『壹』 国内外在制冷与空调领域(包括暖通)有实力的研究机构有哪些
制冷行业唯一国家工程技术研究中心落户格力
格力R290制冷工质空调研发项目通过国家验收
中国制冷产业冲破国外技术封锁
2009年4月25日 搜狐财经
中国制冷产业欣欣向荣的背后,却潜伏着重重危机----原R22(氟利昂)制冷剂面临退市,而新一代制冷剂的话语权悉数被发达国家掌握。
近日,由“国家节能环保制冷设备工程技术研究中心”----珠海格力电器股份有限公司承担的国家商务部“采用自然环保工质R290(丙烷)研发高效节能空调器”项目,通过了中国家用电器协会组织的专家组验收,达到国际先进水平。
专家组表示,R290空调器的成功研发,为我国制冷产业开辟了一条新的出路,冲破了发达国家对新一代制冷剂的技术垄断,有助于促进我国经济和对外贸易的良性发展。
据了解,该项目成功解决了R290空调器制冷剂灌注量、产品安全性、节能、专用压缩机、生产工艺等关键问题。样机能效比达到3.6,比原R22(氟利昂)的机型节能15%,达到国家1级能效水平,相当于欧盟A级以上水平;制冷剂灌注量小于300克,符合欧盟安全标准。
目前,国内空调企业较多使用的是制冷剂R22,对臭氧层有一定的破坏作用,并容易产生温室效应,对人类的生存环境具有很大的危害性。根据《蒙特利尔议定书》的约定,发达国家将于2020年全面禁止使用R22制冷剂,发展中国家定于2030年全面停止使用R22制冷剂。世界各国均在加快替代R22的步伐,当前最热门的替代品是R410A和R407C制冷剂。
这两种制冷剂虽然不会破坏臭氧层,但仍会产生温室效应,属于需减排的温室气体。此外,这些替代物还存在其它缺点,如R410a的排气压力比R22高50%~60%,需提高压缩机运动部件的耐磨性和系统管路的强度;R407c的热工性能稍差,在实际系统运行中还存在一些较难解决的问题,直接影响到系统的性能等。最重要的是,发达国家垄断了R410A和R407C的专利权和最终定价权,这就迫使我国制冷行业的发展始终受到种种限制。
专家组指出,R290是目前国际上认可的完全环境友好型制冷剂,既对臭氧层没有破坏作用,又对气候变化不会产生影响;该项目取得的突破性进展,为R290制冷工质在空调行业的推广提供了依据,为其产业化奠定了基础,符合国家节能环保产业政策;项目成果对我国履行国际环境公约,保护臭氧层,控制温室气体排放,特别是冲破国外技术壁垒,促进制冷行业健康发展具有重要意义。据保守估算,按现有国内市场空调保有量计算,仅制冷剂一年就可节约费用10亿元以上。
格力电器作为我国制冷行业唯一拥有国家级工程技术研究中心的企业,是我国节能环保制冷设备的科研开发和工程化基地,多年来一直致力推动国内制冷行业节能环保技术的发展,承担了多项国家“863”科技计划项目和国家火炬计划等工程项目,在制冷设备新型换热器研究、变频控制技术等方面取得了一大批重要成果,填补了国内空白,打破了国外制冷巨头的技术垄断。
『贰』 氟利昂的发展历史
20世纪20年代的冰箱使用一些有毒且危险的气体(其中包括氨、二氧化硫和丙烷)作为制冷剂,因为时常泄漏,所以这些制冷剂非常危险。1929年,发生在俄亥俄州克利夫兰某家医院的冰箱泄漏事故使超过100人丧生。于是,小托马斯·米奇利(Midgley Thomas Jr.)开始着手研制一种稳定、不易燃、不腐蚀且无毒的新型制冷剂。
他查看门捷列夫的化学元素周期表,结果发现只有位于周期表右边的非金属元素能生成在室温下呈气态的化合物,同时他还注意到化合物的可燃性从左到右依次减小。事实上,卤化物可以用来阻燃,可是他发现比较重的元素化合物通常毒性很大。通过上述观察,他认为氟和其他较轻的非金属元素形成的化合物可以制成性能优良的制冷剂。经过2年的艰苦实验,他合成出二氟二氯甲烷(即CFC-12,R12)。 美国杜邦公司于1931年将R12工业化,商标名称为Freon(氟里昂)。R12具有理想的制冷效果,从而在20世纪30年代初开始投入大批量生产,从家用冰箱、空调到除臭喷雾剂都离不开它。20世纪80年代后期,R12的生产达到了高峰,产量达到了144万吨。在对其实行控制之前,全世界向大气中排放的R12已达到了2000万吨。
在R12之后,一系列CFCs和HCFCs陆续出现,如CFC-11(R11)于1932年,CFC-114(R114)于1933年,CFC-113(R113)于1934年,HCFC-22(R22)于1936年相继问世。 由于杜邦公司大量地生产R12、R22、R11、R113、R114、R115、R502等制冷剂,使得其制冷剂商标Freon几乎成为这些制冷剂的代名词。 人们直到50年后才逐渐发现,大气平流层的含氯(溴)自由基的物质以及氮氧化物正在吞噬臭氧,而氟利昂是这些氯(溴)自由基的主要来源。尽管氟利昂在大气中的含量不大(大约占大气总量的十亿分之一),但是其破坏力极强。人类意识到氟利昂的危害之后,开始逐渐在采取行动限制这种制冷剂的使用。美国于1974年禁止使用该物质,但是美国的很多海外公司仍然在生产,第二世界国家到2010年才实行全面禁止使用。
