A. 生物制药有哪些成果
中国乙型肝炎基因工程疫苗的研究成果已达世界先进水平。上海生物制品研究所的何葆光等科学家利用基因工程技术,使乙型肝炎表面抗原基因在酵母菌中获得高效、稳定的表达,为中国乙型肝炎基因工程疫苗生产打下基础。
血清蛋白对人体的免疫功能和维持血液的正常渗透压、黏度和酸碱度起着直接作用,没有血清蛋白,血液就会停止流动。1982年,美国科学家把控制血清蛋白合成的基因通过DNA重组引进大肠杆菌后,已开始用大肠杆菌发酵生产人体血清蛋白,目前的年产量在100吨以上,销售额达5亿美元。
除了干扰素、生长激素、胰岛素和乙型肝炎疫苗的基因工程成就外,还有口蹄疫病毒抗原、流感疫苗等都可以用大肠杆菌生产。用基因工程生产出来的这些药物,有奇特的效能。
B. 目前生物科技有什么最新发展成果
目前生物科技有什么最新发展成果
1.我国科学家发现阿尔茨海默症致病的新机制
2006年11月19日,国际著名学术期刊《自然·医学》网络版在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究组关于β淀粉样蛋白产生过程新机制的最新研究成果。这项成果揭示了阿尔茨海默症致病的新机制,并且提示β2-肾上腺素受体有可能成为研发阿尔茨海默症的治疗药物的新靶点。
2.我国抗糖尿病新药研究取得开创性进展
中科院上海药物所科学家2006年在非肽类小分子胰高血糖素样肽-1受体激动剂的研究领域取得了重要进展,相关成果于2007年元月第一周发表在国际权威科学期刊《美国科学院院刊(PNAS)》网络版上。美国科学院院刊编辑部在向媒体的书面新闻发布中指出,这类口服有效的非肽类小分子激动剂有可能成为糖尿病、肥胖症和其他相关代谢性疾病的一种新型疗法。
3.揭示果蝇记忆奥秘,探索记忆的神经生物学基础
中科院生物物理研究所研究组关于果蝇的最新研究成果,揭示了果蝇的脑中并不存在一个通用的记忆中心,而是不同感觉记忆储藏在不同的区域里,并且像人类能记住图像的高度、大小、颜色等不同参数一样,果蝇的图像记忆也有对应的不同参数。通过对果蝇记忆基因的研究,可进一步运用到小白鼠、哺乳动物甚至人类身上,从而解决人类失眠、老年痴呆等精神性疾病。
4.饮用水质安全风险的末端控制技术与应用
为及时评价水质状况及应对突发事件,中科院生态环境研究中心和中科院广州地球化学研究所合作开发出适合末端水质监控的生物在线监测与预警技术,建立并完善生物毒性测试方法,在分子、细胞水平上形成一套适用于水质评估的技术体系。研究中开发的关键技术拥有自主知识产权,共产生发明专利22项,发表论文61 篇,其中SCI收录论文23篇。
5.美国科学家制出“仿生眼”助盲人恢复视力
美国科学家说,将可在两年内提供“仿生眼睛”植入手术,帮助数百万盲人恢复视力。
美国的研究人员已获准于两年内在五个治疗中心为50到70名病人安装这种“仿生眼睛”。
以希腊神话中百眼巨人阿古斯(Agrus)命名的“阿古斯二型”系统利用一个安装在眼镜上的照相机,把视觉信号传送到眼睛里的电极。
以前接受不够先进的人工视网膜移植手术的病人能够“看到” 光线、影像和物体的运动。但图像不够清晰。
一名失明者在1999年接受了这种手术,现在他上街时能够避开长的或较低的树枝,但看人时好像是看到一团黑影。
不过美国加州大学的科学家说,他们研造的“仿生眼睛”尝试从相机取得实时的图像,然后把它们变成微弱的电信号,输送到一个接收器后,在通过电极,刺激视网膜的视觉神经向大脑发出信号,让失明者能够“看到”景物。
这种新的装置比传统的人工视网膜更细小,但拥有多达60个电极,使解像度更高。而且面积只有一平方毫米,植入手术也更容易。
