㈠ 原子彈可以保存多少年
看放在什麼地方了。
一般大國50年左右。
㈡ 現在人類最強大的武器就是核武器,那麼核武器有保質期嗎
核武器是當今世界上最強大的武器,現在全世界擁有氫彈的國家也只有聯合國的五常而已!在美蘇冷戰期間,兩個國家進行軍備競賽,造了不少核武器。無論什麼東西都有使用壽命,很多彈葯放的放的時間長了就失效了,那麼原子彈、氫彈這樣的核武器有沒有「保質期」呢?
第二種辦法就很好理解了,直接換掉老化或者壞掉的部件就完事了。這個辦法雖然看起來簡單,但是對於核大國來說操作起來有些棘手。美國、俄羅斯都有數千枚核彈頭,這些核彈頭在和平時期沒啥作用,維護更換零件也要花費很多錢。所以美國和俄羅斯才願意銷毀核武器,畢竟有了威力更大的氫彈,只需要維持一小部分核彈頭就足夠了!殺死一個人1次和殺死一個人100次沒啥區別,100枚核彈和1000枚核彈真的打起仗來作用也都差不多。
㈢ 氫彈的破壞范圍多大
根據測量數據,100萬噸的氫彈在100公里高空爆炸,電磁脈沖可以覆蓋1200平方公里;在400公里高空則為2200平方公里。
1枚當量為2萬噸的原子彈在空中爆炸後,距爆心7000米會受到比陽光強13倍的光照射,范圍達2800米。武器原子彈的殺傷破壞方式主要有光輻射、沖擊波、早期核輻射、電磁脈沖及放射性沾染。光輻射是在核爆炸時釋放出的以每秒30萬千米速度直線傳播的一種輻射光殺傷方式。
優勢:
一、氫彈比原子彈優越的地方在於:
1、單位殺傷面積的成本低;
2、自然界中氫和鋰的儲藏量比鈾和釷的儲藏量還大得多;
3、所需的核原料實際上沒有上限值;
4、威力比原子彈大。
二、缺點
1、在戰術使用上有某種程度上的困難。
2、含有氚的氫彈不能長期貯存,因為這種同位素能自發進行放射性蛻變。
3、熱核武器的載具,以及儲存這種武器的倉庫等,都必須要有相當可靠的防護。
以上內容參考:網路-氫彈
㈣ 原子彈也有「保質期」各國如何處理過期的核武器
核武器是當今世界上最強大的武器,現在全世界擁有氫彈的國家也只有聯合國的五常而已!在美蘇冷戰期間,兩個國家進行軍備競賽,造了不少核武器。無論什麼東西都有使用壽命,很多彈葯放的放的時間長了就失效了,那麼原子彈、氫彈這樣的核武器有沒有「保質期」呢?
第二種辦法就很好理解了,直接換掉老化或者壞掉的部件就完事了。這個辦法雖然看起來簡單,但是對於核大國來說操作起來有些棘手。美國、俄羅斯都有數千枚核彈頭,這些核彈頭在和平時期沒啥作用,維護更換零件也要花費很多錢。所以美國和俄羅斯才願意銷毀核武器,畢竟有了威力更大的氫彈,只需要維持一小部分核彈頭就足夠了!殺死一個人1次和殺死一個人100次沒啥區別,100枚核彈和1000枚核彈真的打起仗來作用也都差不多。
㈤ 核武器有沒有保質期
他的保質期就是儲存年限,超過年限就得拆除報廢。
核武器里的核裝葯本身問題不大。因為鈾235和鈈239的半衰期都要比人類歷史還長。氘和氚和半衰期確實都很短,12.5年,但實際上各國用來製造氫彈的核裝葯並不是這兩種短命的物質,而是穩定得多的氘化鋰6或者氚化鋰,因此半衰期不是個問題。
但核武器並非某些人想像的把核燃料塞進個鐵桶那麼簡單,而是個極其復雜的高精密機械電子裝置,這個時間長了就會老化而難以正常工作。比如核彈起爆需要高能炸葯,這種化學製品年頭長了是否會失效?起爆裝置的機械部分能否正常工作?那時那麼多開關是否生銹?電線是否老化?電氣系統的氣路是否還暢通?電池是否還有電?氣壓表和雷達等設備還能否准確測定高度信息?