1984年10月联合国通过了“特伦多备忘录”,要求各国大量减少氟利昂的产量和需求。在1985年3月联合国通过了“维也纳公约”,进而在1987年9月又通过了“蒙特利尔协定”,确切提出要限制生产和销售R11、R22、R113、R114和R115等氟利昂的产量,到1998年其产量要逐步降低到1986年生产水平的50%,并在下一个世纪初尽可能地取消这类产品。 国际公约强制规定:全面禁用空调业大量使用的制冷剂氟利昂(R22,属于HCFCs)。发达国家必须在2030年前全面禁用,发展中国家也不迟于2040年。
1999年初,中国就曾出台一项旨在保护臭氧层的措施,该措施中制定了这样的计划:“到2010年,我国将全面禁止生产和,使用消耗臭氧层的物质——氟利昂。”按照这个计划,中国应从1999年7月1日开始把氟利昂的生产和消费水平冻结在1995~1997年的平均水平上,以后逐年减少,直至2010年1月1日,氟利昂被禁止使用。 2010年9月27日,环境保护部、发展改革委、工业和信息化部等三部门联合发布《中国受控消耗臭氧层物质清单》的公告,对CFC、HCFC等物质做出停止或限制生产的规定。 虽然有禁止使用氟利昂的政策出台,新生产的家电产品中全面禁止使用氟利昂,但是使用氟利昂的旧家电等产品,不会被立即叫停,而只能随着其更新换代逐步淘汰。市场上无氟的新冷媒空调市场占有率极低,新型制冷剂价格高昂,且需重新设计系统……等等因素使得氟利昂被新型制冷剂替代还需很长时间。
据有关人员调查:至2013年8月1日,中国仍然大量使用氟利昂,未来数年甚至数十年内,中国氟利昂的使用量仍然会居高不下,保护臭氧层的形势依然十分严峻。
『叁』 制冷剂经历了哪几个阶段的发展
目前,制冷剂已经历了六个阶段。其中,最古老简单的制冷剂是冰、深井水等天然冷源。第一代制冷剂是以空气、二氧化碳、乙醚等作为压缩式压缩机的制冷剂。第二代制冷剂以氨为制冷剂作为代表。第三代制冷剂以氟利昂系列制冷剂为代表。第四代制冷剂以R134a为代表的替代工质作为标志。第五代制冷剂以清华系列绿色制冷剂为代表。
『肆』 制冷技术的发展史
http://www.cngspw.com/Doc/data.WebNoteBooks/20060919183625/.pdf
现代的制冷技术,是18世纪后期发展起来的。在此之前,人们很早已懂得冷的利用。我国古代就有人用天然冰冷藏食品和防暑降温。马可·波罗在他的著作《马可·波罗游记》中,对中国制冷和造冰窖的方法有详细的记述。
1755年爱丁堡的化学教师库仑利用乙醚蒸发使水结冰。他的学生布拉克从本质上解释了融化和气化现象,提出了潜热的概念,并发明了冰量热器,标志着现代制冷技术的开始。
在普冷方面,1834年发明家波尔金斯造出了第一台以乙醚为工质的蒸气压缩式制冷机,并正式申请了英国第6662号专利。这是后来所有蒸气压缩式制冷机的雏型,但使用的工质是乙醚,容易燃烧。到1875年卡利和林德用氨作制冷剂,从此蒸气压缩式制冷机开始占有统治地位。
在此期间,空气绝热膨胀会显著降低空气温度的现象开始用于制冷。1844年,医生高里用封闭循环的空气制冷机为患者建立了一座空调站,空气制冷机使他一举成名。威廉·西门斯在空气制冷机中引入了回热器,提高了制冷机的性能。
1859年,卡列发明了氨水吸收式制冷系统,申请了原理专利。
1910年左右,马利斯·莱兰克发明了蒸气喷射式制冷系统。
到20世纪,制冷技术有了更大发展。全封闭制冷压缩机的研制成功(美国通用电器公司);米里杰发现氟里昂制冷剂并用于蒸气压缩式制冷循环以及混合制冷剂的应用;伯宁顿发明回热式除湿器循环以及热泵的出现,均推动了制冷技术的发展。
在低温方面,1877年卡里捷液化了氧气;1895年林德液化了空气,建立了空气分离设备;1898年杜瓦用液态空气预冷氢气,然后用绝热节流使氢气成为液体,温度降至20.4K;1908年卡末林·昂纳斯用液态空气和液态氢预冷氦气,再用绝热节流将氦液化,获得4.2K的低温。杜瓦于1892年发明的杜瓦瓶,用于贮存低温液体,为低温领域的研究提供了重要条件。
1934年,卡皮查发明了先用膨胀机将氦气降温,再用绝热节流使其液化的氦液化器;1947年柯林斯采用双膨胀机于氦的预冷。大部分的氦液化器现已采用膨胀机,在制冷技术的开发和实际使用中获得广泛的应用。