C. 初中生物科研进步及取得的成果
科研成果:
承担抄或完成了国家科技攻关重点项目2项、国家973项目1项、国家自然科学基金2项等国家级和5项省部级课题,研究成果获江苏省科技进步一等奖、教育部二等奖等省级以上奖励5项。成果达国际先进、国内领先,在多家上市企业形成明显的经济效益。在国内外学术刊物上发表34篇论文(SCI/EI收录14篇),申请国家发明专利8项(授权5项),出版专著3本;省级精品课程的负责人,主持教改项目3项,获国家教学成果二等奖1项。
科技奖励:
1)工业生物催化关键技术及在食品添加剂制造中的应用,2006年江苏省科学技术进步一等奖。
2)苹果深加工发酵酒关键技术研究开发,2004教育部科技进步奖二等奖。
3)苹果酒生产关键技术研究,2005年中国食品工业协会科技进步一等奖
4)苹果酒系列产品开发研究,2004山东省科学技术奖三等奖。
5)洋河大曲中华根霉的研究及其在白酒生产中的应用,2003年江苏省科技进步三等奖。
D. 生物材料有那些
又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术。生物工程学是70年代初,在分子生物学、细胞生物学等的基础上发展起来的,包括基因工程、细胞工程、酶工程、发酵工程等,他们互相联系,其中以基因工程为基础。只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品。
医学上通过生物工程可以生产出大量廉价的防治人类疾病的药物,如入胰岛素、干扰素、生长激素、乙型肝炎疫苗等。生物工程在食品、轻工中的应用面也很广。1983年美国用生物工程生产的用于制作饮料的高果糖浆的年产量达600万吨,从而使蔗糖的消耗量减少一半。采用生物工程技术,使育种工作发生了很大变化,如把抗病基因转移到烟草中去,已培育出防止害虫的烟草新品种;把低等生物根瘤菌的固氮基因转移到高等作物的细胞中,使之能自己制造氮肥,也取得了一定成果。目前世界各国对生物工程十分重视,我国也把生物工程列为重点发展的科研项目之一。生物工程学的研究将对人类的生产方式和生活方式产生巨大的影响。
生物工程学又称生物工艺学或生物技术,利用生物进行对人类医学、环境、农业食粮等一项技术。早期的生物技术,可以追溯到远古时代埃及人利用酵母菌酿酒。之后,包含传统式利用微生物之酦酵技术来做食品发酵,或是酦酵生产抗生素等,都是生物技术的利用的例子。现代生物技术,在1950年代,DNA结构的发现以来,分子生物学急速发展,将传统的生物技术进行了一次大革命。例如利用基因克隆技术,将胰岛素insulin克隆到大肠杆菌中生产。开启了现代生物技术学之工业价值。
强烈推荐:
http://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E6%8A%80%E6%9C%AF
E. 什么叫生物材料
又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术。生物工程学是70年代初,在分子生物学、细胞生物学等的基础上发展起来的,包括基因工程、细胞工程、酶工程、发酵工程等,他们互相联系,其中以基因工程为基础。只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品。