早期的核彈,因為工藝水平不高,有效期也就幾年,後來逐漸延長。這個各國各種產品標准不同,通常來說,10年內算短的,超過30年的也有,但平均算起來,大約就是20年左右。
核彈過了有效期限並不要緊,還可以延壽。一種延壽是採用管理的辦法,如果當年設計冗餘度很大,保管優良,就可以讓它再繼續服役幾年,但這也長不了太多,而且通常需要試爆幾枚試試其可靠率(你當然用不著真的搞成核爆,證明其能正常點火即可),才敢讓這批核彈繼續發揮余熱。
㈥ 中國研製的第一顆原子彈到現在過沒過期
關於「保質期」,這一點是肯定的。尤其它主要體現在以下幾個方面:
(1)引報要的有效期。
(2)控制器件的壽命;
(3)容器的材料的製作工藝;
(4)儲存環境。
按照以上四點來判斷,中國自行研製的第一顆到現在肯定已經「過期」了~~
另外,其實通過這一點也可以證明:中國目前僅保持小規模的合伍庫是完全正確的!因為反之,中國將會為大批合彈的淘汰、更新、維護等投入大量的人力、物力和財力,這將給我國的經濟帶來沉重的負擔!
㈦ 中國發明氫彈的歷史,詳細一點
利用原子彈爆炸的能量點燃氫的同位素氘、氚等輕原子核的聚變反應瞬時釋放出巨大能量的核武器.又稱聚變彈 、 熱核彈.氫彈的殺傷破壞因素與原子彈相同,但威力比原子彈大得多.原子彈的威力通常為幾百至幾萬噸級TNT當量,氫彈的威力則可大至幾千萬噸級TNT當量.還可通過設計增強或減弱其某些殺傷破壞因素,其戰術技術性能比原子彈更好,用途也更廣泛.
1942年,美國科學家在研製原子彈的過程中,推斷原子彈爆炸提供的能量有可能點燃輕核,引起聚變反應,並想以此來製造一種威力比原子彈更大的超級彈 .1952 年11月1日,美國進行了世界上首次氫彈原理試驗.從50年代初至60年代後期,美國、蘇聯、英國、中國和法國都相繼研製成功氫彈,並裝備部隊.
三相彈是目前裝備得最多的一種氫彈,它的特點是威力和比威力都較大.在其三相彈的總威力中,裂變當量所佔的份額相當高.一枚威力為幾百萬噸TNT當量的三相彈,裂變份額一般在50%左右,放射性沾染較嚴重,所以有時也稱之為「臟彈」.
氫彈具有巨大殺傷破壞威力,它在戰略上有很重要的作用.對氫彈的研究與改進主要在3個方面 :① 提高比威力和使之小型化.②提高突防能力、生存能力和安全性能.③研製各種特殊性能的氫彈.
氫彈的運載工具一般是導彈或飛機.為使武器系統具有良好的作戰性能,要求氫彈自身的體積小、重量輕、威力大.因此,比威力的大小是氫彈技術水平高低的重要標志.當基本結構相同時,氫彈的比威力隨其重量的增加而增加.20世紀60年代中期,大型氫彈的比威力已達到了很高的水平.小型氫彈則經過了60年代和70年代的發展,比威力也有較大幅度的提高.但一般認為,無論是大型氫彈還是小型氫彈,它們的比威力似乎都已接近極限.在實戰條件下,氫彈必須在核戰爭環境中具有生存能力和突防能力.因此,對氫彈進行抗核加固是一個重要的研究課題.此外,還必須採取措施 ,確保氫彈在貯存、運輸和使用過程中的安全.