新的降低温度方法的发明,扩大了低温的范围,并进入了超低温领域。德拜和焦克分别在1926年和1927年提出了用顺磁盐绝热退磁的方法获取低温,应用此方法获得的低温现已达到(1×10-3~5×10-3)K;由库提和西蒙等提出的核子绝热去磁的方法可将温度降至更低,库提用此法于1956年获得了20×10-3K。1951年伦敦提出并于1965年研制出的3He-4He混合液稀释制冷法,可达到4×10-3K;1950年泡墨朗切克提出的方法,利用压缩液态3He的绝热固化,达到1×10-3K。
更近期的制冷技术发展主要缘于世界范围内对食品、舒适和健康方面,以及在空间技术、国防建设和科学实验方面的需要,从而使这门技术在20世纪的后半期得到飞速发展。受微电子、计算机、新型原材料和其它相关工业领域的技术进步的渗透和促进,制冷技术取得了一些突破性的进展,同时也面临一场新的挑战。突破性的进展在于:
(1)微电子和计算机技术的应用
“机电一体化”浪潮给制冷技术以巨大推动。
基础研究方面:计算机仿真制冷循环始于1960年。如今,普冷和低温领域中的各种循环,如:焦-汤节流制冷循环(J-T循环)、斯特林制冷循环、维勒米尔循环(VM循环)、吉福特-麦克马洪循环(G-M循环)、索尔文循环(SV循环)、逆向布雷顿循环、脉管式循环、吸收式制冷循环、热电制冷循环;利用声制冷、光制冷、化学方法制冷的各种循环;以及各种新型的混合型循环,如:热声斯特林发动机驱动小型脉管制冷机的循环均广泛应用计算机仿真技术于循环研究。研究制冷系统的热物理过程、系统及部件的稳态和瞬态特性以及单一工质和混合工质的性质等等,也离不开微电子和计算机技术的应用。
在制冷产品的设计制造上:计算机现已广泛用于产品的辅助设计和制造(CAD,CAM)。例如:结构零件设计的有限元法和有限差分法以及用计算机控制精密机械加工。
计算机和微处理器对制冷技术的最大影响在于高级自动控制系统的开发。这是一项综合技术,涉及到先进的控制方法、可靠的集成块芯片及专门的控制模块、精良的传感器。当前制冷系统采用电脑控制已极为普遍,控制模式正在发生变化,由简单的机械式控制发展到综合控制,为提高产品性能作出贡献。
(2)新材料在制冷产品上的应用
陶瓷及陶瓷复合物(如熔融石英、稳定氧化锆、硼化钛、氧化硅等)具有一系列优良性质:比钢轻、强度和韧性好、耐磨、导热系数小、表面光洁度高。将陶瓷用烧结法渗入溶胶体制成零件或用作零件的表面涂釉,可改善零件的性能。
聚合材料(工程塑料、合成橡胶和复合材料)用于制冷产品中作为电绝缘材料、减振件
和软管材料;利用聚合材料的热塑性,以新工艺通过热定型的方法制造压缩机中的复杂零件(转子、阀片等)。这些新材料的应用,带来产品性能、寿命的提高和成本的降低。
(3)机器、设备的发展
为满足各种用冷的需要,新产品不断推出,商品化程度不断提高。
压缩机以高效、可靠、低振动、低噪声、结构简单、成本低为追求目标,由往复式向回转式发展。如新型螺杆式压缩机、涡旋式压缩机、摆线式压缩机等,都具有优良特性和竞争力。
在压缩机的驱动装置上,将变频器用于空调、热泵及集中式制冷系统的变速驱动,带来了节能效果。
在低温机器和设备方面,前述各种低温循环虽早已提出,但近年来生产开发的产品在温度,制冷量、启动速度、可靠性、能耗、体积等方面均有长足的进步。现在,氦液化器多数为膨胀型,中型的为双膨胀机组成的柯林斯机器,大型的采用透平膨胀机。辐射制冷、固态制冷已经实际应用。利用3He-4He混合稀释制冷原理的低温制冷机已经商品化,可作为磁制冷机的预冷设备。各种气体分离设备,热交换器,低温恒温器也在高效、紧凑、可靠等方面取得很大的进展。
(4)工质
继氟里昂和共沸混合工质之后,由于1970年石油危机,节能意识提到重要地位,在开发新工质上引人注目地研究出一系列非共沸工质,收到了节能的效果和满足一些特定需要。
由于臭氧耗损和温室效应引起了严峻的环境保护问题,导致了80年代末开始全球禁止CFCs物质,进而波及到HCFC类物质,这既是一次历史性的冲击,同时又提供了新的发展机遇。近年来在替代工质开发及其热物理性质研究方面取得的成就即是证明。
当工质处于很低温度时,其量子特性变得十分重要,必须考虑其量子效应,此时循环的性能系数和制冷量不同于经典表达式,而需要通过对量子热力循环的研究得出。
制冷和低温技术是充满勃勃生机的学科和工业领域。巨大的市场增长潜力和新技术的交叉渗透为它开辟了广阔的发展天地。
=====================================================
制冷与空调的发展史
http://bbs.xzbaojia.com/viewthread.php?tid=9335
在二十世纪六,七十年代,美国地区发生罕见的干旱天气,为解决干旱缺水地区的空调冷热源问题,美国率先研制出风冷式冷水机,用空气散热代替冷却塔,其英文名称是:Air cool Chiller,简称为Chiller!