医学上通过生物工程可以生产出大量廉价的防治人类疾病的药物,如入胰岛素、干扰素、生长激素、乙型肝炎疫苗等。生物工程在食品、轻工中的应用面也很广。1983年美国用生物工程生产的用于制作饮料的高果糖浆的年产量达600万吨,从而使蔗糖的消耗量减少一半。采用生物工程技术,使育种工作发生了很大变化,如把抗病基因转移到烟草中去,已培育出防止害虫的烟草新品种;把低等生物根瘤菌的固氮基因转移到高等作物的细胞中,使之能自己制造氮肥,也取得了一定成果。目前世界各国对生物工程十分重视,我国也把生物工程列为重点发展的科研项目之一。生物工程学的研究将对人类的生产方式和生活方式产生巨大的影响。
生物工程学又称生物工艺学或生物技术,利用生物进行对人类医学、环境、农业食粮等一项技术。早期的生物技术,可以追溯到远古时代埃及人利用酵母菌酿酒。之后,包含传统式利用微生物之酦酵技术来做食品发酵,或是酦酵生产抗生素等,都是生物技术的利用的例子。现代生物技术,在1950年代,DNA结构的发现以来,分子生物学急速发展,将传统的生物技术进行了一次大革命。例如利用基因克隆技术,将胰岛素insulin克隆到大肠杆菌中生产。开启了现代生物技术学之工业价值。
强烈推荐:
http://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E6%8A%80%E6%9C%AF
F. 生物能源的最新成果
中国科学院青岛生物能源与过程研究所仿生能源与储能系统团队负责人崔光磊等在海洋生物质能源材料研究领域取得一系列新进展,相关成果发表在ACS Appl Mater Interfaces、J. Electrochem. Soc.、Electrochim Acta、J Mater Chem等杂志,并有多项发明专利获得授权。
通过低成本无纺布加工技术利用生物质纤维素材料和耐温聚合物材料制备复合动力电池隔膜(ACS Appl Mater Interfaces 2013, 5, 128-134.),与传统聚烯烃隔膜相比,以生物质纤维素为原料,成本低廉,绿色环保。同时,该隔膜由于独特的极性和化学和物理结构,具有很好的电解液浸润性、较高的孔隙率和离子电导率,具有适宜的机械强度和优异的耐高温性能。该团队通过隔膜材料设计与成型过程集成创新,解决了动力电池隔膜关键技术问题,构建了低成本高性能的动力电池隔膜产业化技术体系,在材料制备和核心设备领域已获授权发明专利3项。
开发低成本的本征阻燃复合隔膜体系对提高动力电池安全性能意义重大。该团队研发的聚芳砜酰胺/海藻酸钠/二氧化硅复合隔膜具有高孔隙率和电解液吸收率、优异的阻燃性能和耐高温性能(J. Electrochem. Soc., 2013, 160 (6), A769-A774)。以该聚芳砜酰胺基复合隔膜组装的锂离子电池即使在120 oC温度下使用也可以进行快速充放电。该聚芳砜酰胺基复合隔膜特别适用于高安全性动力锂离子电池,此项具有自主知识产权的隔膜技术将会促进我国高端电池隔膜产业发展。
油系粘结剂(例如聚偏氟乙烯)在锂离子电池极片生产中应用广泛,但在浆料制备过程中需要使用大量的二甲基吡咯烷酮作溶剂,生产成本高,还会污染环境,而且杨式模量低,脆性大,柔韧性不好,抗拉强度低,以此为粘结剂制备的电极片容易出现“掉料”现象,电极片在充放电过程中也容易出现由于极片内应力造成的断面和裂纹。海洋生物质材料海藻多糖、甲壳素等具有优异的黏结性能,但成膜性不好。该团队通过对海洋生物质材料进行功能化修饰,提高成膜性和电化学的稳定性,开发出新型高性能海洋生物质水系粘结剂。该粘结剂弹性模量高,经济环保,可承受电极循环过程中活性物质颗粒在一定程度上的膨胀与收缩,特别适合硅系高能量密度的电极材料和高电位的正极材料。高稳定性的水性粘合材料的研发为锂动力电池的绿色生产工艺提供了重要的原料与技术支撑,对推进蓝色产业集群发展具有重要的支撑作用。目前,该研究已申请发明专利4项。
