914年第一次世界大战爆发,德军侵入了中立的比利时。熊庆来只好离开陷落的比利时,转经荷兰、英国,来到法国,由于战争,法国的矿业学校也关闭了,他便改学数学和物理学。
留学7载,他深受巴斯德、居里夫妇等科学伟人的性格、思想、情操等方面的巨大影响。他先后在巴黎大学、马赛大学等4所大学攻读,取得了高等数学、高等分析、力学、天文、高等普通物理学等证书,并获理科硕土学位。
1921年春,风尘仆仆的熊庆来从法国学成归来。怀着为桑梓服务的热望,他回到了故乡云南,任教于云南甲种工业学校和云南路政学校。
同年,才开办的国立东南大学(今南京大学前身)寄来聘书,请熊庆来去创办算学系。英雄有了用武之地,熊庆来带着妻子和8岁的儿子秉信来到了龙盘虎踞的南京,一展宏图。
年仅28岁的熊庆来不仅被聘为教授,还被任为系主任,他工作负责、授课认真,当时能讲授高深数学理论的仅他一人,故他同时担任了《微分方程》、《高等分析》、《球面三角》、《微积分》等多门课程的数学工作。
5年中他编写了《高等算"学分析》等十多种讲义,他患严重痔疮不能坐,就伏在床上写。过度的劳累又使他患了胸膜炎,但他仍废寝忘食,不顾病痛地工作。
他非常爱惜人才,经常接济穷苦学生。为了培养国家人才,他呕心沥血,不辞劳苦。誉满当代中国科坛的严济慈(全国人大副委员长)、胡坤陛等都曾得到熊老的帮助。
熊庆来常常寄钱给在法国学习的严济慈。有一次,校方因故不发工资,他让妻子去典当皮袍子,寄钱给严济慈。严济慈在法勤奋学习,成绩优异,此前,法国是不承认中国大学毕业文凭效力的。从严济慈起,法国才开始承认中国的大学毕业文凭与法国大学毕业文凭具有同等效力。
1926年,清华学校改办大学,又聘请熊庆来去创办算学系。他在任清华算学系系主任的9年间,又辛勤培养了一大批在国内外享有盛誉的优秀人才。有人说:"中国的数学家约有一半出自清华算学系。
华罗庚就是其中的佼佼者。初中学历的他通过自学,于1930年发表《苏家驹之代数的五次方程式不能成立的理由》这篇论文后,熊庆来慧眼识人才,便把当事务员的他从江苏金坛中学请到清华。 熊庆来重才华轻学历,在很讲究学历的清华力排众议,破例地留下华罗庚并以"助理"名义安排工作,让他有时间、有条件学习。
华罗庚得到熊庆来的直接指导,并可随意听教授们的课,又有条件潜心钻研,可谓"如鱼得水",得以迅速成长,一年之后他被任为助教,再一年后升为讲师,又两年后成为文化基金会研究员。
1936年,经熊庆来和理学院长叶企苏的推荐,华罗庚登上北去的列车,横穿西伯利亚,跨越英吉利海峡,前往英国剑桥大学做访问学者。后来,华罗庚在数论及分析领域取得卓越的研究成果,成为驰名中外的大数学家。
著名的物理学家钱三强、赵九章、彭恒武都是熊庆来在清华任教时的学生。我国第一颗原子弹爆炸后,法国《世界报》载文评述,谈起钱三强的贡献时,还特别指出他是熊庆来的学生。
1930年,熊庆来在代理清华学院院长时,创建了我国第一个数学研究机构--清华算学系研究部,他是指导老师之一。萤声当代数学界的美籍大数学家陈省身,就是当时该部的研究生。
1931年,熊庆来代表中国出席在瑞土苏黎世召开的世界数学会议。这是中国代表第一次出席国际数学会议。世界数学界的先进行列中,从此有了中国人!