在空调历史中,美国已经发展和改进了有风管的中央单元式系统,并得到了正在现场安装和修理有风管的单元式空调系统的空调设备分销商和经销商的强力支持。WRAC是最简单和最便宜的系统,能够很容易的在零售商店中购得,并在持续高温来的时候自己安装。同时,无风管的SRAC和SPAC自70年代起在有别于美国市场的动力下在日本得到发展和改进。之后,设备设计和制造技术在90年代被转让到中国,这是通过与当地公司(包括主要元件如压缩机、热交换器、电劝机、精细阀和电子控制器的本地制造商)组成的合资公司进行的。在90年代中国也从其它先进国家吸收了较大型空调设备的先进高新技术,并与多数是美国的大公司组成合资企业。现今,中国已是一个顶级国家,她的当地主要工厂和合资企业制造了大量SRAC和SPAC以满足增长的国内市场和出口需要。日本过去几年在把SRAC和SPAC机组出口到中国、欧洲和中东以建立新的市场。但是中国现今已是最大的空调出口国,在2001年出口的WRAC,SRAC和SPAC机组总数达500万台,2002年预计有750或800万台机组出口,而日本正在失去出口的地位。
按国家进行回顾:
++++美国
美国是最大的空调市场,占世界总空调设备销售额的28%,大多数是有风管的单元式空调系统。但是,热泵比例相对的低,在2001年以数量计占20%而以销售额计‘占30%。美国空调市场与其它国家的差别,一些明显的原因是:
大多数人居住在位于有广阔空间的郊区独立房屋内,可以更方便地为整个室内空间的舒适优先选择安装风管。
能源价格相对要低,全国范围有电力和燃气可以供应,在冬季可以通过天然气管路网络用燃气炉取暖。
大部分陆地在冬季的寒冷天气并不适用没有辅助电加热的热泵,而辅助电加热是不经济的。
强大工业分销商和经济商网络以相对低的安装费用和维修后缓支持推销有风管的中央空调系统。
++++日本
住宅空调是从60年代由本地生产或从美国进口的WRAC开始的,基于人们大多数在生活区居住而只对单个房间的空调有强烈要求,一般不采用中央系统以节省很昂贵的电力费用。但是,许多人抱怨高的运转噪声和振动不能为卧室所接受。同时在房间内安装也不大方便。
在经过了WRAC痛苦的经历之后,后来发展了SRAC以便在室内挂壁安装,使房间空调机组运转安静并便于安装。在功能上,虽然SRAC丧失了诸如新鲜空气的进入和回风的排出等功能,但WRAC和SRAC对单个房间的空调在有人占用时几乎是相同的。在买方市场上了需要额外的小型SRAC机组,其特点是具有较低的噪声并可以在卧室中方便地安装为“添加机组”。热泵型式在制冷和采暖季节都能很好地为人们所接受。一些特点诸如较低的噪声、更足够的制热量、较低的功率消耗(也即较高的效率)以及较小的机组尺寸或改进的室内空气分布吸引了用户的注意力和兴趣。由于能源费用比电力来得便宜和在较低环境温度时有较高制热量,煤油炉仍然广泛在屋内用以加热空间。但是,SRAC热泵用于卧室对许多人来说是必不可少的,它可以安全运行且防止火灾,因为在睡眠时间室内温度低的时候房间空间是相当的好。生活方式从门窗大开以便在睡眠时间有新鲜空气吸入转变到为了市区安全而用锁紧装置将门窗关闭,这就需要在屋内购买更多的SRAC机组。在室内也安装强制通风机以吸入新鲜的室外空气和排出室内空气,藉使用热交换元件而达到节能的目的。80年代介入的突破性技术解决了热泵的固有缺点并推动了SRAC机组的销售。
在打折扣的商店里,如同包括发送和安装主费用在内的白色货物一样引发了价格大战。SRAC的安装十分容易和快捷,在现场技术水平较低的人员在几小时内即可完成机组的安装,制冷剂管路和接线。
过去存在一些质量问题,如制冷剂泄漏、元件故障以及直接涉及到制造商的修理或分包修理单位的综合性故障。