传统电解质中的六氟磷酸锂盐,制备条件苛刻, 成本高,热稳定性差,对水也极其敏感。该团队利用生物质原料设计与合成新型的生物基聚合型硼酸锂盐(Electrochim Acta 2013, 92, 132-138.),具有优异的耐热性、高的锂离子迁移数和离子导电率,为动力电池的开发提供了耐高温,安全的电解质体系,该聚合物电解质可大大提升电池的安全性能。该研究已申请发明专利2项。
基于高性能隔膜、粘结剂和电解质盐技术进展,以具有良好的嵌锂性能的高比容量金属氮化物复合材料为电极材料,采用先进的预嵌锂技术,优化电解液中的微量添加剂组成,辅以自主研发的隔膜,减小电容器内阻,提高电解液/隔膜界面稳定性,提高超级电容器的循环性能,构建高能量密度的超级电容器,开发出能量密度与铅酸电池相当,性价比优良的环保储能电池(J Mater Chem, 2012, 22, 24918;J. Mater Chem A, 2013, 1, 5949;ACS Nano, 2013, DOI: 10.1021/nn401402a)。目前,该团队正在优化电容器器件结构,希望开发性能更加优越的锂离子电容器储能器件。该领域的研究已获发明专利授权4项。
上述研究获得中科院纳米先导专项、科技部“973”、“863”科技专项项目、国家自然科学基金以及企业对海洋生物质能源材料研究的支持。
G. 你还了解我国生物科学发展的哪些成果
1、中国在超级杂交稻育种技术与应用、转基因植物研究等领域达到国际先进水平;
2、动物体细胞克隆技术也日臻完善,废水处理新型反应器和新工艺的开发研究取得重要进展;
3、一大批生物技术成果或已申报专利,或进入临床阶段,或正处于规模生产前期阶段,若干生物技术公共研发平台初步形成;
4、中国的基因检测服务能力在全球已处于领先地位,出口药品已从原料药向技术含量更高的制剂拓展,高端医疗器械核心技术的突破大幅降低了相关产品和服务的价格;
5、超级稻亩产突破1000公斤,达到国际先进水平;生物发酵产业产品总量居世界第一。
(7)生物材料成果扩展阅读:
生物技术的发展可以划分为三个不同的阶段:传统生物技术、近代生物技术、现代生物技术。传统生物技术的技术特征是酿造技术,近代生物技术的技术特征是微生物发酵技术,现代生物技术的技术特征就是以基因工程为首要标志。
现代生物技术在70年代开始异军突起,近一、二十年来发展极为神速。它与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,被认为是21世纪世界知识经济的核心。
生物技术的应用范围十分广泛,主要包括医药卫生、食品轻工、农牧渔业、能源工业、化学工业、冶金工业、环境保护等几个方面。其中医药卫生领域是现代生物技术最先登上的舞台,也是目前应用最广泛、成效最显著、发展最迅速、潜力也最大的一个领域。
H. 人们从生物身上得到的启示,发明的成果有哪些
乌贼和鱼雷诱饵 乌贼体内的囊状物能分泌黑色液体,遇到危险时它便释放出这种黑色液体,诱骗攻击者上当。潜艇设计者们仿效乌贼的这一功能读者设计出了鱼雷诱饵。鱼雷诱醋似袖珍潜艇,可按潜艇的原航向航行,航速不变,也可模拟噪音、螺旋节拍、声信号和多普勒音调变化等。正是它这种惟妙惟肖的表演,令敌潜艇或攻击中的鱼雷真假难辩,最终使潜艇得以逃脱。
蜘蛛和装甲 生物学家发现蜘蛛丝的强度相当于同等体积的钢丝的5倍。受此启发,英国剑桥一所技术公司试制成犹如蜘蛛丝一样的高强度纤维。用这种纤维做成的复合材料可以用来做防弹衣、防弹车、坦克装甲车等结构材料。
