『壹』 写出下列代谢途径中的限速酶
人体摄入的大部分)脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸).水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(chylomicron),由淋巴系统进入血液循环。 基本知识与理论 一、概论 脂类主要包括以下几种: 1 脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。 2 磷脂:由甘油与脂肪酸、磷酸及含氮化合物生成。 3 鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。 4 胆固醇脂:胆固醇与脂肪酸结合生成。 二、脂类消化与吸收: 消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。 脂类的吸收含两种情况: 中链、短链脂肪酸构成的甘油三酯乳化后即可吸收——>肠粘膜细胞内水解为脂肪酸及甘油——>门静脉入血。长链脂肪酸构成的甘油三酯在肠道分解为长链脂肪酸和甘油一酯,再吸收——>肠粘膜细胞内再合成甘油三酯,与载脂蛋白、胆固醇等结合成乳糜微粒——>淋巴入血。 三、甘油三酯代谢 (一)合成代谢 甘油三酯是机体储存能量及氧化供能的重要形式。 1 合成部位及原料 肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。 合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。 2 合成基本过程 ①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。 ②甘油二酯途径:肝细胞和脂肪细胞的合成途径。 脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。 (二)分解代谢 即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。 甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。 (三)脂肪酸的分解代谢—β-氧化 在氧供充足条件下,脂肪酸可分解为乙酰CoA,彻底氧化成CO2和H2O并释放出大量能量,大多数组织均能氧化脂肪酸,但脑组织例外,因为脂肪酸不能通过血脑屏障。其氧化具体步骤如下: 1. 脂肪酸活化,生成脂酰CoA。 2.脂酰CoA进入线粒体,因为脂肪酸的β-氧化在线粒体中进行。这一步需要肉碱的转运。肉碱脂酰转移酶I是脂酸β氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能。 3.脂肪酸的β-氧化,基本过程(见原书) 丁酰CoA经最后一次β氧化:生成2分子乙酰CoA 故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA
『贰』 糖化血红蛋白是什么
您的糖化血红蛋白测定结果很高而空腹血糖不是太高,所以请你去当地医院内分泌科系统检查葡萄糖耐量试验,c肽胰岛素释放试验,糖化血红蛋白,肝肾功能及血脂,这样就可以明确诊断是否患有糖尿病。
『叁』 反应过程的整体速度由最快的那一步决定,怎么理解
我觉得是最慢的那一步决定。。。
速率控制步骤,又称为限速步骤,简称专速控步,也译作属决速步(英文:rate-determining step (RDS)),是一个化学词汇,用以表达在化学反应中,反应速率最慢的一个步骤。
就好像接力跑比赛,跑的都差不多,是跑的最慢的那一棒让整体队伍速度慢了,所以输了
『肆』 乙烯生物合成途径中有哪些主要的限速步骤和关键酶
乙烯生物合成的主要途径可以概括如下:蛋氨酸 → SAM → ACC —(O2)→ 乙烯
这条途径的主要步骤分述如下:
1.蛋氨酸循环
植物体内的蛋氨酸首先在三磷酸腺苷(ATP)参与下,转变为S-腺苷蛋氨酸(简称SAM),SAM被转化为1-氨基环丙烷1-羧酸(简称ACC)和甲硫腺苷(简称MTA),MTA进一步被水解为甲硫核糖(简称MTR),通过蛋氨酸途径又可重新合成蛋氢酸.乙烯的生物合成中具有蛋氨酸 → SAM → MTA → 蛋氨酸这样一个循环.其中形成甲硫基在组织中可以循环使用.
2 ACC的合成
由于ACC是乙烯生物合成的直接前体,因此植物体内乙烯合成时从SAM转变为ACC这一过程非常重要,催化这个过程的酶是ACC合成酶,这个过程通常被认为是乙烯形成的限速步骤.
在从SAM转变为ACC这一过程中,受AVG(氨基乙氧基乙烯基甘氨酸)和AOA(氨基氧乙酸)的抑制.
3 乙烯的合成(ACC → 乙烯).
从ACC转化为乙烯是一个酶促反应,也是一个需O2的氧化反应,ACC氧化酶(也称乙烯形成酶,EFE)是催化乙烯生物合成中ACC转化为乙烯的酶.缺氧、高温(>35℃)、解偶联剂、某些金属离子等可抑制ACC转化为乙烯.从ACC转化为乙烯应在细胞保持结构高度完整的情况下才能进行.
4 丙二酰基ACC.
ACC除了转化为乙烯外,另一个代谢途径是与丙二酰基结合,生成ACC代谢末端产物丙二酰基ACC(简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.
综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.
『伍』 尿素循环哪些是耗能过程哪些是限速步骤氨的来源有哪些
1)耗能: 消耗4个高能磷酸键
(2)原料:NH3 、 CO2、 ATP、 天冬氨酸
(3)两个来源不同的氮版原子:1个来自氨,权1个来自天冬氨酸
(4)限速酶:精氨琥珀酸合成酶
(5)部位:反应在线粒体和胞浆
(6)与三羧酸循环的联系物质:延胡索酸
(7)涉及的氨基酸及其衍生物: 6种------ 鸟氨酸、精氨酸、瓜氨酸、天冬氨酸、 精氨琥珀酸、N-乙酰谷氨酸
(8)意义:解除氨毒以保持血氨的低浓度水平
『陆』 生物中的限速步骤指什么,反应最慢的吗
多反应体系组成的代谢通路中,反应的总速率取决于系统中速度最慢的反应步骤,此步骤即为限速步骤。
如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
『柒』 葡萄糖有氧氧化第四个限速步骤
具体算法:葡萄糖 → CO2 + H2O + ATP (1)糖酵葡萄糖 → 丙酮酸 + 2NADH + 2ATP; (2)丙酮酸 → 乙酰CoA,产生1分子内NADH; (3)一分子乙酰CoA经过三容羧酸循环,产生3NADH + 1FADH2 + 1ATP/GTP 经过呼吸链:1NADH → 2.5 ATP(旧数据是3ATP);1FAD。
『捌』 Km值可以预见系列反应中哪一步是限速反应,这句话对吗
不一定.限速反应要看真实的酶促效率,而Km反应的只是最大反应速度一半时的底物浓度,而限速步骤中底物浓度会比较高,这样无法确定Km是由于速率减低而增加还是本身的底物浓度高所致.
『玖』 怎样识别一个复杂反应中的限速步骤
如果是我就会选择用修补工具和印章工具,若要一点也不影响背景对我来说确实有点难若是那样我会选择用套索工具显好后反选再用修补工具和印章工具来完成。