现在随着产品可靠性的改进,售后的修理电话已大大减少。但是,商业形式仍是一如既往,SRAC在通过折扣商店销售,费用较低,售后服务直接由制造商或其分包修理单位承担。
SPAC的销售与SRAC的轻型商业市场相似。制造商更从事于所谓的“建筑物多台SPAC”系统的销售,与空调系统设计人员和机械承包商接触并与制造商一起保持较高的附加值。1台压缩冷凝机组与多台室内机组联用的SPAC对于制冷剂管路安装在墙内的新建住宅正越来越普及。
政府和公用事业公司(如电力和煤气)以及负责制订国家能源政策的单位正在补贴新的技术开发并用吸引人的刺激计划来促进新的空调系统装置。这些产品涉及商能效的热泵、GHP和直接燃气吸收式冷水机组。打折扣的能源价格所带来的令人刺激的好处使用户愿意以低得多的操作能源费用安装新的节能空调系统或者用它来技术改造。这样,即使初始费用有所增加,投资回收也仍是很吸引人的。
===============================================
制冷的发展大事:
1820年--人造冰首次在实验室中制造出来
1824年--揭示吸收式制冷原理
1834年--人造冰的生产开始
1855年--制造出吸收式制冷装置
1890年--小块人造冰面市----机械制冰工业开始了
1910年--家用机械冰箱出现
1913年--制造出第一台手动家用冰箱
『伍』 目前制冷剂的发展状况。各国采用什么样的替代方案
四代HFOs制冷剂已被欧美市场大力推广
当前制冷剂已发展有四代产品。发达国家已经全面淘汰二代制冷剂,2019年进入三代淘汰初期。我国第二代制冷剂已走向淘汰末期,2019年二代核心制冷剂产品R22产能配额再次削减,供需情况愈发紧张。依照《蒙特利尔议定书》,发展中国家已于2015年启动相关淘汰进程,预计2030年完成淘汰过程。四代HFOs制冷剂兼具性能与环保的优势广受关注,其中HFO-1234yf已被欧美市场大力推广,主要集中在汽车和冰箱领域的应用。
第三、四代产品优势显著
制冷剂,又称雪种、制冷工质、冷媒,相当于空调和冰箱的血液,是一种在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。至今制冷剂已发展有四代产品。
第一代制冷剂对臭氧层的破坏最大,全球已经淘汰使用;第二代制冷剂对臭氧层破坏较小,在欧美国家已淘汰,在我国应用广泛,目前也处在淘汰期间;第三代产品对臭氧层无破坏,但是对气候的制暖效应较强,在国外应用广泛,处于淘汰初期;第四代制冷剂主要指HFOs制冷剂,代表产品包括R1234ze和R1234yf,两类制冷剂兼备卓越的性能与环保性受到广泛关注并被成功应用,但是制作成本较高,目前尚未进入规模化应用。
四代制冷剂产品基本情况分析
资料来源:前瞻产业研究院整理
——更多数据及分析请参考于前瞻产业研究院《中国制冷压缩机行业发展前景与转型升级分析报告》。
『陆』 制冷剂的发展与环保
臭氧层破坏和全球气候变暖,是当前世界所面临的主要环境问题之一。由于制冷行业目前广泛采用的CFCs与HCFCs类物质对臭氧层有破坏作用以及产生温室效应,从而使全球的制冷行业面临着严峻挑战,对CFCs与HCFCs的替代已成定局。联合国环境保护署于1987年在加拿大的蒙特利尔通过了《关于消耗臭氧层物质的蒙特利尔议定书》,规定了停止使用CFCs类物质的时间表。因此,寻找环保型制冷剂,就成为当前制冷行业迫切而又热门的话题之一犤1犦。1环保型制冷剂现有的CFCs类物质品种繁多,性能优良,应用范围较广,因此寻找合适替代CFCs的…
时间进入到2007年,在新年伊始,节能环保、绿色健康,这八个字更多的出现在了制冷暖通空调行业的字典上面。在制冷剂的生产与销售方面,尤其得到了政府、专家以及国外公司的重视。我们就来回顾一下从2004年开始,霍尼韦尔是如何分羹中国环保制冷剂市场的。而作为我们本土的制冷剂业,又该如何呢?
