㈠ 望远镜在天文学的重大发现
你先回去学好汉语比较好!你的问题根本不成立!望远镜又不是人,能有啥发现?
应该是:天文学家利用望远镜做出了那些重大发现?这个太多了,不胜枚举。第一个把望远镜对准天空的天文学家伽利略发现了月亮上的凹凸不平,发现了木星的四颗卫星。现代几乎所有天文发现都离不开各式望远镜。
㈡ 最著名的天文望远镜
回溯近代德国天文学的起源,便要把时光倒流到19世纪初的德国汉堡港(Hamburg)。当时正是海洋探险殖民的兴盛时代,随着船舶航行东西方贸易,带来惊人的财富,欧洲列强体认到天文学的发展对于航海具有极大的帮助,特别是船舶在茫茫大海中需要精确的定位,这时一本详尽正确的星表,便是各船长、领航员极需的工具书。 借着六分仪的测量,A星昨天出现中天的时间与今天出现中天的时间差,便可换算航行了多少经度与距离;而从星星(如北极星)出现在海平线的水平高度,就可以知道船舶所处的纬度。西欧各国中,以德国、荷兰、英国等国对天文学的投资最为积极,同时也反映出他们对海洋殖民的国家政策。 汉堡港为欧洲重要大港(另一个重要海洋是荷兰阿姆斯特丹),对航行的船舶提供天文航海资料与时间服务。1833年汉堡天文台正式由政府接管(在此之前是由私人集资举办),不久后出版了星数达6万颗的星总表目录。随着汉堡市区的扩展,原有的台址受光害、烟雾及工厂的影响,已敷研究工作的需求,便在1901年开始在郊区Bergedorf的山丘上建立新台。(图片 汉堡天文台80厘米折光式望远镜) 1912年新的(现代的)汉堡天文台正式落成启用,配备当时傲视欧洲各国的先进仪器,诸如60厘米折射赤道仪(具备拍摄光谱与星体定位的性能)、蔡司1米口径反射望远镜、60厘米口径反射望远镜与30厘米Lippert摄星镜(焦比1:5),并开始所谓的AGK计划。 所谓AGK是德文Astronomicchen Gesellschaft KatalogR 的缩写,意为星总表目录。到1930年,总计有20万颗星已被测量并标定位置,1935年又利用光谱测量与光度计,观测了15万颗变光星。这时汉堡天文台达到它历史上的巅峰,在传统天文学(天体测量学)的优异表现,为后代天文物理学发展奠定了良好的基础。
㈢ 80MM的反射式天文望远镜
对于入门型的天文望远镜,星特朗80EQ(折射式)和130EQ(反射式)都是比较好的选择,
130EQ能看到月球表面的环形山,土星土星光环,木星,木星云带,木星卫星等,同时130EQ基本是接上相机之后能拍摄星云的最低口径要求的民用天文望远镜。价格在1500元左右。
80EQ这款能看到月球表面的环形山,能看到土星,木星,木星卫星等,还可以观景,能看清一两公里的空调的商标的。价格在850元左右。
130EQ相对口径大,观测视野大。
你可以去星河望远镜知识专区看看,网络里直接搜“北京星河望远镜”就可以的,那里有许多关于望远镜选购、维护、使用的相关知识。
㈣ 想买一个口径80CM左右的天文望远镜什么型号的好呢
麻烦楼主确认一下,是80厘米还是80毫米??
如果是80毫米,那么可以博冠的,星特朗都是不错,有钱的话可以买英田的80ED,都是很好的。
如果是80厘米,只有反射望远镜能够满足。而且没有买的,你只能自己做了,在牧夫网目前有人已经自己磨了600mm口径的反射镜片,并且镀膜完成,我们都在期待他的大作,呵呵,如果你要作80CM的,估计可以说国内数一数二了!!!!