长颈鹿和“抗荷服” 长颈鹿是目前世界上最高的动物,其大脑和心脏的距离约3米,完全是靠高达160~260毫米汞柱的血压把血液送到大脑的。按一般分析,当长颈鹿低头饮水时,大脑的位置低于心脏,大量的血液会涌入大脑,使血压更加增高,那么长颈鹿会在饮水时得脑充血或血管破烈等疾病而。但是裹在长颈鹿身上的一层、厚皮紧紧箍住了血管,限制了血压,飞机设计师和航空生物学家依照长颈鹿皮肤原理,设计出一种新颖的“抗荷服”,从而解决了超高速歼击机驾驶员在突然加速爬升时因脑部缺血而引起的痛苦。这种“抗荷服”内有一装置,当飞机加速时可压缩空气,也能对血管产生相应的压力,这比长颈鹿的厚皮更高明了。
鲸鱼和潜艇的“鲸背效应” 当代核潜艇能长时间潜航于冰海之下,但若在冰下发射导弹,则必须破冰上浮,这就碰到了力学上的难题。潜舴专家从鲸鱼每隔10分钟必须破冰呼吸一次中得到启迪,在潜艇顶部突起的指挥台围壳和上层建筑方面,作了加强材料力度和外形仿鲸背处理,果然取得了破冰时的“鲸背效应”。
蝴蝶和卫星控温系统 遨游太空的人造卫星,当受到阳光强烈辐射时,卫星温度会高达200摄氏度;而在阴影区域,卫星温度会下降至零下200摄氏度左右,这很容易烤坏或冻坏卫星上的精密仪器仪表,它一度曾使航天科学家伤透了脑筋。后来,人们从蝴蝶身上受到启迪。原来,蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用。每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内。科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控温系统
网络一下“酷影模式” 你懂得
I. 用微生物作为实验材料而取得重要成果有哪些
因为微生物学在现代生命科学研究中一直处于前沿地位。
首先,生命活动的基本规律,大多数是在研究微生物的过程中首先被阐明的。例如,利用酵母菌的无细胞制剂进行酒精发酵的研究,阐明了生物体内糖酵解的途径。
其次,微生物学为分子遗传学和分子生物学的创立、发展提供了基础和依据,而且是它们进一步发展的必要工具。举例来说,
DNA双螺旋结构的确定,遗传密码的揭露,中心法则的建立,RNA逆转录酶的发现,以及基因工程的诞生,都是用微生物做实验材料的,其实验方法和指导思想也都与微生物学密切相关。再如,基因工程中的第一个限制性内切酶是从大肠杆菌中发现的,人们获得的第一个基因——乳糖操纵子的部分DNA,是从大肠杆菌中分离出来的……如今,微生物学已成为分子生物学的三大支柱(微生物学、生物化学、遗传学)之一,可以说没有对微生物的深入研究也就没有今天的分子生物学。
第三,微生物学是基因工程乃至生物工程的主角。基因工程实质上是体外切割和重组DNA片段的过程,而其中所需的供体、受体、载体及工具酶,大都要由微生物来承担和完成。生物工程包括基因工程、发酵工程等四大工程,要使生物工程转化为生产力,发挥出巨大的经济效益和社会效益,微生物是主角。这主要是因为微生物不仅可以在工厂化的条件下进行大规模生产,极大地提高了生产效率,而且还具有节约能源和资源、减少环境污染等优越性。
第四,微生物的多样性为人类了解生命起源和生物进化提供了依据。微生物的多样性,归根到底是基因的多样性,它为研究生命科学提供了丰富的基因库。通过比较研究真核生物和原核生物的线粒体DNA,人们意外发现它们的遗传密码不同,从而对生物进化的共生学说提出了挑战。通过对16SrRNA的研究,人们发现了古细菌,并提出了生命起源的三原界系统,即古细菌原界、真细菌原界和真核生物原界。这说明微生物在生物的界级分类研究中占有特殊地位。