2004年8月,霍尼韦尔在上海青浦区的无臭氧公害的制冷剂混配厂正式投入运行,建成后的新混配厂成为霍尼韦尔亚洲地区R410A,R407C和R404A等牌号的HFC制冷剂的生产和服务中心。霍尼韦尔为该项目投入超过2亿美元的资金,以满足亚洲空调和制冷工业不断增长及特有的需求。
与此行动相配合的是,此后,霍尼韦尔制冷剂部门在中国市场明显活跃起来。2004年年底,霍尼韦尔在上海建立了研发中心;2005年4月,霍尼韦尔在也内权威人士聚集的中国制冷展期间,分别召开媒体见面会和产品应用讲座,向业界介绍霍尼韦尔在氟化学行业的权威地位、良好收益以及广泛的环保产品应用等。其中,第16届中国制冷展期间举办的“R410A在高能效空调系统中的运用”讲座,听讲席上座无虚席。
对此,霍尼韦尔特殊材料集团氟碳化合物全球业务总监Jeremy Steinfink表示:“霍尼韦尔将中国视为其核心业务的主要机会点。通过更快地运输速度合本地化,霍尼韦尔会继续在中国的投资以满足客户的需求。”
据Jeremy Steinfink介绍,霍尼韦尔是全球最大的氢氟酸(HF)生产商,在全球具有最大的R125,R143a生产能力,生产并且销售制冷剂有60多年的历史。同时,霍尼韦尔还是R410A原始专利所有人(据业内认识介绍,R410A为原美国联信公司发明,后霍尼韦尔收购联信)。R410A等环保制冷剂的销售,将是霍尼韦尔特殊材料集团在中国的事业重心。Jeremy Steinfink认为,中国政府对于节能产品的要求将为霍尼韦尔环保制冷剂的销售创造良机。
R410A是替代的最好选择
“霍尼韦尔不仅仅是制冷剂供应商,还将为厂商提供多种CFC/HCFC替代解决方案。”霍尼韦尔亚太区技术经理陈顺威表示,霍尼韦尔不仅提供家用/商用空调、冷水机组等替代所需的R407C和R410A,还提供汽车空调,冰箱等产品使用的R134a等优秀制冷剂替代品,使系统能效提高。
据介绍,原美国联信公司实验室和主要空调原设备制造商一起进行测试表明,R410A系统比R22系统效率大约高5%,比R407C,R134a系统效率大约高10%。R410A相对其他替代品而言,有更加优秀的运行性能;良好的系统的可预见性和可靠性;不错的生产制造成本;更加环保而且高效;使用更加安全。
陈顺威介绍说,R407C设备生产商告诉维修服务人员在发生泄露的情况下必须回收,所有剩余制冷剂需重新进行充注,回收和重新充注提高了服务和保修成本。R410A和其他替代制冷剂还存在温度滑移的问题,而且由于系统泄露而造成性能下降的影响也变小了。美国谷轮公司的测试数据表明比,R410A压缩机R22压缩机的故障率低约30%。
陈顺威认为,R410A将是空调产品中最好的环保制冷剂替代品。在环保方面,R410A替代更容易满足严格的欧能效法规;在寿命期内计算,在能源方面的节约(即CO2的排放量)具有耕地的全球变暖效应。此外,相对于其他替代产品而言,R410A系统的主要零部件可变替代成本更低。
『柒』 制冷剂的发展史
第一个百年中所使用的冷媒是由在几近典型的机器中对熟悉的液体创新努力使用来主宰 -" 不论是什么只要能用即可 " 。目标是提供冷冻用途,以及后来的,持久性。几乎所有早期的冷媒都是可燃的、有毒的或兼有二者,且有一些同时是有剧烈作用的。意外事件是常常发生的。就此观之,丙烷当时因此被当成无味的安全冷媒出售。
第二代的冷媒是源自 1928 年为寻求较为安全的冷媒、能够广泛的被使用于家用冰箱而来的。 T.Midgley,Jr. 及他的同事 A.L.Henne 及 R.R.McNary 由物质组成表及特性表中找寻适当的候选者,其特性必需是稳定的,既没有毒也不可燃,并且有着他们需要的沸点。
这个结果使得他们的注意力转移至先前的尚未使用的有机氟化物,但是由于数据的不足迫使他们转向其它的方法。 Midgley 转向元素周期表中去寻求。他快速地舍弃那些挥发性不足的元素。他然后根据元素的低沸点的需求除去那些会产生不稳定及有毒的化合物及惰性气体的元素。他剩下 8 种元素可以选择:碳、氮、氧、硫、氢、氟、氯及 溴 。他们聚集在元素周期表相交的行与列上,氟是在接近中央的位置。
经过他人反复的筛检,使用较新的数据及技术,都得到相同关于 Midgley 元素适合的结果。很有趣的,所有在 1928 年以前所使用的冷媒就是由这 8 种元素中的 7 种元素所组成 - 除了氟。
『捌』 制冷剂的前景预测