㈤ 60厘米试验天文反射望远镜专集讲的什么
60cm是现在国家天文台兴隆站里2.16m望远镜的中间试验望远镜。这本讲的应该是它的建造细节、论文等吧。
㈥ 反射式望远镜的起源与发展
折射望远镜产生的像差,主要是因为光线通过透镜以后再聚焦而产生的,那么能不能不通过透镜折射后聚焦而通过镜面的反射而聚焦成像呢?为此英国的物理学家、天文学家牛顿首先提出用一定形状的反射镜,也可以把平行光线会聚在一起而聚焦成像。
1868年牛顿亲自动手磨制了一块凹球面镜。镜子材料选用合金(铜、锡、砷),颜色为白色,镜面直径为2.5厘米,镜筒为15厘米长的金属筒,在镜筒末端安装了物镜。当来自天体的平行光束,投射到物镜上,经过反射后会聚到焦点处,然后可以看到天体的像。此焦点又称主焦点,在主焦点前安放一个小平面镜,使它与主轴光线之间夹角为45°。把光线转向90°,然后在镜筒一侧聚焦成像,此焦点称为牛顿焦点。在牛顿焦点后安放目镜便可以进行观测了,这是牛顿制作的第一架反射望远镜。这种望远镜外形上短粗矮胖,产生的物像可以被放大40倍。
牛顿制造第一架反射望远镜虽然不想公开宣传,但引起了人们的关注。后来牛顿又制作了第二架反射望远镜,物镜口径为5厘米。他于1672年1月11日送给皇家学会,目前这架反射望远镜,仍在英国得以很好地保存。
反射望远镜的发明,为望远镜家族增加了新的活力,人们以极大的热情研究不同类型的的反射望远镜。最早提出制作新型反射望远镜的人是英国天文学家詹姆斯·格雷果里。1663年,他提出一个方案:利用两面镜子,一面主镜,一面副镜;口径较大的凹抛物面镜作为主镜,镜中心钻个圆孔,把此镜放在望远镜的一端,让光线从另一端进入镜筒射在主镜上,经过主镜的反射光线会聚至焦点处,再选口径较小的凹椭球面镜作副镜,将它放置在镜筒内的主镜焦点后,经副镜重新反射发散,使光线进入主镜的中心,然后再重新聚焦(P2)成像。在主镜后焦点处再通过目镜产生一个放大像。用这种望远镜观看时,如同折射望远镜一样,观测者直接对着物体的方向观测。但是这种反射镜的镜面要求较高,磨制起来比较困难,并且镜筒长场曲较大。所以格雷果里始终没能造出一架可以用来工作的反射望远镜。但是,他的理论丝毫没有错,后来有人据此制作的“格里式望远镜”一直工作得很好。
1672年法国人N·卡塞格林提出新的反望镜远镜设计方案。他对格里式望远镜进行改进,主镜仍是中心有孔的凹抛物面镜,只是把副镜磨制成凸双曲面镜。当来自天体平行主轴的光线,投射到主镜上,再经过主镜反射,在镜前聚焦,在光束尚未完全汇聚时,又受到在主焦点前的副镜再一次反射,使光线发散,然后穿过主镜中心孔后再聚焦,此焦点又称卡塞格林焦点。同样在此焦点处用目镜观看,则可看到再放大的像。这种反射望远镜称为卡塞格林望远镜,简称卡式望远镜。卡式望远镜焦距长而镜筒短,得到倍率大、星像大的好效果。拍摄天体也可得到大而清晰的像。若将卡式的副镜换成平面镜,安放在与光轴成 45°角的位置,这样可改成牛顿式望远镜,在侧面成像。因为这种望远镜有两种光路成像系统,所以又称为耐司姆斯望远镜。
在反射望远镜加工制造者中,最为突出的是英国天文学家威廉·赫歇尔(1738—1822年)。赫歇尔生于德国的汉诺威,1757年迁居英国。起初在英国生活时,由于能吹一手好号,先是担任音乐教师,但他的兴趣很广泛,特别渴望观测浩翰的宇宙、观测美丽的行星和神奇的恒星。他曾租了一架长60厘米的格雷果里式望远镜,对星空进行观测,但效果不好。若要购置较好的望远镜,因为经济条件窘困又难以实现。于是赫歇尔下决心自己磨制望远镜了。1772年,他把妹妹卡罗琳从汉诺威接到英国,照料他的生活,自己则专心投入磨镜子的工作。他磨制第一块镜子时非常刻苦顽强,一天连续磨制好几个小时,有一次竟达16小时,连吃饭都顾不上,只好让妹妹给他喂饭吃。凭着这种坚韧不拔的精神,终于磨制出了第一块直径为15厘米的反射镜,并制作了一架长2.1米,可放大40倍的牛顿式反射望远镜。他用这架望远镜观看了猎户座大星云,并且清楚地观测到了土星光环。特别是在1781年3月13日,赫歇尔在观测天体时,偶然在望远镜中看到的天体不是个光点而呈现出一个圆面。开始他认为发现了新彗星,但进一步观测,发现这个天体像行星那样环绕太阳运动,以后证实这是一颗远离太阳28亿千米的新行星,被命名为天王星。
天王星的发现轰动了英国,赫歇尔立即被选为英国皇家学会会员,被授于显赫的荣誉,获得了科普利奖。赫歇尔一生中磨制了数百架天文望远镜,其中在1786年磨制了最大的一架望远镜,口径为122厘米,镜筒长为12.2米。这个庞然大物在巨大的构架中竖立起来,看上去活像一尊指向天空的大炮,人们进行观测时需要爬到镜筒内寻找焦点。它所设计的光路称为赫式望远镜,望远镜将主镜斜放镜筒一端,将会聚光束的焦点靠近前方,去掉副镜直接用目镜进焦点处进行观测。当他使用这个庞然大物在观测的第一夜,就发现了土星的两颗新卫星。以后观测银河系也取得很大成功。赫歇尔不愧为在天文学发展史上立下丰功伟绩的全能天文学家。