会议结束后,熊庆来利用清华规定的五年一次的例假,前往巴黎专攻函数论,于1933年获得法国国家理科博土学位,他定义的无穷级被国际上称为"熊氏无穷级",载人了世界数学史册。
1934年,他返回清华,仍任算学系主任。翌年,他聘请法国数学家H·阿达玛和美国数学家、控制论的奠基人N·魏纳到清华讲学。为高年级学生和研究生开拓视野,帮助他们提高研究能力。
当时的研究生陈省身、吴大猷、庄圻泰、施样林、段学复等人,后来都成为著名学者。熊庆来在晚年曾谦虚地回顾说:"平生引以为幸者,每得与当时英才聚于一堂,因之我的教学工作颇受其鼓舞。"
1936年,在熊庆来和其他数学界前辈的倡议下,创办了中国数学会会刊,熊庆来任编辑委员。这个会刊即是现今的《数学学报》的前身,可称是中国的第一张数学学报。
1937年,应云南省政府之请,熊庆来回到阔别16年的家乡,担任云南大学校长。当时的云南,经济、文化都极为落后,办学条件万分艰苦。然而,熊庆来内心却澎湃着一股为桑梓服务,发展云南教育的热情,一心要"把云大办成小清华"并于1938年7月争取到将云南大学从省立改为国立。
熊庆来认为办好学校的首要关键是精选教师。他凭借自己在学术界的声望,聘请了许多知名学者到云大任教。人们称赞他"有蔡元培兼收并容的风度"。当时云大师资阵容之强大,毫不逊色于一些老牌大学。
他信任人,也善于用人。他给予各学院院长和系主任在很多问题上的自决权,尊重他们的决定。只要拿得出成绩。把系、把学院搞得好的,他总是放手让你干。
他没有校长的架子,一贯平易近人,和蔼可亲,关心别人,逢年过节,他常把单身教员请到家里吃饭。
他勤俭办学。事必躬亲。为了聘到好的教授,他提出给外省来的教授以高薪,他自己和云南籍教员,则只领取规定的工资。
在他的表率作用和严格要求下,学校机构精干,工作效率颇高。注册组、庶务组人少事杂,却把诸事管理得井井有条,并以热情周到的接待让新来的教师觉得云大"是个可以安身立业的地方。"
熊庆来还强调要树立好的校纪校风。他认为必须对学生严格要求,杜绝考试作弊;课堂教学、实验、习题等环节一环也不能放松。如此严格要求的结果,使云大毕业生的质量可与一些老牌大学媲美。
熊庆来任校长的12年中,云大从原有的3个学院发展到5个学院,共18个系,另附专修班和先修科各3个,为国家和民族培养了大批有用之才,为改变云南文化落后的状况作出了重要贡献。
1949年云南学生运动蓬勃开展。6月,熊庆来接到教育部通知,要他立即前往巴黎参加联合国教科文组织会议,就在他登上飞机出发之际,教育部宣布解散云南大学,并撤销其校长职务。
联合国会议结束后,他便暂留巴黎,想在晚年再研究数学问题,以补前12年行政事务缠身而疏离学术研究之憾。
1956年,法国要出一套数学丛书。经法国数学界的推举,其中关于函数论的专著,光荣地落到了一个中国人--熊庆来的身上。于是,他不顾半身不遂之苦,奋力完成了这部专著,深为国际数学界所称道。
然而,祖国在他心中一直是个神圣的字眼。熊庆来在完成了为法国数学丛书写作的那本函数论专著后,毅然带病归国。
熊老回国后,任数学研究所研究员,并担任了所常务委员、学术委员会委员和函数论研究室主任。他在归国欢迎会上诚恳表示:"我愿将我的一点心得献给下一代同志,我愿在社会主义的光芒中,尽瘁于祖国的学术建设事业。"
他一面自己加紧研究,一面积极推动我国数学研究的发展。他于1960年、1961年、1964年几次在全国和北京地区的函数讨论会上作了学术报告,为函数论的研究指明了方向。从1961年起,他倡导举办的函数讨论班,每两周在他家聚会一次,除庄科、庄圻泰、范会国、赵进义等老教授外,还有北京高校的一些中青年教师、研究生,可谓数学上的"四世同堂"。
熊老除积极推动研究工作外,还指导青年研究人员和招收研究生,孜孜不倦地培养青年一代。现在为国际数学界所称道的青年科学家杨乐、张广厚便是他70高龄时最后带的两个研究生。
杨乐、张广厚在函数值分布论研究中关于"亏值"与"奇异方向"间的具体联系的研究成果,还被国际上誉称为"杨张定理"。80年代,这两位青年数学家多次应邀赴欧美国家讲学,为祖国赢得了荣誉。杨乐曾深情地说:"如果我从北大毕业后,没有得到熊老的培养,没有科学院这样一个环境,那是绝对做不出这样的成绩来的!"