第五,微生物学是整个生物学科中第一门具有自己独特实验技术的学科,如无菌操作技术、消毒灭菌技术、纯种分离和克隆化技术、原生质体制备和融合技术及深层液体培养技术等。这些技术已逐步扩散到生命科学各个领域的研究中,成为研究生命科学的必要手段,从而为整个生命科学的发展,做出了方法学上的贡献。
微生物学对生命科学的贡献将会不断延续。例如,1982年,美国微生物学家普鲁西纳发现了一种病原体,是一种毒蛋白,有人称之为朊病毒。虽然朊病毒只有蛋白质而无核酸,但由它引起的疾病可以遗传、传染。这一发现震动了生物学界,因为它与中心法则是相违背的。普鲁西纳因此获得了1997年的诺贝尔医学和生理学奖。可以预料,关于许多生命之谜的探索很可能在微生物的研究中获得突破。
J. 最新的生物研究成果
生物通综合:近期,我国生物领域研究取得了一些重要成果:中科院重离子束治癌技术即将进入临床治疗、云南大学人类遗传学研究中心发现三个疾病相关基因、华中农大转基因棉通过鉴定。此外,青岛大学中美干细胞与再生医学中心揭牌,河北省也有了首家植物分子育种中心。
云大发现高血压等三个疾病相关基因
中国少数民族DNA库项目负责人、云南大学人类遗传学研究中心主任肖春杰今日在接受记者采访时称,他们最新从中国首个少数民族DNA库中研究发现神经纤维瘤 、高血压、多指(趾)等三个疾病相关基因。此发现意味着在不久的将来罹患这三种疾病者可以根据其基因而“对症下药”。
据了解,不久前在此间的云南大学建成的中国首个少数民族DNA库拥有除高山族外的中国五十四个少数民族的DNA样品,覆盖了全中国十六个省和云南十四个地州的八千多份DNA样品,是目前国内外样品量最大、收集民族最齐全的基因库。
肖春杰教授称,其在研究中就揭示了云南二十五个少数民族Y-DNA(父系遗传)、mtDNA(母系遗传)和常染色体上共四十七个已知位点的基因频率或单倍群频率。此外还发现七种新单倍群;发现摩梭人的父系遗传结构与云南藏族最接近,而母系遗传结构最接近丽江纳西族,提出其形成原因可能是摩梭人母系社会中的走婚制度,并确定了高血压、多指等疾病相关基因。
他说,云南为人类遗传学家提供了得天独厚的研究材料,基因库建成后,国内外知名学者纷纷而至,力图在少数民族基因中寻找不同的遗传结构特点和多态性,且希望在云南少数民族基因库基础上,扩建一个包括疑难病症家系在内的隔离人群基因库。
目前,人类已肯定的单基因遗传疾病和性状已达六千六百多种,另外还有众多的多基因遗传病如冠心病、高血压、糖尿病、癌症、自身免疫性疾病等,以及至少三千多种不同方式的染色体异常引起的染色体病尚待研究。
肖春杰表示,今后还要加大收集量,要建成全中国资源共享的数据库,把全国所有的疾病基因家系全部集中起来,对患者做到真正的“对症下药”。
我国重离子束治癌技术即将进入临床治疗
我国重离子束治癌技术即将进入临床治疗
中国科学院近代物理研究所基于兰州重离子加速器的浅层肿瘤治疗装置最近建成,已进行了动物试验、技术鉴定并制定了治疗计划,目前正在办理进入临床治疗的报批手续。中科院近代物理研究所负责人詹文龙透露,这套装置投入使用后,我国将成为世界上第4个具备重离子治癌能力的国家。
重离子就是比元素周期表上2号元素重并被电离的粒子。詹文龙说,利用重离子束治疗肿瘤,对健康组织损伤最小,对肿瘤疗效最佳,可以准确进行适形照射,精确控制和严格监测照射剂量,是迄今最理想的放射疗法。“重离子束在物质中的剂量损失集中于射程末端,这种物理学特性使之成为治疗肿瘤的理想方法。”