在某些戰爭場合,需要使用具有特殊性能的武器.至80年代初,已研製出一些能增強或減弱某種殺傷破壞因素的特殊氫彈,如中子彈、減少剩餘放射性武器等.中子彈是一種以中子為主要殺傷因素的 小型氫彈 .減少剩餘 放射性武器(Reced-Resial-Radioactivity weapon)亦稱RRR彈,也屬於一種以沖擊波毀傷效應為主,放射性沉降少的氫彈 .一枚威力為萬噸級TNT當量的RRR彈 ,剩餘放射性沉降可比相同當量的純裂變彈減少一個數量級以上,因而是一種較好的戰術核武器.從總的趨勢來看,對氫彈的研究,更多的注意力可能會轉向特殊性能武器方面.
氫彈比原子彈優越的地方在於:
1.單位殺傷面積的成本低
2.自然界中氫和鋰的儲藏量比鈾和釷的儲藏量還大得多
3.所需的核原料實際上沒有上限值,這就能製造TNT當量相當大的氫彈
氫彈的缺點
1.在戰術使用上有某種程度上困難
2.含有氚的氫彈不能長期貯存,因為這種同位素能自發進行放射性蛻變
3.熱核武器的載具,以及儲存這種武器的倉庫等,都必須要有相當可靠的防護
在歷史上,輕核的聚變反應實際上比重核裂變現象還要發現得早,但氫彈卻比原子彈出現得晚,第一顆氫彈在1952年才試製成功,而可控制的聚變反應堆由於障礙重重,至今仍是科學技術上尚未解決的一個重大問題,原因是要實現輕核聚變反應的條件比實現重核裂變的條件要困難得多.
目前發展氫彈之重點有二點:如何使得威力增加以及如何使彈徑及重量減少,目前已有1000萬至1400萬噸威力的核彈進行試爆,威力是不小,但是要縮小它的體積及重量就沒有那麼簡單,其中最令人注目的理論是集中雷射使氫彈引爆,這類炸彈可以變得很小,因為它不需原子彈的部分,新式氫彈之原理一直沒有公開,1956年5月間美國宣稱已能製造小型熱核武器,其體積小到可以裝在戰機使用的飛彈內,也可用飛機空投或放在無人飛機(UAV)上,甚至使用在短、中、長程彈道飛彈上.
探索新原理,研究新的熱核材料,用雷射來引爆氫彈,使氫彈可達到真正的"干凈",熱核武器中除使用氘化鋰和一定數量的氚化鋰外,還含有少量的氚,以加速熱核反應,美國的氚年產量較大,每年也不過一、二公斤,由於氚的衰變,需要定期替換,所以大部分氚除了用來維持核武庫貯備,只能有一小部分用於製造新武器,因此除了設法增加氚的生產外,俄、美兩國都研究新的熱核材料,據報導美國已經掌握了幾種特殊聚變材料,曾用在義勇兵2型ICBM的MK-11C彈頭上,多年來俄、美兩國也展開了對超鈽元素的研究,這種元素可用來製造微型核子武器,但是獲取這種材料是相當困難的,而且費用極為高昂.
氫彈的研製是在第二次世界大戰末期開始的,自從原子彈試爆之後,因為它能產生上千萬度的超高溫,也為日後研製氫彈開創了條件,美國在研製氫彈初期,經過了多次試驗都沒有成功,1950年以後美國又重新開始試驗,並且利用電腦對熱核反應的條件進行了大量計算之後,證明在鈽彈爆炸時所產生的高溫下,熱核原料的氘和氚混合物確實有可能開始聚變反應,為了檢查這些結論,他們曾經准備了少量的氘和氚裝在鈽彈內進行試驗,結果測得這枚鈽彈爆炸時產生的中子數大大增加,說明了其中的氘氚確實有一部分會進行熱核反應,於是在這次試驗後,美國加緊了製造氫彈的工作,終於在1952年11月1日,在太平洋上進行了第一次氫彈試驗,當時所用的氫彈重65噸,體積十分龐大,沒有實戰價值,直到1954年找到了用固態的氘化鋰替代液態的氘氚作為熱核裝料之後,才縮小了體積和減輕重量,制出了可用於實戰的氫彈,隨著科學技術的發展,氫彈與洲際彈道飛彈的結合就為現代世界帶來了以暴制暴的恐怖和平,使得人類進入按鈕戰爭的時代,任何一個核子強國在戰爭中使用氫彈,也就是世界末日的來臨!到目前為止,所有被製造出的氫彈當中,威力最大的是由蘇聯所製造的,當量為七千萬噸的超大型氫彈,但因為過於笨重及龐大,難以搬運,欠缺實用性,因此早已退役.