19世纪中叶,制作反射望远镜口径最大的是英国天文学家罗斯伯爵,他出身贵族喜好天文,在1842年他开始筹措制造口径184厘米的大反射望远镜,历经三年的磨制,从四次失败目前在天文观测中,反射望远镜已成为现代天文观测的常用工具。世界上已建造口径在2米以上的反射望远镜有15台之多,超过5米口径以上的反射望远镜,已有三台。最著名的是安装在美国帕洛马山的天文台内的508厘米反射望远镜。制造这架望远镜,曾经历了许多风风雨雨。
1928年美国天文学家海尔已近晚年,当时洛杉矶城市已很繁荣,城市灯光很亮,离此城不远的威尔逊山天文台受到干扰,为避免城市灯光干扰,并且提高观测能力,海尔决定在距离威尔逊东南145千米的帕洛马山上,建造了一个508厘米的大反射望远镜。他首先经过严格挑选光学玻璃,磨制前在玻璃背面钻100多个孔洞,使镜后成为蜂窝状,中心钻孔为1.1米。经过漫长的时间磨制,总共磨掉4500千克的玻璃,研磨过程中,消耗掉了28吨金刚砂,最后镜重为 1.45吨,直到1948年才建成。可惜的是1938年海尔与世长辞了,没能看到这架大望远镜的建成,为纪念他的卓越贡献,将此架望远镜命名为“海尔望远镜”。这是全世界望远镜的佼佼者。这架望远镜的建成,为天文学的发展起到了推波助澜的作用。它能探测到宇宙中远达12亿光年的暗弱天体,探测人们所不知道的恒星和星系的秘密,极大地开扩了人类的眼界,扩大了人类认识宇宙的范围,取得的一系列新成果,使天文学向前迈进了一大步。
随着科学技术水平的不断提高,人们在制作大口径反射望远镜方面也不断有所提高。前苏联科学院磨制的口径6米的反射望远镜,1976年安装在俄罗斯高加索山上泽连丘克斯卡亚。进入90年代美国又在夏威夷英纳克亚建成了10米口径大型反射望远镜。我国口径最大的2.16米反射望远镜是1988年在北京天文台河北兴隆观测站落成的。这个观测站地处长城北侧、海拔960米的燕山主峰南麓,这也是一个天体物理光学观测的基地。
㈦ 反射望远镜分为几种类型
用凹面反射镜作为物镜的望远镜就就是反射望远镜。可分为牛顿望远镜、卡塞格林望远镜等几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其他像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000~9000埃波段范围的反射率都大于80%,因而除光学波段外,红外和紫外等不可见光波段也可以用反射望远镜来研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5~1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,而且主镜只有一个表面需要加工,从而大大降低望远镜造价和制造的困难。一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。这样,一架望远镜便可获得几种不同的相对口径和视场。目前口径在1.34米之上的光学望远镜除了有反射望远镜外就再也找不到其他的了。发射望远镜的主要科研使命就是研究天体的物理特征。
㈧ 第一架反射望远镜是什么时候诞生的
1668年诞生了世界上第一架反射式望远镜。牛顿曾经好几次磨制非球面透镜,但屡遭失败,因此他改用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。虽然球面镜会产生一定的象差,但反射镜代替折射镜却是科学上一个成功的转折。
1663年,詹姆斯·格雷戈里在提出一种方案:分别用凹面镜作为一面主镜和副镜,把副镜放在主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜。他提出的这个建议在理论上是正确的,但是,由于当时制造水平的局限性,它所提到的一些要求是无法实现的,因此,格雷戈里无法得到对他有用的镜子。
1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。
卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。
赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。
在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。
