A. 圓周率的作用和發明時間
圓周率(來Pi)是圓的周長與源直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值.
公元前1900年至1600年,就有記錄清楚地記載了圓周率.只是數值略有差別,與目前的.
B. 圓周率是誰發明的
圓周率是客觀存在的規律,不能發明。
圓周率也不是祖沖之發現的,因為回更古的時候,說是答徑一周三,說明當時人們已經有圓周率的觀念,但是不精密。
祖沖之計算得出了當時世界上最精密的數值。除了大家知道的小數點後七位數的圓周率外,他還給出了約率
22/7,密率355/113。而且,至今數學家無法推測這個極其精密的約率他是如何算出來的!
佩服吧?老祖宗厲害哦!
補充:
樓下「倔……強 」說「祖沖之發現的,但是不準確」,此言差矣!
1,古人說「徑一周三」,就是說,圓周率的值是3,雖然不精確,卻是已經發現了。可見祖沖之並不是圓周率的發現者。
2,祖沖之計算的值是3.1415926<π<3.1415927,難道還不精確? 再說,祖沖之是正確地用內接正多邊型計算[月內]值,用外接正多邊型計算盈值,就是現代用電腦計算圓周率,其方法也仍然如此啊。
我不明白「倔……強 」說祖沖之不精確的根據何在?是不是又有什麼考古新發現證明他的觀點?
C. 圓周率誰發明的
古今中外,許多人致力於圓周率的研究與計算。為了計算出圓周率的越來越好的近似值,一代代的數學家為這個神秘的數貢獻了無數的時間與心血。十九世紀前,圓周率的計算進展相當緩慢,十九世紀後,計算圓周率的世界紀錄頻頻創新。整個十九世紀,可以說是圓周率的手工計算量最大的世紀。進入二十世紀,隨著計算機的發明,圓周率的計算有了突飛猛進。藉助於超級計算機,人們已經得到了圓周率的2061億位精度。歷史上最馬拉松式的計算,其一是德國的Ludolph
Van
Ceulen,他幾乎耗盡了一生的時間,計算到圓的內接正262邊形,於1609年得到了圓周率的35位精度值,以至於圓周率在德國被稱為Ludolph
數;其二是英國的William
Shanks,他耗費了15年的光陰,在1874年算出了圓周率的小數點後707位。可惜,後人發現,他從第528位開始就算錯了。把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用Ludolph
Van
Ceulen算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年Lambert證明了圓周率是無理數,1882年Lindemann證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。現在的人計算圓周率,
多數是為了驗證計算機的計算能力,還有,就是為了興趣。
D. 圓周率是誰發明的
圓周率不來是某一個人發自明的,而是在歷史的進程中,不同的數學家經過無數次的演算得出的。
古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。
公元480年左右,南北朝時期的數學家祖沖之進一步得出精確到小數點後7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值。
(4)圓周率發明的時間擴展閱讀:
圓周率(Pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。
圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。
E. 兀是什麼時候被發明
答:中國古代的數學家祖沖之發現的。
你好,本題已解答,如果滿意
請點右上角「採納答案」。
F. 圓周率是什麼時候發明的
大約2000多年前,在我國古代數學著作《周髀算經》中就有「周三徑一」的記內載,意思是說圓容的周長大約是直徑的3倍。
大約1700年前,我國的數學家劉徽有「割園術」來求圓周長的近似值。他從圓的內接正六邊形算起,逐漸把邊數加倍,正十二邊形……計算得出圓周率是3.14。並指出,內接正多邊形的邊數越多,周長越接近圓的周長。直到1200年後,西方人才找到了類似的方法。
大約1500年前,我國的數學家祖沖之,計算出圓周率大約在3.1415926和3.1415927之間,成為世界上第一個精確到6位小數的人。
還得到兩個近似分數值,密率355/113和約率22/7。
G. 圓周率是什麼時間發明的
最早是魏抄晉時,劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π的近似值3.1416。
漢朝時,張衡得出π的平方除以16等於5/8,即π等於10的開方(約為3.162)。雖然這個值不太准確,但它簡單易理解,所以也在亞洲風行了一陣。 王蕃(229-267)發現了另一個圓周率值,這就是3.156,但沒有人知道他是如何求出來的。
公元5世紀,祖沖之和他的兒子以正24576邊形,求出圓周率約為355/113,和真正的值相比,誤差小於八億分之一。這個紀錄在一千年後才給打破。數學問題想不通,快上數學百事通!
H. 圓周率是誰發明的
圓周率是一個概念,一個定義,不存在由誰發明的問題。 而對於圓周率精確計算,在各個時期達到如何的精度是有記錄的。數學家祖沖之為圓周率做出了巨大的貢獻。
1、第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71)) < π < (3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。
2、中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術.他用割圓術一直算到圓內接正192邊形.
3、南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉)。
4、在西方直到1573才由德國人奧托得到經過長期的艱苦研究,他計算出圓周率在3.1415926和3.1415927之間,成為世界上最早把圓周率數值推算到七位數字以上的科學家。
國際圓周率日
2011年,國際數學協會正式宣布,將每年的3月14日設為國際數學節,來源則是中國古代數學家祖沖之的圓周率。
國際圓周率日可以追溯至1988年3月14日,舊金山科學博物館的物理學家Larry Shaw,他組織博物館的員工和參與者圍繞博物館紀念碑做3又1/7圈(22/7,π的近似值之一)的圓周運動,並一起吃水果派。之後,舊金山科學博物館繼承了這個傳統,在每年的這一天都舉辦慶祝活動。
2009年,美國眾議院正式通過一項無約束力決議,將每年的3月14日設定為「圓周率日」。決議認為,「鑒於數學和自然科學是教育當中有趣而不可或缺的一部分,而學習有關π的知識是一教孩子幾何、吸引他們學習自然科學和數學的迷人方式……π約等於3.14,因此3月14日是紀念圓周率日最合適的日子。」
I. 圓周率在中國最早是由誰發明的,精確到小數點後幾位
祖沖之
祖沖之是南朝宋、齊之際著名的科學家,他在數學研究,特別是在計算圓周率方面取得了突出的成就,他是世界上第一個把圓周率的數值計算到小數點後第七位的人,比歐洲人早了約1000年。