中科院近代物理研究所医学物理课题组负责人、研究员张红透露,世界上许多有重离子加速器的国家都倾注了大量的人力和物力,进行重离子束治癌装置的建造和治癌基础及临床应用研究,使得重离子束治癌成为放射治疗领域的前沿性研究热点。
詹文龙表示,重离子治癌仍属研发阶段,还有一些基础问题、技术与方法问题需要进一步探索和研究。
华中农业大学新型转基因强生根棉项目通过鉴定
华中农业大学新型转基因强生根棉项目通过鉴定
华中农业大学植物科技学院教授杨业华等主持的"Rol转基因强生根棉的培育及棉花转基因技术创新"项目,2004年12月通过湖北省武汉市科技局主持的专家鉴定。鉴定专家认为,该研究所创建的技术平台具有较强操作性,具有很好的应用前景;成果总体达到国内领先水平,其中直接转化幼芽成苗的方法为国际先进。
为改善棉种性状、降低栽种"门槛",专家设想将源于发根农杆菌的"人工重组生根基因"(rol基因)转移到栽培的陆地棉品种中,以增强棉花的生根能力和改善其根系发育状况,解决棉花移栽难以成活、缓苗期长、后期易早衰的问题。对南方棉区而言,甚至能直接省去营养钵育苗的移栽工序,从而大幅度提高棉花产量,大量节约劳力和生产成本。
"Rol转基因强生根棉的培育及棉花转基因技术创新"被列为武汉市科技攻关项目"植物转基因技术研究与利用"下属子课题立项后,杨业华教授等通过研究攻关,创建了以根癌农杆菌介导的棉花转基因技术平台,通过直接转化幼芽成苗的方法,绕过了传统方法的技术难点,缩短了获得转基因棉花植株的时间。
基于这一方法,研究者将rol生根基因转化陆地棉品种,获得了生根抗病丰产品系、生根抗虫丰产品系、优质纤维品系和rolB转基因雄性不育系等一系列具有重要应用价值潜力的棉花转基因材料。培养出三个高产优质、纤维品质好、皮棉产量高、具有应用价值的转基因棉花新品系。同时还获得了rolB转基因雄性不育性新材料。
青岛大学中美干细胞与再生医学中心揭牌
青岛大学中美干细胞与再生医学中心揭牌
一些常见病、疑难病的治疗又有了新途径。今天上午,由青医附院和美国得克萨斯大学健康科学中心联合出资建立的青岛大学中美干细胞与再生医学中心在青医附院正式揭牌,重点研究心脑血管疾病、神经系统疾病等干细胞治疗技术。
据了解,该中心内设立了分子生物学研究室、生化研究室、干细胞研究室、干细胞低温保存库、导管室等机构,重点研究干细胞体外建系和定向诱导技术,及内分泌代谢性疾病、心脑血管疾病、神经系统疾病等干细胞治疗技术。
河北省建首家植物分子育种中心
河北省建首家植物分子育种中心
昨天上午,由中科院遗传与发育生物学研究所、石家庄市农科院、省农林科学院共建的“中科院遗传与发育生物学研究所———石家庄植物分子育种中心”(以下简称石家庄育种中心)在石家庄市农科院揭牌。中科院院士李振声出席揭牌仪式。
这是我省首家植物分子育种中心,它的成立对我省农业的可持续发展将产生深远影响。据了解,石家庄育种中心成立后,将以小麦、棉花、大豆等为研发的主要目标作物开展研究:围绕生态农业和优质高效农业对作物品种的要求和作物育种的实际情况,由单方或双方合作克隆相关目标基因或建立重要性状的分子标记;利用克隆的功能基因和重要性状的分子标记,以及优良的种质材料,通过转基因或分子标记辅助选择等途径,有针对性地、高效地应用于育种研究,选育符合生产要求的高水平的小麦(或其它作物)新品种。成果选育出来后,石家庄市农科院、省农林科学院将利用现有的农作物新品种推广和种子产业体系,对其进行推广和产业化开发,使其迅速转化为现实生产力并产生经济社会效益。