1918年末,海尔主持建造的胡克望远镜投入使用,它的口径是254厘米。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,值得骄傲的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。
20世纪,20~30年底,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米的望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:“海尔望远镜就像半个世纪以前的叶凯士望远镜一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了”。后来,1976年前苏联建造了一架600厘米的望远镜,而他所发挥的作用还不如海尔望远镜,再次使阿西摩夫的话得到了验证。
反射式望远镜有许多优点,例如它没有色差,能在广泛的可见光范围内记录天体情况的各种信息,与折射望远镜相比,更容易制作。但同时它本身也有很多不足之处,口径大的话,视场会比较小,得到的图像资料的清晰度和亮度不是很高,而且折射镜的物镜需要定期镀膜等。
第二次世界大战后,反射式望远镜在天文观测中得到很快的发展,1950年在帕洛玛山上安装了一台直径5.08米的海尔反射式望远镜。1969年在前苏联高加索北部的帕斯土霍夫山上安装了直径6米的反射镜。1990年,美国航空航天局(NASA)将哈勃太空望远镜送入轨道,然而,由于镜面故障,直到1993年宇航员完成太空修复并更换了透镜后,哈勃望远镜才开始全面发挥作用。哈勃望远镜拍摄图片时不受地球大气层的影响,因此它拍出来的图片要比地球上同类望远镜的清晰度高10倍。1993年,美国在夏威夷莫纳克亚山上建成了口径10米的“凯克望远镜”,其镜面由36块1.8米的反射镜拼合而成。2001设在智利的欧洲南方天文台研制完成了“超大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。现在,一批正在筹建中的望远镜又开始对莫纳克亚山上的白色巨人兄弟发起了冲击。这些新的竞争参与者包括30米口径的“加利福尼亚极大望远镜”(California稥xtremelyLarge稵elescope,简称CELT),20米口径的大麦哲伦望远镜(Giant稭agellan稵elescope,简称GMT)和100米口径的绝大望远镜(Overwhelming稬arge稵elescope,简称OWL)。科学家们指出,研制的这批新的望远镜,不仅能拍出比哈勃太空图片像质更好的图片资料,还能收集更多的光。更加清晰可靠的太空图像资料能使人更了解100亿年前星系形成时初态恒星和宇宙气体的情况,并观测清楚遥远恒星周围的行星。
㈨ 反射望远镜有什么应用
从伽利略发明了天文望远镜之后,相当长一段时期里人们都是用折射望远镜观测天文,为了提高望远镜的放大率,人们不断加长折射望远镜的镜身,最后长得难以使用。于是,人们萌发了制造反射望远镜的念头。第一个提出反射望远镜方案的是英国数学家J.格雷戈里;第一个亲手制造第一架反射望远镜的是英国科学家牛顿;第一个制造出能用于专业观测的反射望远镜的是英国数学家J.哈德利;然而代表着早期反射望远镜的最高成就的是赫歇耳和他的反射望远镜。英国人W.赫歇耳(1738—1822年)原是位音乐家,但他酷爱观测星辰。由于穷困使他无力购买望远镜,他只好自己动手磨制天文望远镜,据说有一次他一边磨一边听妹妹读书,连吃饭都由妹妹喂,一口气竟磨16小时。功夫不负苦心人,他终于在1774年制出了他的第一架反射望远镜:口径15厘米,镜长2.1米(现保存在大英科学博物馆)。接着他又磨制了口径达22.5厘米、镜身3米和口径45厘米、镜身6米等一系列更大更好的反射望远镜。1781年3月13日,赫歇耳用他的反射望远镜发现了一颗新行星——天王星,这一发现使他从一个音乐家一下子成为举世闻名的天文学家。1786年他编出了包括2500个星云的星表。天王星的发现和天文学上的成就更激励他磨制望远镜的热情。英国国王乔治二世慷慨解囊,出资2000英镑。1789年底他研制成口径122厘米、长12.2米的巨型望远镜,这架庞然大物终于安装在一个巨大的木架上,像一尊指向天空的巨炮。这架巨型望远镜投入观测的第一夜,赫歇耳就发现了士卫一和士卫二,还发现了大量双星、星团和星去。1822年赫歇耳去世。1839年这架巨炮似的巨型反射望远镜被人们从支离破碎的木架上放倒,目前保存在胡斯天文台的花园中,成为早期天文学的历史见证。赫歇耳和他的望远镜使人类的探测能力首次超出了太阳系之外,到达了恒星世界。