制冷剂又称制冷工质,在南方一些地区俗称雪种。它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。制冷剂在蒸发器内被冷却介质(水或空气等)吸收的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。如氨和水、溴化锂和水等;蒸汽喷射式制冷机用水作为制冷剂。
制冷剂价格上升主要有三个因素:首先是国家将萤石提升为战略性资源,对其实行了保护性开发;其次是空调(包括汽车空调)消费量的增加带动了对制冷剂的需求;最后还有资金炒作的因素。制冷剂价格上升还有一个国际因素,根据《蒙特利尔议定书》,2010年发达国家的低端制冷剂(如R22)产能已基本关停,发达国家不再使用R22作为制冷剂,但R22作为下游含氟聚合物的主要原料,其对R22的需求依然存在。由于发展中国家对R22完全淘汰还要等到2030年,因此这对发展中国家的制冷剂生产商来说也是一个利好。发文时R22的供需缺口至少维持至2013年,也意味着制冷剂的行业景气至少还能持续两年时间。
目前我国空调行业使用较多的制冷剂是HCFC物质R22。R290与R22的标准沸点、凝固点、临界点等基本物理性质非常接近,具备替代R22的基本条件。在饱和液态时,R290的密度比R22小,因此相同容积下R290的灌注量更小,试验证明相同系统体积下R290的灌注量是R22的43%左右。另外,由于R290的汽化潜热大约是R22的2倍左右,因此采用R290的制冷系统制冷剂循环量更小。R290具有良好的材料相容性,与铜、钢、铸铁、润滑油等均能良好相容。未来我国还将进一步加大使用R290制冷剂的空调产线改造示范试点力度。随着对R290应用技术研究的不断深入、使用经验的不断积累,环保型制冷剂R290未来将拥有广阔的市场应用前景。
『玖』 制冷剂的发展历史
1805年埃文斯(O.Evans)原创作地提出了在封闭循环中使用挥发性流体的思路,用以将水冷冻成冰。他描述了这种系统,在真空下将乙醚蒸发,并将蒸汽泵到水冷式换热器,冷凝后再次使用。1834年帕金斯第一次开发了蒸汽压缩制冷循环,并且获得了专利。在他所设计的蒸汽压缩制冷设备中使用二乙醚(乙基醚)作为制冷剂。
下表列出早期用过的制冷剂 年份 雪种 化学式 19世纪30年代 橡胶硫化物 二乙醚(乙基醚) CH3-CH2-O-CH2-CH3 19世纪40年代 甲基乙醚(R-E170) CH3-O-CH3 1850 水/硫酸 H2O/H2SO4 1856 酒精 CH3-CH2-OH 1859 氨/水 NH3/H2O 1866 粗汽油 二氧化碳(R744) CO2 19世纪60年代 氨(R717) NH3 甲基胺(R630) CH3(NH2) 乙基胺(R631) CH3-CH2(NH2 1870 甲基酸盐(R611) HCOOCH3 1875 二氧化硫R764) SO2 1878 甲基氯化物,氯甲烷(R40) CH3CI 19世纪70年代 氯乙烷(R160) CH3-CH2CI 1891 硫酸与碳氢化合物 H2SO4,C4H10,C5H12,(CH3)2CH-CH3 20世纪 溴乙烷(R160B1) CH3-CH2Br 1912 四氯化碳 CCI4 水蒸气(R718) H2O 20世纪20年代 异丁烷(R600a) (CH3)2CH-CH3 丙烷(R290) CH3-CH2-CH3 1922 二氯乙烷异构体(R1130) CHCI=CHCI 1923 汽油 HCs 1925 三氯乙烷(R1120) CHCI=CCI2 1926 二氯甲烷(R30) CH2CI2 早期的制冷剂,几乎多数是可燃的或有毒的,或两者兼而有之,而且有些还有很强的腐蚀和不稳定性,或有些压力过高,经常发生事故。
十九世纪中叶出现了机械制冷。雅各布.帕金斯(Jacob Perkins)在1834年建造了首台实用机器。它用乙醚作制冷剂,是一种蒸气压缩系统。二氧化碳(CO2) 和氨(NH3)分别在1866年和1873年首次被用作制冷剂。其他化学制品包括化学氰(石油醚和石脑油)、二氧化硫(R-764)和甲醚,曾被作为蒸气压缩用制冷剂。其应用限于工业过程。多数食物仍用冬天收集或工业制备的冰块来保存。
二十世纪初,制冷系统开始作为大型建筑的空气调节手段。位于德克萨斯圣安东尼奥的梅兰大厦是第一个全空调高层办公楼.
