导航:首页 > 创造发明 > 数学方程元次术语是谁创造的

数学方程元次术语是谁创造的

发布时间:2020-12-19 20:39:06

Ⅰ 数学方程的元和次分别表示什么

数学方程的元是指:方程中含有不同未知数的个数;次数是指未知数的最高指回数,最高指数是几,答就是几次。

如:x的平方+y的3次方+z=28,就是一个三元3次方程。

必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。



(1)数学方程元次术语是谁创造的扩展阅读:

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:直接开平方法;配方法;公式法;分解因式法。

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

Ⅱ 一元二次方程是谁发明

“一元二次方程新解法”的发明人叫罗伯森,是卡内基梅隆大学华裔数学教授、美国奥数教练,并且罗伯森教授表示:“如果这种方法直到今天都没有被人类发现的话,我会感到非常惊讶,因为这个课题已经有4000年的历史了,而且有数十亿人都遇到过这个公式和它的证明。”

事实上,在古代,全世界的数学家对一元二次方程都有研究,虽然也没有一模一样的方法出现,但是究其内涵,有些古代的解法与罗教授的解法可谓是大同小异。原因也不难想,古代的数学家们没有韦达,更没有代数的符号记法,而现如今罗教授的解法确实有“踩肩膀”的嫌疑。

(2)数学方程元次术语是谁创造的扩展阅读:

古阿拉伯对一元二次方程的解法

阿尔·花剌子模在书中提出一个问题:“一个平方和十个这个平方的根等于三十九个迪拉姆,它是多少?”由于当时代数符号根本没有发明,古代数学的方程只能靠文字去描述。

设这个数是X,那么“平方”就是X²,“平方的根”就是将X²在开方,故“平方的根”是指“X”,“十个这个平方的根”就是10X,问题转化为求方程:X²+10X=39的解。

花剌子模给出的解法是:(注意:下文中的“根”,不指现如今方程的根,而指平方根)

1、将根的个数减半。本题中,是将10减半,故得到5;

2、用5乘自己,再加39,得到64;

3、取64的根,即将64开方,得到8;

4、再从中减去根的个数的一半,即再用8去减5,得到3,方程解完。

Ⅲ 一元一次方程中的“元”产生于什么年代是哪位数学家发明的原来的意思是什么

一元一次方程中的“元”产生的年代没有明确的记录,据说是康熙皇帝在学习西方数学时专提出的,因属当时没有可以代替“未知数”的代词,因此采用“元”为方程的未知数。

公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。

(3)数学方程元次术语是谁创造的扩展阅读:

一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。

如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。

Ⅳ 数学方程的" 元""次"是谁 发明的

解:数学方程的元次是康熙首先提出的。

Ⅳ 我们现在数学用的方程,根,解等名词都是康熙创造出来的吗有何依据(正史,谢谢!)

康熙教皇子数学、天文学、地理学、医学、测量学、农学等。先以观测日食回为例。康熙三十六年答(1697年)闰三月初一日,日食。时康熙帝亲征噶尔丹在外,皇太子在北京观测,使用皇父所赐嵌有三层玻璃的小镜子,装于自鸣钟之上,用望日千里眼观望。日食似不到十分,日光、房屋、墙壁及人影俱可见,甚属明耀。观测奏报自京城发出,送皇父览阅。康熙帝得到奏报后,朱批曰:“览尔所奏,果然如此。”后来皇四子胤禛(雍正)回忆道:“昔年遇日食四五分之时,日光照耀,难以仰视。皇考亲率朕同诸兄弟在乾清宫,用千里镜,四周用夹纸遮蔽日光,然后看出考验所亏分数。此朕身经实验者。”又以几何学为例。法国耶稣会士白晋写给法王路易十四的信中说,康熙帝亲自给皇三子胤祉讲解几何学,并培养其科学才能。后又让胤祉等向意大利耶稣会士德理格学习律吕知识,“命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日讲究其精微,修造新书”。康熙帝命在畅春园蒙养斋开馆,派允祉主持纂修《律历渊源》,汇律吕、历法和算法于一书。允祉还为《古今图书集成》的纂辑做出贡献,成为康熙朝一位杰出的学者。但他在雍正继位后,仍未逃过劫难:被夺爵,禁景山永安亭而死。

Ⅵ 创造一元一次方程的是谁

一元一次方程式
--- 方程式的由来
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"
这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".
十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.
由於那时我国古代文化的势力还较强,西方近代科学文化未能及时
在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这
些学科或概念都只是在极少数人中学习和研究.
十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国
传教士伟烈亚力,将英国数学家德.摩尔根的译出.李.伟
两人很注重数学名词的正确翻译,他们借用或创设了近四百个数
学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借
用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知
数的等式.
1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传
教士兰雅合译英国渥里斯的,他们则把"equation"译为"方程
式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指中的意思,而方程式是指"今有未知数的等式".华.傅的主张在
很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审
查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次
方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.
既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.
(本文摘自九章出版社之"数学诞生的故事")

Ⅶ 数学方程中的元次是谁创造的

康熙皇帝。康熙是我国历史上数学水平最高的一位帝王,他天资聪慧,十分热爱数学,14岁起跟着从比利时来华的传教士南怀仁学习数学,是康熙首创“元”、“次”、“根”等方程术语的汉译名。