可是,令人万分痛心的是,这样一位贡献巨大的学者,在"十年浩劫"中竞被打成"反动学术权威"和"熊华(罗庚)黑线"人物,受着无休无止的批斗和摧残。
1969年2月3日的深夜,熊老在凛冽的寒风中与世长辞了,桌上还摊着上床前没有写完的"交代",一代数学泰斗就如此凄凉地离开了人间……
然而,历史却不会忘记这位为中国数学作出巨大贡献的人。1978年,他的冤案得到了平反。
"太华巍巍,拔海千寻;滇池森森,万山为襟;卓哉吾校,与其同高深。努力求新,以作我民;努力求真,文明允臻。"
今天,一所以他的名字命名的"庆来中学"已在他的家乡弥勒县建立起来,许多后来者正沿着熊庆来开辟的研究道路,奋力前进。
4. 近期的数学研究成果有哪些
上年也算近期吧
庞加莱猜想被证明
5. 5位数学家的简介与主要成果
1、祖冲之
祖冲之,曾经算出月球绕地球一周为时27.21223日,与现代公认的27.21222日几乎没有误差。月球上许多火山口中的一个被命名为“祖冲之”。祖冲之还曾经计算出圆周率应该在3.1415926和3.1415927之间。
法国巴黎的“发现宫”科学博物馆中也有祖冲之的大名与他所发现的圆周率值并列。在莫斯科国立大学礼堂廊壁上,用彩色大理石镶嵌的世界各国著名的科学家肖像中,也有中国的祖冲之和李时珍。
2、华罗庚
华罗庚(1910.11.12—1985.6.12),汉族,籍贯江苏金坛,祖籍江苏省丹阳。世界著名数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,也是中国在世界上最有影响力的数学家之一,被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。
3、约翰·卡尔·弗里德里希·高斯
1777年4月30日-1855年2月23日,享年77岁,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
4、阿基米德
公元前287年—公元前212年,伟大的古希腊哲学家、网络式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”
阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。
5、勒内·笛卡尔
1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡尔得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。
他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了“普遍怀疑”的主张。黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
6. 中国古代数学的成就
中国古代数学成就非常突出,有很多项世界之最:
中国是世界上最早采用了十进位制的国家,距今4000年左右的陕西、山东、上海的出土文物中除表示个位的数字外,已经有10、20、30这样的记号,比古埃及早1000多年。
殷商时已经有了四则运算,春秋战国时正整数乘法口诀“九九歌”已形成,从此“九九歌”成为普及数学知识的基础之一,一直延续至今。
在计算工具方面,殷商时就发明了“算筹”,算筹是圆形小竹棍,以后有了骨制、铁制的。以算筹表示数目,有纵、横两种形式,如“2”可表示为“=”或“Ⅱ”。
勾股定理相传是在商代由商高发现,比毕达哥拉斯早500多年。
公元前1世纪的《周髀算经》和东汉时期的《九章算术》是最著名的中国古代数学著作。
算盘的最早记载是公元190年。明清两代,算盘成为当时工商业贸易中不可缺少的工具。算盘携带方便,运算准确迅速,即便是现在,仍发挥着巨大作用。
三国时期,刘徽运用割圆术求圆周率π=3.1416。南北朝时期的数学家祖冲之又将圆周率进一步精确到3.1415926~3.1415927之间。
唐代僧一行创立了不等间距二次内插法,王孝通得到求解三次方程的方法;宋元时期得到关于高次方程组的求解法一次同余式解法。这些成果都处于当时的领先地位。