1926年, 托马斯.米奇尼(Thomas Midgely)开发了首台CFC(氯氟碳)机器,使用R-12. CFC族(氯氟碳)不可燃、无毒(和二氧化硫相比时)并且能效高。该机器于1931年开始商业生产并很快进入家用。威利斯.开利(Willis Carrier)开发了第一台商用离心式制冷机,开创了制冷和空调的纪元。
1930年代出现了—氯氟烃CFCs与含氢氯氟烃HCFCs制冷剂。
1930年梅杰雷和他的助手在亚特兰大的美国化学会年会上终于选出氯氟烃12(CFC12,R12,CF2CI2),并于1931年商业化,1932年氯氟烃11(CFC11,R11,CFCI3)也被商业化,随后一系列CFCs和HCFCs陆续得到了开发,最终在美国杜邦公司得到了大量生产成为20世纪主要的雪种。
20世纪30年代,一系列卤代烃制冷剂相继出现,杜邦公司将其命名为氟利昂(Freon)。这些物质性能优良、无毒、不燃,能适应不同的温度区域,显著地改善了制冷机的性能。几种制冷剂在空调中变得很普遍,包括CFC-11.CFC-12. CFC-113.CFC-114和HCFC-22.20世纪50年代,开始使用共沸制冷剂。
下表列出第二阶段雪种开发时间: 年份 雪种 1931 R12 1932 R11 1933 R114 1934 R113 1936 R22 1945 R13 1955 R14 1961 R502 60年代开始使用非共沸制冷剂。
空调工业从幼小成长为几十亿美元的产业,使用的都是以上几种制冷剂。到1963年,这些制冷剂占到整个有机氟工业产量的98%。
到1970年代中期, 对臭氧层变薄的关注浮出水面,CFC族物质可能要承担部分责任。这导致了1987年蒙特利尔议定书的通过,议定书要求淘汰CFC和HCFC族。新的解决方案是开发HFC族,来担当制冷剂的主要角色。HCFC族作为过渡方案继续使用并将逐渐淘汰。
在1990年代,全球变暖对地球生命构成了新的威胁。虽然全球变暖的因素很多,但因为空调和制冷耗能巨大(美国建筑物耗能约占总能耗的1/3),且许多制冷剂本身就是温室气体,制冷剂又被列入了讨论范围。虽然ASHRAE标准34把许多物质分类为制冷剂,但只有少部分用于商业空调。
『拾』 制冷的发展史
人类最早是将冬季自然界的天然冰雪,保存到夏季使用。这在我国、埃及和希腊等文化发展较早的国家的历史上都有记载。
1834年在伦敦工作的美国发明家彼尔金斯(,}}CO}I氏论1I1'd)正式呈递了乙醚在封闭循·环中膨胀制冷的英国专利申请。这是蒸气压缩式制冷机的雏型。空气制冷机的发明比蒸气压缩式制冷机稍晚。美国人戈里(JohnG orrie介绍了他发明的空气制冷机,这是世界上第一台制冷和空调用的空气制冷机。
法国卡列设计制造了第一台氨吸收式制冷机。在各种型式的制冷机中,压缩式制冷机发展较快。从1870年美国人波义耳发明了氨压缩机,德国人林德(tirade)建造第一台氨制冷机后,氨压缩式制冷机在工业上获得了较普遍的使用。
随着制冷机型式的不断发展,制冷剂的种类也逐渐增多,从早期的空气、二氧化碳、乙醚到抓甲烷、二氧化硫、氨等。1929年随着氟利昂制冷剂的出现,使得压缩式制冷机发展更快,并且在应用方而超过了氨制冷机。
随后,于2世纪印年代开始使用了共沸混合制冷剂,加世纪60年代又开始应用非共沸混合制冷剂。直至2D世纪80年代关于淘汰消耗臭氧层物质CR二问题正式被公认以前,以各种卤代烃为主的制冷剂的发展几乎已达到相当完善的地步。
降温和空气调节在工矿企业、住宅和公共场所的应用也愈来愈广。空气调节分为舒适空调和工艺空调。舒适空调是用来满足人们舒适需要的空气调节,而工艺空调是为满足生产中工艺过程或设备的需要而进行的空气调节。
空气调节对国民经济各部门的发展和对人民物质文化生活水平的提高有着重要的作用。这不仅意味着受控的空气环境对各种工业生产过程的稳定运行和保证产品的质量有重要作用,而且对提高劳动生产率、保护人体健康、创造舒适的工作和生活环境有重要意义。
工业生产中的精密机械和仪器制造业及精密计量室要求高精度的恒温恒湿;电子工业要求高洁净度的空调;纺织业则要求保证湿度的空调。同时,在民用及公共建筑中,随着改革开放,旅游业的蓬勃发展,装有空调机的宾馆、酒店、商店、图书馆、会堂、医院、展览馆、游乐场所日益增多。
此外,在运输工具如汽车、火车、飞机和轮船中,也不同程度地安装有空气调节设备。空气调节技术包括制冷、供暖、通风和除尘,其中制冷降温是空气调节的一项关键技术。