核子武器發展水平的高低衡量標准,一般來說有四個,就是威力比、核原料利用率、干凈化程度和突防能力:
所謂威力比是指每公斤重的核子彈所產生的爆炸威力,即爆炸的總當量與核武器重量之比,它是核武的一項極其重要的指標,從威力比的大小,可以看出核武小型化的水平,目前俄、美兩國在百萬噸當量以上的核子武器,它的威力比水平約為每公斤彈頭達到2500~5000噸當量,20萬噸~100萬噸當量的核武威力比水平大約為每公斤彈頭約2200~2500噸當量,跟威力比有關的另一個問題是分導式多彈頭飛彈的大力發展,由於多彈頭增加了額外的結構重量,所以威力比會相對應地降低,彈頭數目越多,下降的幅度越大,例如美國的義勇兵2型和海神潛射飛彈的核彈頭,它們的威力比大約是每公斤600噸TNT當量,目前俄、美兩國都在加緊進行地下核子試驗,改進核彈頭的質量,使其不斷地小型化,進一步提高威力比,但不管怎麼改進,如果還是採用鈾235和鈽239作為核原料的話,那麼它的威力比就不能像過去那樣大幅度的幾十倍甚至幾百萬倍的增長.
核原料的利用率反映了核武的技術水平,是指在核爆的時候,核彈中有多少核原料產生裂變鏈式反應而釋放了能量,有多少核原料沒有產生裂變鏈式反應而被核彈中的炸葯給炸散了,隨著科學技術的發展,核原料的利用率有了很大的提高,有的已經提高到25%以上,比以前提高了5倍左右,近年來在新型的核武器中,核原料利用率又有新的提高,但是要達到100%幾乎是不可能的事.
所謂干凈化程度是指核武在爆炸時總能量中裂變能和聚變能所佔的比重,由於現在的氫彈必須依賴原子彈來引爆,所以必然會產生大量的放射性裂變物質,根本談不上什麼干凈,俄、美兩國自稱已經擁有了所謂的干凈氫彈,實際上只是在氫彈爆炸的時候相對地增加了聚變的比重,減少了裂變的比重,使得放射性裂變產物相對地減少了,據說美國的氫彈裂變比重已經降到只佔總能量的百分之幾.
突防能力也是核武水平高低的一項衡量標准,所謂突防能力,主要是指核武本身突破敵方各種防禦措施的能力,例如把單彈頭發展到多彈頭,就是提高核武突防能力的有效手段之一,另外,由於反飛彈武器的出現,人們正利用X射線、γ射線、中子、β粒子、電磁脈沖,以及雷射和粒子束武器等等來對付攻擊性核子武器,這迫使核子武器必須具有相對應的抵抗能力,也就是所謂突防能力,對核武各種部件的薄弱環節進行強化,就是抵抗那些敵方防禦手段的有效辦法.