7. 数学家的数学成果
中国古代算术的许多研究成果里面包含了一些后来西方数学的思想方法,近代也有一些数学研究成果是以华人数学家命名的。这里列举中国近现代数学家的一些重要的贡献。
李善兰在级数求和方面的研究成果,被命名为“李善兰恒等式” 。华罗庚关于完整三角和的研究成果被称为“华氏定理”;另外他与王元提出多重积分近似计算的方法被成为“华—王方法”。苏步青在仿射微分几何学方面的研究成果被命名为“苏氏锥面”。熊庆来关于整函数与无穷级的亚纯函数的研究成果被称为“熊氏无穷级”。陈省身关于示性类的研究成果被称为“陈示性类”。周炜良在代数几何学方面的研究成果被称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。吴文俊在拓扑学中的重要成就被命名为“吴氏公式”,其关于几何定理机器证明的方法被称为“吴氏方法”。王浩关于数理逻辑的一个命题被称为“王氏悖论”。柯召关于卡特兰问题的研究成果被称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”。陈景润在哥德巴赫猜想研究中提出的命题被称为“陈氏定理”。杨乐和张广厚在函数论方面的研究成果被称为“杨—张定理”。陆启铿关于常曲率流形的研究成果被称为“陆氏猜想”。夏道行在泛函积分和不变测度论方面的研究成果被称为“夏氏不等式”。姜伯驹关于尼尔森数计算的研究成果被称为“姜氏空间”;另外还有以他命名的“姜氏子群”。王戌堂关于点集拓扑学的研究成果被称为“王氏定理”。侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”。
8. 数学发展史分为哪几个阶段各个阶段的成果是什么
1(前3500-前500)数学起源与早期发展: 古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了。
如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展
2近代数学 微积分的发现、应用、严密化
3现代数学 对数学的基础的思考
其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响。(其中贵族数学是说希腊贵族人研究数学,平民不接触)
9. 彭加勒的数学研究成果有哪些
一位数学史权威评价彭加勒(1854—1912年)时说,他是“对于数学和它的应用具有全面知识人的最后一个人。”20世纪以来,数学进入了多学科、高难度的现代阶段,要想达到每个领域的最高成就已经不可能,但彭加勒确实是他那个时代的数学全才。
一般把数学划分为算术、代数、几何和分析四个领域,彭加勒对各个领域的研究成果,都是第一流的。他成功地解决了像太阳、地球、月亮间相互运动这一类的三体问题;他是现代物理的两大支住——相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代哲学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得过法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为30多个国家的科学院院士。
1912年6月26日,彭加勒病逝前20天作了最后一次讲演,他说:“人生就是持续斗争。”彭加勒的一生就是斗争的一生。他因为小时候得过病,语言不够流畅,写字画图都有困难;还留下了喉头麻痹身体虚弱的后遗症。不少人把他当作笨人。他成为数学家后,一位心理学家通过测验仍然认定他是“笨人”。彭加勒取得成就的关键是注意力高度集中。他一生最大的嗜好就是读书,读书速度快,记忆准确持久。因为视力不好,书写困难,他上课不记笔记,全神贯注于听讲、思索、理解,长期的磨练,使他具备了运用大脑完成复杂运算,构思长篇论文的能力。1871年,17岁的彭加勒报考高等工业学校,轻松地解决了主考官特意为他设计的难题,尽管他的几何作图得了零分,学校也破格录取。1879年,25岁的彭加勒获数学博士学位,32岁任数学和物理学教授,以后在科学园地里辛勒耕耘26年。