比利时传教士南怀仁在给康熙讲解方程时,由于他汉语、满语水平都很有限,有些术语讲不清楚,解释很久还是不得要领,康熙就建议:将未知数翻译为“元”,最高次数翻译为“次”,使方程左右两边相等的未知数的值翻译为“根”或“解”。

南怀仁惊疑地盯着康熙,愣了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住,激动地说:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人!”康熙创造的这几个方程术语,驭繁为简,准确科学,非常便于理解和记忆。

(7)数学方程元次术语是谁创造的扩展阅读

南怀仁简介

南怀仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66岁),字敦伯,又字勋卿,西属尼德兰皮特姆(今比利时布鲁塞尔附近)人,耶稣会传教士,清代天文学家、科学家,1623年10月9日出生,1641年9月29日入耶稣会,1658年来华,是清初最有影响的来华传教士之一,为近代西方科学知识在中国的传播做出了重要贡献。

他是康熙皇帝的科学启蒙老师,精通天文历法、擅长铸炮,是当时国家天文台(钦天监)业务上的最高负责人,官至工部侍郎,正二品。1688年1月28日南怀仁在北京逝世,享年66岁,卒谥勤敏。著有《康熙永年历法》、《坤舆图说》、《西方要记》等。

Ⅷ 数学中的元,项,次是什么意思

数学中的“元”是指未知数,例如常见的一元二次方程、二元一次方程等内。

数学中的“项”代表一由容数与未知数还有运算符号组成的一个基本算术单元。

数学中的“次”就是方程中未知数的乘方数(如x²就叫二次)。

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

(8)数学方程元次术语是谁创造的扩展阅读:

一元二次方程成立必须同时满足三个条件:

1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

2、只含有一个未知数;

3、未知数项的最高次数是2。

Ⅸ 方程是谁发明的

方程的发明者是法国数学家韦达。

韦达1540年生于法国的普瓦图(Poitou),今旺代省的丰特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒于巴黎。年轻时学习法律并当过律师。后从事政治活动,当过议会的议员。

在对西班牙的战争中,曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。

韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。

(9)数学方程元次术语是谁创造的扩展阅读:

早在3600年前,古埃及人写在草纸上的数学问题中,就涉及了方程中含有未知数的等式。

公元825年左右,中亚细亚的数学家阿尔·花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。

方程中文一词出自古代数学专著《九章算术》,其第八卷即名“方程”。“方”意为并列,“程”意为用算筹表示竖式。

卷第八(一)为:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?

(现今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。问1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)

白话翻译:卷第八(一)为:现在有上禾三点,中禾二点,下禾一点,实际上三十九斗;上禾二点,中禾三点,下禾一点,实际上三十四斗;上禾一点,中禾二点,下禾三点,实际上两个十六斗。向上、中、下禾是一点各是多少?

(现在有上等黍三捆、中等黍二捆、下等黍子捆,打出来的饭共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出来的饭共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出来的饭共有二十六斗。问1捆上等人黍、一捆中等黍、1把下等人黍各能打响多少斗黄米?)

答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。

白话翻译:他回答说:上禾一点,九斗、四分一的一,中禾一点,四斗、四分一的一,下禾一点,二斗、四分之三斗。

方程术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗,于右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不尽者遍乘左行而以直除。左方下禾不尽者,上为法,下为实。实即下禾之实。

求中禾,以法乘中行下实,而除下禾之实。余如中禾秉数而一,即中禾之实。求上禾亦以法乘右行下实,而除下禾、中禾之实。余如上禾秉数而一,即上禾之实。实皆如法,各得一斗。

白话翻译:方程方法是:设置上禾三点,中禾二点,下禾一点,实际上三十九斗,在右边。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不尽的遍乘左行而以直任。左下方禾不尽的,上为法,以下是真实。实立即下禾的事实。

求中禾,因法乘中走下实,而除下禾的事实。我像中禾持数而一,就是中禾的事实。求上禾也因法乘右边走下实,而除下禾、中禾的事实。我像上禾持数而一,登上禾的事实。实际上都像法,各得一斗。

以上是出自《九章算术》中的三元一次方程组,并展示了用“遍乘直除”来消元以解此方程组。

魏晋时期的大数学家刘徽在公元263年前后为《九章算术》作了大量注释,介绍了方程组:二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。他还创立了比“遍乘直除”更简便的“互乘相消”法来解方程组。

阅读全文

与数学方程元次术语是谁创造的相关的资料

热点内容
土地使用权转让协议书范本 浏览:877
银川工商局上班时间 浏览:666
西瓜谁发明的 浏览:108
莆田市工商局企业查询 浏览:490
职工安全生产保证书 浏览:951
顾亮马鞍山 浏览:961
工商局胡小勇 浏览:996
专业技术人员知识产权著作权 浏览:829
马鞍山李群 浏览:440
创造101之无敌导师 浏览:170
关于公司知识产权的内控管理制度 浏览:72
矛盾纠纷专项排查工作方案 浏览:103
法国发明家巴耶尔首创 浏览:561
油条机我爱发明 浏览:648
北京品源知识产权代理有限公司怎么样 浏览:240
著作权共同所有 浏览:778
二手途达转让 浏览:518
马鞍山市花湖 浏览:480
永乐票务投诉 浏览:951
龙游智慧教育公共服务平台 浏览:186