現今俄、美兩國都在積極發展新的核原料和各種新型號的核彈頭,使核武不斷地小型化,隨著核彈頭小型化的發展,分導式飛彈攜帶的核彈頭越來越多,進一步提高了核子武器的威力,氫彈是現代戰略核子武器的主力,氫彈被個別國家(指美國)掌握時曾對其它國家起著核威懾的作用,當個別國家壟斷氫彈製造技術被打破以後,核子武器就成為人類這個地球上保持政治、軍事和經濟穩定的手段,氫彈作為戰略核武還在向小型化、定向化方向進一步發展,這種核子武器在和平時期具有新的安全參數,而在戰時則能有效並可靠地摧毀目標,這種武器一方面它對全球的放射性污染僅為現有核武的數百分之一,而另方面,能摧毀敵方在外層空間和地面的目標,正是這種武器引起世界各國人們的恐懼.
㈧ 世界上氫彈在何時何地
氫彈
氫彈(hydrogen bomb)
利用原子彈爆炸的能量點燃氫的同位素氘、氚等輕原子核的聚變反應瞬時釋放出巨大能量的核武器。又稱聚變彈 、 熱核彈。氫彈的殺傷破壞因素與原子彈相同,但威力比原子彈大得多。原子彈的威力通常為幾百至幾萬噸級TNT當量,氫彈的威力則可大至幾千萬噸級TNT當量。還可通過設計增強或減弱其某些殺傷破壞因素,其戰術技術性能比原子彈更好,用途也更廣泛。
1942年,美國科學家在研製原子彈的過程中,推斷原子彈爆炸提供的能量有可能點燃輕核,引起聚變反應,並想以此來製造一種威力比原子彈更大的超級彈 。1952 年11月1日,美國進行了世界上首次氫彈原理試驗。從50年代初至60年代後期,美國、蘇聯、英國、中國和法國都相繼研製成功氫彈,並裝備部隊。
三相彈是目前裝備得最多的一種氫彈,它的特點是威力和比威力都較大。在其三相彈的總威力中,裂變當量所佔的份額相當高。一枚威力為幾百萬噸TNT當量的三相彈,裂變份額一般在50%左右,放射性沾染較嚴重,所以有時也稱之為「臟彈」。
氫彈具有巨大殺傷破壞威力,它在戰略上有很重要的作用。對氫彈的研究與改進主要在3個方面 :① 提高比威力和使之小型化。②提高突防能力、生存能力和安全性能。③研製各種特殊性能的氫彈。
氫彈的運載工具一般是導彈或飛機。為使武器系統具有良好的作戰性能,要求氫彈自身的體積小、重量輕、威力大。因此,比威力的大小是氫彈技術水平高低的重要標志。當基本結構相同時,氫彈的比威力隨其重量的增加而增加。20世紀60年代中期,大型氫彈的比威力已達到了很高的水平。小型氫彈則經過了60年代和70年代的發展,比威力也有較大幅度的提高。但一般認為,無論是大型氫彈還是小型氫彈,它們的比威力似乎都已接近極限。在實戰條件下,氫彈必須在核戰爭環境中具有生存能力和突防能力。因此,對氫彈進行抗核加固是一個重要的研究課題。此外,還必須採取措施 ,確保氫彈在貯存、運輸和使用過程中的安全。
在某些戰爭場合,需要使用具有特殊性能的武器。至80年代初,已研製出一些能增強或減弱某種殺傷破壞因素的特殊氫彈,如中子彈、減少剩餘放射性武器等。中子彈是一種以中子為主要殺傷因素的 小型氫彈 。減少剩餘 放射性武器(Reced-Resial-Radioactivity weapon)亦稱RRR彈,也屬於一種以沖擊波毀傷效應為主,放射性沉降少的氫彈 。一枚威力為萬噸級TNT當量的RRR彈 ,剩餘放射性沉降可比相同當量的純裂變彈減少一個數量級以上,因而是一種較好的戰術核武器。從總的趨勢來看,對氫彈的研究,更多的注意力可能會轉向特殊性能武器方面。
氫彈比原子彈優越的地方在於:
1.單位殺傷面積的成本低
2.自然界中氫和鋰的儲藏量比鈾和釷的儲藏量還大得多
3.所需的核原料實際上沒有上限值,這就能製造TNT當量相當大的氫彈
氫彈的缺點
1.在戰術使用上有某種程度上困難
2.含有氚的氫彈不能長期貯存,因為這種同位素能自發進行放射性蛻變
3.熱核武器的載具,以及儲存這種武器的倉庫等,都必須要有相當可靠的防護
在歷史上,輕核的聚變反應實際上比重核裂變現象還要發現得早,但氫彈卻比原子彈出現得晚,第一顆氫彈在1952年才試製成功,而可控制的聚變反應堆由於障礙重重,至今仍是科學技術上尚未解決的一個重大問題,原因是要實現輕核聚變反應的條件比實現重核裂變的條件要困難得多。
目前發展氫彈之重點有二點:如何使得威力增加以及如何使彈徑及重量減少,目前已有1000萬至1400萬噸威力的核彈進行試爆,威力是不小,但是要縮小它的體積及重量就沒有那麼簡單,其中最令人注目的理論是集中雷射使氫彈引爆,這類炸彈可以變得很小,因為它不需原子彈的部分,新式氫彈之原理一直沒有公開,1956年5月間美國宣稱已能製造小型熱核武器,其體積小到可以裝在戰機使用的飛彈內,也可用飛機空投或放在無人飛機(UAV)上,甚至使用在短、中、長程彈道飛彈上。
探索新原理,研究新的熱核材料,用雷射來引爆氫彈,使氫彈可達到真正的"干凈",熱核武器中除使用氘化鋰和一定數量的氚化鋰外,還含有少量的氚,以加速熱核反應,美國的氚年產量較大,每年也不過一、二公斤,由於氚的衰變,需要定期替換,所以大部分氚除了用來維持核武庫貯備,只能有一小部分用於製造新武器,因此除了設法增加氚的生產外,俄、美兩國都研究新的熱核材料,據報導美國已經掌握了幾種特殊聚變材料,曾用在義勇兵2型ICBM的MK-11C彈頭上,多年來俄、美兩國也展開了對超鈽元素的研究,這種元素可用來製造微型核子武器,但是獲取這種材料是相當困難的,而且費用極為高昂。
氫彈的研製是在第二次世界大戰末期開始的,自從原子彈試爆之後,因為它能產生上千萬度的超高溫,也為日後研製氫彈開創了條件,美國在研製氫彈初期,經過了多次試驗都沒有成功,1950年以後美國又重新開始試驗,並且利用電腦對熱核反應的條件進行了大量計算之後,證明在鈽彈爆炸時所產生的高溫下,熱核原料的氘和氚混合物確實有可能開始聚變反應,為了檢查這些結論,他們曾經准備了少量的氘和氚裝在鈽彈內進行試驗,結果測得這枚鈽彈爆炸時產生的中子數大大增加,說明了其中的氘氚確實有一部分會進行熱核反應,於是在這次試驗後,美國加緊了製造氫彈的工作,終於在1952年11月1日,在太平洋上進行了第一次氫彈試驗,當時所用的氫彈重65噸,體積十分龐大,沒有實戰價值,直到1954年找到了用固態的氘化鋰替代液態的氘氚作為熱核裝料之後,才縮小了體積和減輕重量,制出了可用於實戰的氫彈,隨著科學技術的發展,氫彈與洲際彈道飛彈的結合就為現代世界帶來了以暴制暴的恐怖和平,使得人類進入按鈕戰爭的時代,任何一個核子強國在戰爭中使用氫彈,也就是世界末日的來臨!到目前為止,所有被製造出的氫彈當中,威力最大的是由蘇聯所製造的,當量為七千萬噸的超大型氫彈,但因為過於笨重及龐大,難以搬運,欠缺實用性,因此早已退役。
核子武器發展水平的高低衡量標准,一般來說有四個,就是威力比、核原料利用率、干凈化程度和突防能力:
所謂威力比是指每公斤重的核子彈所產生的爆炸威力,即爆炸的總當量與核武器重量之比,它是核武的一項極其重要的指標,從威力比的大小,可以看出核武小型化的水平,目前俄、美兩國在百萬噸當量以上的核子武器,它的威力比水平約為每公斤彈頭達到2500~5000噸當量,20萬噸~100萬噸當量的核武威力比水平大約為每公斤彈頭約2200~2500噸當量,跟威力比有關的另一個問題是分導式多彈頭飛彈的大力發展,由於多彈頭增加了額外的結構重量,所以威力比會相對應地降低,彈頭數目越多,下降的幅度越大,例如美國的義勇兵2型和海神潛射飛彈的核彈頭,它們的威力比大約是每公斤600噸TNT當量,目前俄、美兩國都在加緊進行地下核子試驗,改進核彈頭的質量,使其不斷地小型化,進一步提高威力比,但不管怎麼改進,如果還是採用鈾235和鈽239作為核原料的話,那麼它的威力比就不能像過去那樣大幅度的幾十倍甚至幾百萬倍的增長。
核原料的利用率反映了核武的技術水平,是指在核爆的時候,核彈中有多少核原料產生裂變鏈式反應而釋放了能量,有多少核原料沒有產生裂變鏈式反應而被核彈中的炸葯給炸散了,隨著科學技術的發展,核原料的利用率有了很大的提高,有的已經提高到25%以上,比以前提高了5倍左右,近年來在新型的核武器中,核原料利用率又有新的提高,但是要達到100%幾乎是不可能的事。
所謂干凈化程度是指核武在爆炸時總能量中裂變能和聚變能所佔的比重,由於現在的氫彈必須依賴原子彈來引爆,所以必然會產生大量的放射性裂變物質,根本談不上什麼干凈,俄、美兩國自稱已經擁有了所謂的干凈氫彈,實際上只是在氫彈爆炸的時候相對地增加了聚變的比重,減少了裂變的比重,使得放射性裂變產物相對地減少了,據說美國的氫彈裂變比重已經降到只佔總能量的百分之幾。
突防能力也是核武水平高低的一項衡量標准,所謂突防能力,主要是指核武本身突破敵方各種防禦措施的能力,例如把單彈頭發展到多彈頭,就是提高核武突防能力的有效手段之一,另外,由於反飛彈武器的出現,人們正利用X射線、γ射線、中子、β粒子、電磁脈沖,以及雷射和粒子束武器等等來對付攻擊性核子武器,這迫使核子武器必須具有相對應的抵抗能力,也就是所謂突防能力,對核武各種部件的薄弱環節進行強化,就是抵抗那些敵方防禦手段的有效辦法。
現今俄、美兩國都在積極發展新的核原料和各種新型號的核彈頭,使核武不斷地小型化,隨著核彈頭小型化的發展,分導式飛彈攜帶的核彈頭越來越多,進一步提高了核子武器的威力,氫彈是現代戰略核子武器的主力,氫彈被個別國家(指美國)掌握時曾對其它國家起著核威懾的作用,當個別國家壟斷氫彈製造技術被打破以後,核子武器就成為人類這個地球上保持政治、軍事和經濟穩定的手段,氫彈作為戰略核武還在向小型化、定向化方向進一步發展,這種核子武器在和平時期具有新的安全參數,而在戰時則能有效並可靠地摧毀目標,這種武器一方面它對全球的放射性污染僅為現有核武的數百分之一,而另方面,能摧毀敵方在外層空間和地面的目標,正是這種武器引起世界各國人們的恐懼。
各國從原子彈爆炸到氫彈實驗所用時間
法國:8年 美國:7年 蘇聯:10年 中國:2年7個月
㈨ 原子彈可以保存多少年
核元素鈾235和鈈239的保存的時間最短的也有2萬年,所以主要是看控制核彈的電子設備壽命,電子設備的有效期早期是十幾年,在蘇聯倒閉的時候有效期最長可達到30年,而現在的科技應該可以更長。
㈩ 請問中國的氫彈有沒有保質期
肯定有保質期 中國的保存技術是世界一流保質期長 俄羅斯 美國就差遠了 世界上現存的氫彈中國最多